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Abstract

A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis
under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able
to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined
steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and
dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method
proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying
principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and
(iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate
simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach
retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of
allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting
experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To
demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y1

signaling can cause widespread compensatory effects on cellular resting states.
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Introduction

Computational models help quantify the reaction dynamics and

regulatory modes in complex biochemical systems [1–5], partic-

ularly when a system is so intricate that its behavior cannot be

predicted by intuition alone. The building blocks for constructing

large reaction networks are often available in numerous databases

[6–9] and journal archives. Here, one can obtain many of the

experimentally-derived elementary reaction steps, kinetic con-

stants, or rate laws for individual steps in a given biochemical

system or pathway. Despite this wealth of information, however,

compiling these data to construct models with accurate system-

wide behavior represents a significant challenge in systems biology

[10,11]. Comprehensive models of metabolism have been

successfully developed for microbial systems [5,12,13] and certain

eukaryotic cell types [14–16]. These constraint-based models [17]

are often represented by stoichiometric networks that lack an

explicit description of substrate concentrations, reaction mecha-

nisms, or the transient behavior of the system. Although various

strategies have been proposed to incorporate these features into

large-scale models [18,19], the task of assembling complex kinetic

models with nonlinear dynamics remains a difficult problem. One

of the major obstacles to building accurate kinetic models is the

number of unknown parameters in the model that must be

estimated using experimental datasets [19], which themselves are

often massive, incomplete, noisy, and/or imperfect [20]. A

number of parameter estimation methods, such as genetic

programming, simulated annealing, and various gradient-based

routines [21,22], have been proposed to infer unknown quantities

in biochemical models. Most of these methods address the

problem of estimation in purely abstract terms and do not take

into account the unique mathematical features of biochemical

systems, such as a well-characterized kinetic subsystem (e.g., the

dynamics properties of an ion channel [23]). Estimated parameters

must still meet constraints imposed by the other experimentally

measured parameters in the model.

To address these challenges, we propose a strategy for

assembling large kinetic networks that retain the nonlinear

dynamics governing individual reactions in the system. The key

features of the method are: (i) restriction of steady-state values by

subsystem kinetics, (ii) reduction of the steady-state solution space

by principal component analysis (PCA), and (iii) combination of

independently constructed submodels (modules). The first feature

is a Monte Carlo sampling over unknown concentrations with

fixed kinetic parameters derived from the literature. The opposite

strategy has been used in microbial systems to restrict kinetic

parameters based on species concentrations [12]. The second

feature, reduction of the steady-state space by PCA, has been
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applied previously for metabolic systems described by a stoichi-

ometry matrix [5,13], but not, to our knowledge, for nonlinear

systems. In the last step, a full model representation is assembled

by combining PCA-reduced, steady-state solutions from each

module to form a combined steady-state solution space for the

entire system. This global space may then be searched for solutions

with accurate time-dependent behavior using any number of

established routines [22,24].

The method exploits three properties common to many

biological systems: modularity, homeostasis, and known quantita-

tive kinetic relationships among interacting molecular compo-

nents. Interestingly, this physiology-inspired approach enforces

natural constraints on the range of allowable system states and

allows one to monitor shifts in steady states due to kinetic

perturbations. To illustrate the method with an example, we show

how 77 reactions from 17 primary data sources were integrated to

construct an accurate model of intracellular calcium and

phosphoinositide metabolism in the resting and activated human

platelet. Finally, we extend our analysis of this modeling approach

by examining the steady-state characteristics of a system that is

affected by changes in kinetic rate constants.

Materials and Methods

Model Definitions and Requirements
Our method builds upon a common representation of

biochemical reaction networks [25] consisting of a system of

ordinary differential equations (ODEs). In this paradigm, the

concentration of each molecule in the system changes with time as

a function of the instantaneous values of other concentrations and

fixed kinetic parameters in the model. We separate this model

description into two parts: The concentration vector (CV) of the model

refers to the set of all molecule concentrations at a given instant in

time and is denoted by the vector c:

c ~ c1,c2, . . . ,cnð Þ : ð1Þ

The model topology refers to the entire set of kinetic parameters and

rate equations that determine how these concentrations evolve

with time. Mathematically, this is represented by the vector

function f, which defines the rate of change of c with time as a

function of the model concentrations and rate parameters:

dc

dt
~ f cð Þ~

f1 cð Þ
f2 cð Þ
. . .

fn cð Þ

2
6664

3
7775 : ð2Þ

The functional form of each fi is a sum of rate equations for each

reaction that consumes or produces ci and will generally vary for

each molecule. Typical functional forms for f may include, for

example, a series of Michaelis-Menten or nonlinear rate

expressions. A simple reaction topology is shown in Figure 1A

with corresponding ODEs in Figure 1B. It is useful to separate a

large model into two or more modules with subset CVs that overlap

at reaction edges, as shown in Figure 1A.

