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We develop and validate an efficient lattice kinetic Monte Carlo (LKMC) method for simulating
particle aggregation in laminar flows with spatially varying shear rate, such as parabolic flow or
flows with standing vortices. A contact time model was developed to describe the particle-particle
collision efficiency as a function of the local shear rate, G, and approach angle, θ . This model ef-
fectively accounts for the hydrodynamic interactions between approaching particles, which is not
explicitly considered in the LKMC framework. For imperfect collisions, the derived collision effi-
ciency [ε = 1 − ∫ π/2

0 sin θ exp(−2 cot θ�agg/G)dθ ] was found to depend only on �agg/G, where �agg

is the specified aggregation rate. For aggregating platelets in tube flow, �agg = 0.683 s−1 predicts the
experimentally measured ε across a physiological range (G = 40–1000 s−1) and is consistent with
α2bβ3-fibrinogen bond dynamics. Aggregation in parabolic flow resulted in the largest aggregates
forming near the wall where shear rate and residence time were maximal, however intermediate
regions between the wall and the center exhibited the highest aggregation rate due to depletion of
reactants nearest the wall. Then, motivated by stenotic or valvular flows, we employed the LKMC
simulation developed here for baffled geometries that exhibit regions of squeezing flow and stand-
ing recirculation zones. In these calculations, the largest aggregates were formed within the vortices
(maximal residence time), while squeezing flow regions corresponded to zones of highest aggrega-
tion rate. © 2011 American Institute of Physics. [doi:10.1063/1.3521395]

I. INTRODUCTION

A large class of problems is defined broadly by the pro-
cesses of particulate aggregation and fragmentation in the
presence of fluid flow. Particles moving within a shearing
fluid have spatially varying velocities that contol the dynam-
ics of particle collisions [Fig. 1(a)]. Examples include cluster
growth of paramagnetic particles in microchannels,1 aerosol
pollutant aggregation within the atmosphere,2 and cell aggre-
gation in blood flow.3–5 Much work has focused on mean-
field approaches, i.e., the solution of the population balance
(or Smoluchowski) equations.6 In the classical population
balance equation (PBE) approach, the particle size distribu-
tion is found by solving continuum-scale differential equa-
tions, in which the aggregation and fragmentation kernels
that describe particle-particle interactions are usually derived
from a combination of kinetic theory, hydrodynamics, and
problem-specific chemical, biological, or physical sources of
interactions. However, mean-field representations of particle
aggregation driven by convection are limited to relatively sim-
ple cases. While the influence of hydrodynamic and particle-
particle interactions has been studied extensively for constant
shear rate,7, 8 PBE approaches do not address many common
and realistic situations including tube flow. A direct simula-
tion method is needed for modeling processes with complex
flow fields.
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At the other end of the computational spectrum are meth-
ods that fully resolve the coupling between the particles them-
selves and between the particles and the fluid. One example is
the direct numerical simulation of the momentum equations
in which multiple rigid or elastically deformable particles are
present.9 Recently, lattice Boltzmann and dissipative parti-
cle dynamics also have been employed for this purpose.10, 11

While these direct approaches fully resolve the flow at the
particle scale and thus capture accurately the hydrodynamic
interactions between particles, they are computationally ex-
pensive for that same reason. As a result, a slew of coarse-
grained approaches have emerged that allow explicit aggre-
gate morphology to be retained while removing the full cou-
pling between individual particles and the fluid. Marshall used
a discrete-element model for soft attractive particles with a
prescribed velocity profile to simulate hundreds to thousands
of particles in two-dimensional (2D) parabolic flow12 and mi-
cronozzle flow.13 In the context of cellular deposition prob-
lems, Leiderman and Fogelson developed a spatially resolved
continuum model for platelet aggregation to an injured blood
vessel wall that includes coupling between the flow and the
growing platelet deposit.14 Xu et al. used a cellular Potts
model to simulate deformable platelet adhesion to an injured
blood vessel wall that also couples the fluid flow to the grow-
ing platelet aggregate.15, 16

In the present work, a new coarse-grained approach
based on the lattice kinetic Monte Carlo (LKMC) method
is presented for describing the general physics of particle
aggregation in a prescribed, nonuniform flow field. LKMC
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FIG. 1. Aggregation events on a lattice. (a) Colliding particles undergo an
aggregation event with constant rate �agg to form a new particle with radius