Often, the topology of a biological system is better characterized

than its CV [17]. For example, the major protein-protein

interactions in a signaling pathway may be deduced from mutation

or knock-out studies, providing a molecular wiring diagram that

links together the various components in the network. For each of

these interactions, purified enzymes may be used to measure the

strength of the interaction in vitro or to measure the rate of some

enzyme-catalyzed reaction in the system. An important caveat is

that the kinetic rate constants within the cellular milieu (the cell

context) may be different from those obtained in an in vitro

experiment with purified components. In contrast, it is generally

more difficult to accurately measure the absolute abundance of

intracellular enzymes or metabolites in vivo, although progress is

being made in this area [26]. Our method thus assumes that the

topology of a given system is known and that the unknown set of

concentrations exists in a linear space of dimension n in which

each species ci comprises a separate dimension (Figure 1C). The

ultimate goal of the method is to efficiently search this concentration

space to find a set of values that, when combined with the fixed

topology, renders the full model consistent with known resting

states and experimental time-series data obtained by perturbation

of the cell.

A special situation arises when dc = dt ~ 0 in equation (2).

Under these conditions, the model is said to be at steady state, and

the vector css is a steady-state solution to the system of ODEs. If f
contains nonlinear terms, there may be an infinite number of

steady-state solutions for the system of ODEs [25]. This set of

solutions occupies some nonlinear subspace of the concentration

space exemplified in Figure 1C. To guarantee that nonzero steady-

state solutions may be found, the method requires the model

topology (and all module topologies) to be balanced, meaning that

the production and consumption of each molecule must be equal

so that the total mass of the system is conserved. This steady-state

assumption [17] is a common constraint in stoichiometric

modeling and metabolic flux analysis and is conceptually related

to the biological phenomenon of homeostasis [27], in which

opposing processes are coordinated to maintain the stability of a

cell or organism. For example, a nerve cell may maintain a

constant electrochemical gradient by continually transporting ions

across a lipid membrane.

Results/Discussion

Reduction of Modular Kinetic Networks
The first phase of the method involves generating a compact

representation of the steady-state solutions for each module. The

steps for module reduction are outlined in Figure 2A. First,

Author Summary

Cells respond to extracellular signals through a complex
coordination of interacting molecular components. Com-
putational models can serve as powerful tools for prediction
and analysis of signaling systems, but constructing large
models typically requires extensive experimental datasets
and computation. To facilitate the construction of complex
signaling models, we present a strategy in which the
models are built in a stepwise fashion, beginning with small
‘‘resting’’ networks that are combined to form larger models
with complex time-dependent behaviors. Interestingly, we
found that only a minor fraction of potential model
configurations were compatible with resting behavior in
an example signaling system. These reduced sets of
configurations were used to limit the search for more
complicated solutions that also captured the dynamic
behavior of the system. Using an example model construct-
ed by this approach, we show how a cell’s resting behavior
adjusts to changes in the kinetic rate processes of the
system. This strategy offers a general and biologically
intuitive framework for building large-scale kinetic models
of steady-state cellular systems and their dynamics.

Assembling Large-Scale Kinetic Models
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conservative bounds are chosen for c based on physiological and

practical considerations. For example, a regulatory enzyme is

expected be present in at least one copy per cell and not to exceed

an intracellular concentration of one molar. Knowledge about the

physical size of the system is useful in this step to convert a raw

copy number to a concentration. For small systems, this

information can provide a rigid lower bound on unknown

concentrations [28]. For example, a single molecule in a 6 fL

platelet has a concentration of 4 nM. Also, because molecular

concentrations can span several orders of magnitude, it is often

more efficient to delineate this range of values on a logarithmic

scale rather than a linear scale.