Ri+ j =
√

R2
i + R2

j . The collision radius between the colliding particles i and
j is given by Ri + R j . (b) Particles are discretized on the lattice with lattice
spacing h. The resolution of the particle radius on the lattice is given by α.

is well-suited for studying nonequilibrium aggregation pro-
cesses and has been applied to bulk crystal growth,17 epi-
taxial deposition,18 microstructure evolution,19, 20 and numer-
ous other applications. One particularly appealing aspect of
LKMC is the possibility for coarse-graining.21, 22 A common
feature in these examples of LKMC modeling is the absence
of convective transport whereby all particle motion is purely
diffusive. Recently, Flamm et al.23 reported an LKMC al-
gorithm for including convective particle transport in a pre-
scribed flow field. In Ref. 23, particles were considered to be
noninteracting tracers that did not influence the flow and only
interacted with each other through a no-overlap (excluded
volume) interaction. The LKMC approach was demonstrated
to be efficient and accurate when compared to numerical solu-
tion of idealized convection-diffusion problems (no aggrega-
tion). Here, this method is extended to include explicit parti-
cle aggregation, while retaining the advantages of the LKMC
approach.

II. THE LATTICE KINETIC MONTE CARLO
ALGORITHM

The inputs for an LKMC simulation are the rates for all
possible events in the system at a given configuration. In the
present case, events consist of particle motion (by convec-
tion or diffusion) and particle aggregation. The discretization
of the system onto a lattice reduces the degrees of freedom
in the system and makes possible the tabulation of all pos-
sible events at a given configuration. For all simulations re-
ported here, we employ a two-dimensional, uniform square
lattice with spacing h, although we note that all aspects of
the model can be extended to three dimensions. At any given
time, each particle can move one lattice space in either lat-
tice direction for a total of four possible moves per particle
in two dimensions. We introduce a grid resolution parame-
ter, α = R/h [Fig. 1(b)], where R is the radius of a particle.
For all simulations, the reported value of α corresponds to the
resolution of the monomers on the lattice (α = R0/h).

As shown previously in Ref. 23, the rate � for a con-
vective move across one lattice space along a principal lattice
direction (i.e., ex or ey) is given by

�C = v

h
, (1)

where v = v(x, y) is the magnitude of the local fluid velocity
in that direction. The velocity for a particle is given by the
average velocity over all particle-occupied lattice sites. The

rate for a diffusive move of one lattice space in either of the
principal lattice directions is

�D = D

h2
, (2)

where D is the diffusion coefficient of the particle. The sim-
plest method to combine convective and diffusive moves is to
add rates in the directions of positive flow velocity, i.e.,

� = �C + �D, (3)

while only the diffusive component is applied in directions
of zero or negative flow velocity. In this work, we only con-
sider cases driven by convective motion (D = 0). During a
move event, the particle (or aggregate) is moved by one lat-
tice space in the direction chosen by the LKMC algorithm.
After the move is executed, the rates associated with the mov-
ing particle and its immediate neighbors are updated, while
all other rates are unchanged. Site exclusion is enforced by
setting the rate of events causing overlap to 0.

Direct incorporation of convective transport into an
LKMC simulation as described above generates nonphysi-
cal particle motion due to concentration-dependent particle
blocking induced by the sequential move nature of the LKMC
algorithm. In Ref. 23, this artifact was removed using a pass-
forward algorithm (PFA) in which particles at the front of con-
nected chains were assigned the convective contributions of
the blocked particles. By reintroducing the blocked convec-
tive rates by passing forward these rates to the first available
particle in the direction of flow, the correct concentration-
independent velocity was obtained. Although the PFA was
shown to remove the systematic bias of particle blocking, the
LKMC simulation of convection intrinsically introduces an
algorithmic diffusive error into the dynamics that scales as23

Derr = vh

2
(4)

in the limit of zero concentration; this additional diffusion
arises from the randomness in particle selection as well as
the stochastic nature of clock update in the LKMC method.
Recall that v is the velocity magnitude along a particular lat-
tice direction, so that Derr is anisotropic if vx �= vy and, in
general, spatially varying for an arbitrary velocity field. The
algorithmic diffusive error in the limit of pure convection can
be parametrized in terms of an error Peclet number, i.e.,

PeLKMC = v R

Derr
= v R

vh/2
= 2α. (5)

Thus, for a purely convective situation (i.e., insignificant
Brownian motion), PeLKMC remains finite because of algo-
rithm diffusion, but can be increased arbitrarily by increasing
α, i.e., increasing the grid resolution relative to a monomer
radius. Increasing lattice resolution, α, increases the number
of moves required for a particle or aggregate to traverse a
given distance, thereby increasing the computational cost of
the simulation. Note, however, that the number of possible
particle events at any given time is unchanged. It should also
be noted that as the particle size distribution coarsens during
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a simulation, the effective value of PeLKMC actually increases,
i.e., the relative importance of artificial diffusion will be
reduced.