Once the sampling distribution for c has been defined, steady-

state solutions (css) for each module are calculated using fixed

kinetic parameters for each reaction in the module obtained from

the literature [6,8,9], novel kinetic experiments, or estimation. For

this step, each initial guess c0 is sampled from the distribution for c
and combined with the predetermined topology. The combination

of fixed rate equations, fixed parameters, and c0 forms a well-

posed initial value problem,

dc

dt
~ f t,cð Þ, c t0ð Þ~ c0 , ð3Þ

that may be computed using a numerical solver [29]. For non-

oscillating systems, steady-state solutions may be obtained by

simulating the system until equilibrium is reached (i.e., until

dc = dt & 0 ). Alternatively, one may use any number of

multidimensional root-finding routines, such as those available in

the GNU Scientific Library [30], to find the closest n-dimensional

root to the vector function f using starting guess c0.

In the third step, a large collection of steady-state solutions for

each module is subjected to principal component analysis (PCA). A

sample size of 1000 points per unknown concentration is generally

sufficient to minimize error due to over-fitting [31]. PCA is then

used to transform these points to a new coordinate set that

optimally covers the space of steady-state solutions using the fewest

number of dimensions. For example, if two molecule concentra-

tions in the steady-state space are highly correlated due to

participation in the same reaction, PCA will locate a single

dimension to represent each pair of points in the transformed

space. Ultimately, these new dimensions will be combined across

all modules to search for global solutions that lie in the steady-state

space for the fully combined network. Since PCA is a linear

method, a steady-state solution space that is highly nonlinear may

require more principal component vectors to accurately estimate

the solutions. Nonlinear methods of dimensionality reduction,

such as kernel PCA [32] or local linear embedding [33], may

provide a more compact representation of steady-state solutions

spaces in future iterations of the method.

The reduction procedure is illustrated with an example of a human

platelet model comprising 4 interlinked signaling modules (Figure 2B).

For each module, we used published reaction mechanisms and kinetic

parameters to construct the module topologies [28]. Each topology

was held fixed while the unknown CVs were sampled from

empirically-defined distributions. For this step, we generated more

than 109 sets of initial guesses (c0) for each module, computed the

initial value problem for each c0 until a steady state was reached (

dc = dt & 0 ), and selected only those steady-state CVs ( css ) that

were consistent with known concentrations. For example, the

concentration of intracellular Ca2+ ([Ca2+]i, Figure 2B) in platelets

is known to be ,100 nM. Thus, only those css with [Ca2+]i<100 nM

were kept as part of the steady-state solution space for the Ca2+

balance module. This procedure was used to generate 10,000 steady

state solutions for each module for subsequent reduction by PCA. A

minimal set of principal component (PC) vectors (those capturing

90% or more of the variance in the solution set) were used as search

directions in the final estimation step, in which the transient behavior

of the perturbed steady-state was compared to experimental time-

series data.

Interestingly, only a small fraction of initial guesses produce

steady-state solutions that are also consistent with known

Figure 1. Example structure of model topology, ODEs, and
concentration space. (A) The model topology defines the state
transitions (arrows) and rate equations (f) that determine how
molecules are interconverted. This example model is organized into
three overlapping modules, with molecules c3 and c5 each occurring in
two modules. Corresponding (B) ODEs and (C) concentration space for
the example topology in panel A. Each of the 7 molecules occupies a
separate linear dimension, with each module comprising a subspace of
the full 7-dimensional space. Modules that share a common molecule
have intersecting subspaces.
doi:10.1371/journal.pcbi.1000298.g001
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concentration values. For example, it was previously shown that

only 50,000 of 109 initial guesses (0.005%) in the Ca2+ balance

module (Figure 2B) met both requirements and were suitable for

further analysis [28]. Among this set of CVs, marginal distribu-

tions for individual molecules were often confined to a narrow

range of values. As an example, 80% of steady-state solutions for

the calcium module contained ,1000 IP3 molecules/cell,

although initial guesses were sampled uniformly between 1 and

106 molecules/cell. This observation shows that the kinetic

topology of these molecular networks places very strong

constraints on the range of concentrations that can exist at steady

state. In biological terms, this suggests that fixed kinetic properties

at the molecular level (e.g., IP3R and SERCA kinetics) can affect

not only the dynamical features of a biochemical system but can

also determine the abundance of chemical species and the

compartmental structures that contain them.

Merging Steady-State Modules
In the final step of the method, the full model is assembled by

combining PCA-reduced, steady-state solution spaces from each

module into a combined steady-state solution space for the entire

system (Figure 3A). This global space is searched for full-length,

steady-state solution vectors that satisfy both the individual steady-

state requirements of each module and the desired time-dependent

properties when the steady-state is perturbed (for example, by

increasing the initial concentration of a signaling molecule). For

the platelet signaling model, consisting of 77 reactions, 132 fixed

kinetic parameters, and 70 species [28], a set of 16 PC vectors

representing all 72 unknown variables (70 molecule concentra-

tions, 1 compartment size, and 1 rate constant) in the model were

used as search directions in a global optimization routine. The

global solution space was searched for models with accurate

dynamic behavior using experimental time-series data for ADP-

stimulated Ca2+ release (Figure 3A). Equality constraints are

imposed during optimization to maintain consistent concentra-

tions of molecules that are present in more than one module.

Specifically, for a steady-state space A represented by m PC vectors

and a steady-state space B represented by n PC vectors, the

projections of each space onto ci must be equal,

Aci ~ Bci , ð4Þ

where ci is the unit vector for the shared molecule, ci. This

condition forms a linearly-constrained optimization problem for

which a number of efficient routines exist [22]. We used the

Asynchronous Parallel Pattern Search (APPSPACK) to perform a

derivative-free optimization of the platelet signaling model [24]. A

least-squares objective function was used to score the difference

between simulated (after perturbation of steady state) and

experimental time-series data points. One of the high-scoring

steady-state solution vectors for the full model is shown in

Figure 3B, along with individual steady-state vectors for each of

the four modules. This 72-dimensional vector (i) satisfies the

homeostasis constraint in that it is a steady-state solution, (ii) is

consistent with the known steady-state levels for 8 of the molecules

in the 72-dimensional space, and (iii) predicts the entire dynamic

Ca2+ and IP3 response of platelets exposed to ADP (0–100 mM).

Additionally, rigid and flexible nodes (steady-state concentrations)

in this 72-dimensional space were readily identified when a set of

allowable steady-state solution vectors are compared [28].

Applying the Method To Monitor Cellular Resting States
Resting systems remain in a steady state by the coordinated

action of opposing but balanced kinetic processes. Thus, in

general, altering one ore more of these rate processes (e.g.,

increasing the catalytic rate of a reaction) should upset the balance

of the system and cause it to adopt a new steady state. Various cell

types have been shown to have altered steady-state properties

because of mutations that affect the constitutive rates of reactions.

For example, patients with type 1 diabetes harbor more Ca2+

ATPase activity in their platelets than healthy volunteers and

experience high resting levels of intracellular Ca2+ [34]. In a

separate case, a mutation within the tyrosine kinase domain of

epidermal growth factor receptor causes significantly higher basal

(growth factor-independent) tyrosine phosphorylation levels than

the wild-type receptor [35]. Therefore, to examine the changes in

steady-state properties caused by kinetic perturbations in our

example model, we altered the rates of 3 important regulatory

reactions and observed the system response to each perturbation.

Each perturbation cause a brief adjustment phase lasting ,200 s

followed by a more gradual phase characterized by a new steady-

state profile (Figure 4, left). After 1 hr of simulated time, steady-

state concentrations and reaction fluxes were quantified relative to

their original steady-state levels (Figure 4, right).

As expected, increasing the rate of Ca2+ release from

intracellular stores resulted in higher cytosolic Ca2+ levels (7-fold

increase) and 10-fold greater pumping activity by plasma

membrane Ca2+ pumps (PMCA), although the new steady-state

Ca2+ release flux remained relatively unchanged (Figure 4A). This

perturbation also had little effect on the metabolism of

phosphoinositides, as indicated by a predominantly green color.

In a second perturbation, the inhibition of phospholipase C-b
(PLC-b) activity by protein kinase C (PKC) was reduced 10-fold.