In addition to particle moves, an aggregation event can
occur when two particles become adjacent to one another. Ag-
gregation occurs with a prescribed rate, �agg, which is another
input into the LKMC model. In the present work, when an
aggregation event is executed, immediate morphological re-
laxation is performed so that our results can be compared to
PBE predictions. For an aggregation event between two par-
ticles of size Ri and R j , a new particle of size

√
R2

i + R2
j

is placed at the nearest lattice site to the center of mass of
the original particles. This choice of particle size conserves
total particle area (or mass). If the new particle overlaps an-
other particle on the lattice, the new particle is placed at the
nearest position that has no overlap. Other types of aggregate
morphological relaxation dynamics can be included into the
LKMC framework by modeling the relaxation process explic-
itly; the idealized choice used in the following calculations
simplifies the comparison to PBE model predictions. In the
limit of perfect, or ideal, collisions (�agg = ∞), once the par-
ticles come into contact, they immediately aggregate. In prac-
tice, we set �agg to a value that is several orders of magnitude
larger than the next largest rate in the system to simulate per-
fect collision efficiency. For finite values of �agg, the proba-
bility that an aggregation event occurs after particle contact
is given by the collision efficiency, ε. A model for imperfect,
or nonideal, collisions that establishes a connection between a
given value of ε and the corresponding �agg is described later
in Sec. III B.

The remainder of the LKMC algorithm proceeds in a
similar fashion to our previous implementation.23 Once the
rates for all possible events are determined at a given simu-
lation time t, an event i is chosen with probability �i/��k

and executed at time t − ln u/��k , where u ∈ (0, 1]. After
the event is executed, the rate database is updated, and a new
event is chosen based on the new rates. We use a method sim-
ilar to the next reaction method24 for rate selection, which
scales as log(NT ) for each step, where NT is the total num-
ber of possible events. There are a maximum of six possible
events per particle in the algorithm: up to four move events,
an aggregation event, and a particle-switching event, which is
defined in Sec. III B.

A. Particle blocking in an aggregating
system—Extensions to the pass-forward algorithm

Particle blocking introduces artifacts in the dynamics
when convection is present; this phenomenon has been ad-
dressed in detail in a previous publication.23 Briefly, particles
immediately upstream from other particles cannot move in the
direction of flow due to site exclusion and therefore have a
convective rate of 0. In Ref. 23, it was found that by passing
forward the rates of blocked particles in a connected chain to
the first nonblocked particle, the convective rates of all par-
ticles are corrected in an averaged sense; this method was
termed the pass-forward algorithm, or PFA. In our previous
implementation of the PFA (without aggregation), monomers

FIG. 2. Rate passing scheme. (a) A particle can be blocked from moving
in the direction of flow by two (or more) particles. The convective rate of
the blocked particle is passed forward in equal parts to each blocking parti-
cle. Assuming each particle has the same initial convective rate, �C , the new
convective rates for the blocking particles are 3

2 �C . (b) Conversely, a sin-
gle particle can block two (or more) particles in the direction of flow. The
convective rate of each blocked particle is passed forward to the blocking
particle. Assuming each particle has the same initial convective rate, �C , the
new convective rate for the blocking particle is 3�C .

were assigned to single lattice sites, i.e., α = 1 for all
time. With aggregation present, particles can occupy multiple
lattice sites and generally, α > 1. In this case, a given particle
can be blocked by multiple other particles. The reverse situ-
ation is also possible, in which one particle directly blocks
several others; examples are shown in Fig. 2. The PFA is
readily applicable to any arbitrary particle connectivity. As
shown in Fig. 2, the convective rates are passed forward (in
the direction of flow) to the blocking particles based on the
local connectivity. For example, Fig. 2(a) shows the situa-
tion when two particles block a third; here, the convective
rate of the blocked particle is partitioned evenly among the
two blocking particles. Conversely, when one particle blocks
two others, the sum of the blocked particle convective rates is
passed forward to the blocking particle, as shown in Fig. 2(b).

III. RESULTS AND DISCUSSION

First, we employ a series of calculations to validate
the LKMC model against well-established PBE solutions.
We then examine examples that demonstrate the flexibility
of the LKMC approach by considering particle aggregation
in more complex flows, and make connections to the spe-
cific case of platelet clustering. In all cases, we consider two-
dimensional geometries.

A. Ideal (ε = 1) aggregation in a two-dimensional,
constant shear flow

We consider a two-dimensional representation of a cone-
and-plate geometry into which circular particles of uni-
form radius R0 are initially placed with concentration C0.
The initial volume fraction is φ = C0π R2

0. The computa-
tional domain is represented by a rectangular box of size Lx

= 40, L y = 0.3. A shear rate G is applied in the y dimension
so that the velocity profile within the domain is vx (y) = Gy.
Periodic boundaries are applied in the direction of flow and
no flux boundaries are imposed perpendicular to the direction
of flow. The particles in the fluid are assumed to move along
rectilinear paths until collision, i.e., no hydrodynamic or other
particle interactions are explicitly modeled here.
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FIG. 3. Ideal aggregation of particles at constant shear for φ = 0.005, where

 is the area fraction, G = 1s−1, ε = 1, Lx = 40, and L y = 0.3. (a) Evo-
lution of total particle concentration, Ctot = �Ci , normalized by the initial
monomer concentration, C1 (0). Black: PBE, orange: LKMC α = 1, blue:
LKMC α = 5, red: LKMC α = 15. (b) Particle distribution at t = 500 s for
PBE (solid line) and LKMC (dotted line) with α = 15.

The population balance equation for aggregates of size i
is given by considering collisions that create and destroy par-
ticles of size i:

dCi

dt
= 1

2

i−1∑
j=1

εk j,i− j C j Ci− j −
∞∑
j=1

εki, j Ci C j , (6)

where εkijCi C j is the rate of aggregation between clusters
of size i (an “i-mer”) and clusters of size j to form clusters
of size i + j, Ci and C j are the concentration of i-mers and
j-mers, respectively, and kij is the collision kernel that de-
pends on the fluid flow. Note that the collision efficiency ε

can include hydrodynamic interactions and other interparti-
cle interactions such as receptor capture efficiency between
individual cells.7, 8, 25, 26 For the case of two-dimensional ag-
gregation of circular particles in constant shear, the collision
kernel is given by (see the Appendix for derivation)

ki j = G
(
Ri + R j

)2
. (7)

The PBE has no known analytic solution even for this simple
kernel, but several methods exist for numerical solution.27, 28

We use a stochastic numerical solution approach29 based on
the Gillespie method for chemical kinetics,30 which is essen-
tially a mean-field version of the LKMC algorithm employed
here.

The concentration of particles in a constant-shearing fluid
as a function of time is shown in Fig. 3(a) for both the LKMC
and PBE methods when ε = 1 (�agg = ∞). The decreasing
aggregation rate results from the decreasing particle concen-
tration as the aggregation process continues. In fact, as shown
in Eq. (6), the aggregation rate is expected to scale as the
square of the particle concentration. The agreement between
the LKMC results and the PBE solution is strongly influenced
by the resolution of the lattice. For coarse lattices, particles
tend to aggregate too rapidly, an error that arises from the dif-
fusive error described in Sec. II, which creates additional col-
lisions due to diffusive motion in the direction of flow. This
error decreases as the lattice spacing decreases, and for val-
ues of α greater than approximately 10, the LKMC results
match the PBE for all simulated time. A more detailed com-
parison between the two methods at a specific time is shown in
Fig. 3(b), where individual components of the overall size

FIG. 4. Particle switching causes nonideal collisions in LKMC. The vector
that points from the center of the reference sphere to the center of the col-
liding sphere is r̄ , which makes an angle θ to the direction of flow and has a
magnitude of r = Ri + R j , where i and j are the reference sphere and col-
liding sphere. At a local shear rate G, the colliding particle has a relative
velocity of Gr sin θ . The colliding particle moves r cos θ and the reference
particle moves −r cos θ in the direction of flow.

distribution are shown. For α = 15 at t = 500 s, the agree-
ment is quantitative within the spread of the LKMC results.