Since PKC has a negative-feedback role in suppressing the

platelet-stimulating activity of PLC-b, this perturbation caused a

2-fold increase in steady-state phosphatidylinositol 4,5-bispho-

sphate (PIP2) hydrolysis, elevated (inositol 1,4,5-trisphosphate) IP3

concentration, and accelerated Ca2+ release. Interestingly, the

same reaction that was initially perturbed with a 10-fold decrease

experienced a 10-fold increase in steady-state flux. This was a

compensatory effect caused by the negative feedback loop

involving Ca2+-regulated activity of PKC, a resulting new

hypothesis that can be probed experimentally. In a third example,

increasing the hydrolytic activity of PLC-b for the substrate PIP2

by 10-fold caused an expected stimulatory effect, raising

intracellular calcium and steady-state levels of cytosolic inositol

phosphates (IP3, IP2, and IP) between 2- and 3-fold. Interestingly,

reaction fluxes for phosphoinositide hydrolysis were diminished,

Figure 2. Steps in dimensionality reduction of steady-state modules and example from platelet signaling model. (A) Steps in
dimensionality reduction of kinetic modules: (1) Restrict value ranges for each c to physiologically realistic ranges. (2) Compute multiple steady-state
solutions to the model ODEs using initial guesses sampled randomly from the defined distribution. (3) Reduce the dimensionality of the steady-state
solution set by PCA. (B) Results obtained from modular reduction 4 kinetic modules in a platelet signaling model. For each module, a fixed topology
was combined with initial guesses from the defined distribution and simulated until equilibrium was reached (dc = dt v 10{18) using 109 initial
guesses for c0 . Specific concentrations within these steady-state solutions were compared to experimentally measured values, and solutions with low
error (610% of known concentration values) for these elements were selected as ‘‘points’’ in the steady-state concentration space. PCA was then
applied to transform these points to a new coordinate set that maximally covers the space of steady-state solutions.
doi:10.1371/journal.pcbi.1000298.g002
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possibly due to substrate depletion. Taken together, these

examples illustrate the system-wide effects of perturbations in the

kinetic rate processes. The procedure could easily be extended to

examine multiple simultaneous perturbations in both reaction

rates and steady-state concentrations.

Method Application, Computational Efficiency, and
Extensions

We have presented a novel strategy for enumerating permissible

steady-state solutions to fixed kinetic topologies and combining

these solutions spaces to form large kinetic models. This is a

practical strategy because kinetic parameters are commonly

reported whereas absolute concentrations are not (see, for

example, [6,8,9]). The method extends the capability to build

‘‘genome-scale’’ models [5,10,11,36] to include nonlinear kinetic

features. Through application of the method, we have also

explored the implicit restrictions on steady-state solutions that can

be imposed by the underlying kinetic structures within a system

[4]. This is useful from a physiological standpoint since the

regulation and distribution of molecular species in living systems is

largely regulated by the coordinated action of synthetic, degrading,

and transporting enzymes.

The proposed method requires the model to fulfill a steady-state

assumption (i.e., the model must contain nontrivial steady states)

even if the system is typically characterized by transient behavior.

It is precisely this requirement that allows the model to have the

dual functional behavior observed in many biological contexts,

such as in cellular signaling responses. At very low levels of

Figure 3. Assembly of full model from steady-state modules. (A) The full model is assembled by combining PCA-reduced, steady-state
solution spaces from each module into a combined steady-state solution space. This global space is searched for full-length, steady-state solution
vectors that satisfy both the steady-state requirements of each module and the desired time-dependent properties when the steady-state is
perturbed (in this example, by increasing the concentration of the signaling molecule ADP and measuring the change in intracellular Ca2+

concentration). A simple linear constraint is imposed for every pair of modules that share a common molecule ci to ensure that steady-state solutions
are consistent. (B) To assemble the platelet signaling model, a set of 16 PC vectors representing all 72 unknown variables in the model were used as
search directions in a global optimization routine. The global solution space was searched for models with accurate dynamic behavior using
experimental time-series data for ADP-stimulated Ca2+ release. Species are grouped according to compartment. Color values correspond to molar
concentrations (mol/L or mol/m2) or as indicated: *DTS species (mol L21). {Extracellular species (mol L21). {DTS volume (L). 1PM leak conductance/
area (S m22).
doi:10.1371/journal.pcbi.1000298.g003
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Figure 4. Shifts in steady-state profiles caused by kinetic perturbations. The steady-state platelet model was perturbed by changing
selected kinetic parameters (610-fold) and simulating for 1 h (left panels). After approaching a new steady state, the model concentrations and fluxes
were determined relative to their original steady-state values and colored according to fold-change (right panels). Green indicates no change (NC)
relative to initial flux/concentration. Red indicates a relative increase and blue indicates a relative decrease. Note that the color scale in each panel is
normalized separately to maximize distinctions in fold change. New steady states were achieved after a (A) 10-fold increase in Ca2+ release through
open IP3R channels ([28]), (B) 10-fold decrease in PKC-mediated inhibition of PLC-b, and (C) 10-fold increase in PIP2 hydrolysis (10-fold increase in kcat

of hydrolysis). Reactions with perturbed rate constants are circled and correspond to reaction mechanisms from [ref. 14]. (A) Ca2+
dts R Ca2+

i, (B)
PKC*+PLC-b R PKC*+pPKC-b, (C) PLC-b*+PIP2 R PLC-b*+IP3+DAG.
doi:10.1371/journal.pcbi.1000298.g004
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activating signal, the model remains at rest by quenching the low

level of activating signal through feedback mechanisms or futile

cycling. When activating signals are increased, the system responds

with the appropriate transient signaling behavior. As an example,

a human platelet must remain quiescent under normal circulating

conditions, tolerating a number of fluctuations in its surrounding

chemical and physical environment. In the presence of the

appropriate stimulus, however, it must be able to respond rapidly

to bleeding conditions and trigger a precise program of molecular

signaling events. Developing a mathematical model that is

consistent with two or more biological behaviors is analogous to

writing a set of equations that has multiple solutions, each

dependent on a given set of initial conditions and parameter

values.

Our approach differs critically from metabolic flux analysis and

previous genome-scale metabolic network reconstructions [5,16]

because it accommodates nonlinear terms that describe the

dynamic behavior of each reaction in the system. Previous large-

scale network reconstructions typically use a stoichiometry matrix

to represent the gross flux of metabolites in the system [17]. Here,

we have preserved the mathematical form of each kinetic rate

equations as reported in the literature, allowing models to be built

from existing data in a ‘‘bottom-up’’ fashion [10] while still

allowing calibration to whole-system experimental data. This

feature will substantially improve the accuracy of dynamical

system simulation and parameter estimation.

Additional computational savings are provided through mod-

ularization. When estimating modules of modest size (5 or less

unknown concentrations), we use a brute-force Monte Carlo

approach to densely sample the feasible space of initial conditions.

Larger networks (20 or more unknowns) cannot be efficiently

searched in this brute-force manner, but can be built piecewise by

combining subspaces of smaller size that have been densely

sampled. Using the naı̈ve Monte Carlo approach, estimating n free

parameters is exponential in n. By dividing these parameters into k

independent networks, each with n/k free parameters, the

estimation procedure becomes exponential in n/k and thus more

tractable. By assembling the entire system from smaller, more

manageable kinetic modules, data may be used to test the

functionality of individual modules before incorporating them into

the entire system. In several cases, this approach was shown to

offer a substantial computational benefit (e.g., reducing the global

search space by over 10,000-fold) by simply requiring a steady-

state solution with known subcomponent values. The search space

can be reduced further by principal component analysis if there is

correlation between free parameters within a module. This was

found to be the case for enzymes that have opposing regulatory

roles; increasing the levels in one enzyme required a similar

increase in the other in order to preserve homeostasis. Lastly,

modules sharing common components must hold the same value

for that component, which imposes an additional constraint on the

steady-state solutions (equation (4)).

As presented, the method exploits known kinetic parameters to

restrict unknown concentrations due to kinetic interactions.

However, the method is equally valid for estimating unknown

kinetic parameters and/or utilizing known concentrations. Both

concentrations and kinetic parameters appear indistinguishably as

nonlinear terms in the ordinary differential equations that describe

the system (Figure 1B). Hence, it does not matter which types of

values are known and which are estimated; the procedure is valid

for mixed or incomplete sets of unknown values. The use of

qualitative data may also be exploited by the method. For

example, beginning with a large set of steady-state solutions for a

given module, the size of the set may be reduced by determining

which solutions in the set contain some qualitative behavior or

function. In a previous application of the method [17], a set of 109

steady-state solutions representing calcium balance in a resting

platelet were divided into 3 groups, according to their qualitative

response to increased IP3 concentration (low, mild, and high

response). Using this technique, the functional testing of steady-

state modules may be used to eliminate a large subset of the

original steady-state solution set. As another example, one may use

data from a Western blot to establish the relative abundance

between two proteins in the model. This qualitative information

may be used to filter the steady-state solutions to a reduced set that

is consistent with experimental results. This kinetically-driven,

constraint-based approach, which combines a homeostasis re-

quirement with known kinetic parameters and cellular concentra-

tions, naturally enforces numerical limits on unknown system

quantities.
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