B. Nonideal (ε < 1) aggregation in a two-dimensional,
constant shear flow

The lack of explicit hydrodynamic interparticle interac-
tions in the present LKMC algorithm can create artifacts in
the nonideal collision case. Consider the situation where a
faster-moving particle approaches a slower-moving one and
becomes blocked. In the ideal collision case, instantaneous
aggregation results and a new, single particle is created. In the
nonideal case (finite �agg), however, the blocking cannot be
resolved until the particles aggregate. In other words, an ag-
gregation event will take place for every collision even when
�agg is very small, because there is no mechanism for the col-
liding particles to disentangle following the collision. In re-
ality, lubrication forces allow particles to slide around each
other over a finite time interval.

This difficulty is resolved by introducing an additional
event, namely the switching of coordinates in the direction
of flow of a pair of particles after some time, as shown in
Fig. 4. Consider two nearest-neighbor particles, i and j, col-
liding at an angle θ with respect to the direction of flow (see
Fig. 4). The interaction time for this event is assumed to be
�t = (2�x/�v), where �x is the center-to-center separa-
tion distance in the direction of flow, and �v is the veloc-
ity difference between the two particles. As shown in Fig. 4,
�x = (

Ri + R j
)

cos θ and �v = G(x, y)
(
Ri + R j

)
sin θ .

Combining these expressions provides a time scale for switch-
ing as a function of the contact angle,

�t = 2

G
cot θ. (8)

The corresponding rate expression for pair switching is given
by

�flip = G

2
tan θ. (9)

The pair-interaction time (or equivalently the switching rate)
in this model does not depend on the radii of the interacting
particles, a result that is consistent with experimentally mea-
sured particle interaction times.31
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We now make quantitative connections between the colli-
sion efficiency parameter, the switching rate, �flip, and the ag-
gregation rate, �agg. Over the contact time interval, and for a
given (constant) aggregation rate, the probability that two par-
ticles have not aggregated is exponentially distributed. There-
fore, the probability that the particles have aggregated with a
specific angle of contact is

P(θ )=1 − exp(−�agg�t) = 1 − exp

(
−2

�agg

G
cot θ

)
. (10)

The collision efficiency ε is the probability that any collision
between two particles will produce a successful aggregation
event. The collision efficiency within a LKMC simulation is
generally given by

ε =
∫ π/2

0 J (θ ) P (θ ) dθ∫ π/2
0 J (θ )dθ

, (11)

where J (θ ) is the flux of particles arriving at a reference par-
ticle position with collision angle θ . In the case of rectilinear
particle trajectories with locally constant shear, the arrival flux
is given by

J (θ ) = C j G
(
Ri + R j

)
sin θ. (12)

Note that the arrival flux is nonuniform and increases with
increasing contact angle. Inserting Eq. (12) into Eq. (11) pro-
vides an expression for the average sticking probability based
on LKMC parameters,

ε = 1 −
∫ π/2

0
sin θ exp

(
−2

�agg

G
cot θ

)
dθ. (13)

The collision efficiency is therefore explicitly dependent on
the dimensionless ratio of the aggregation rate to the shear
rate, (�agg/G).

The integral expression in Eq. (13) was evaluated nu-
merically for 10−3 < (�agg/G) < 103 as shown in Fig. 5(a).
When the aggregation rate is large relative to the shear
rate, the ideal aggregation limit is obtained and ε ∼ 1. As
the aggregation becomes small relative to the shear rate,

FIG. 5. Nonideal collisions at constant shear. (a) Numerical integration of
collision efficiency varying with the ratio of the aggregation rate to the shear
rate [Eq. (13)]. (b) Comparison between LKMC (dashed lines) for various
ratios of aggregation to shear rate [0.01 (red), 0.1 (blue), 1 (orange), and
100 (purple)] and PBE (solid lines) with corresponding collision efficiency
determined from numerical integral from panel (a). G = 1s−1, φ = 0.005,
α = 10, Lx = 20, L y = 1, and R0 = 0.001 for all LKMC simulations.

ε → 0. The crossover between ideal collisions (ε = 1) and
noninteracting collisions appears naturally at (�agg/G) ≈ 1,
confirming the relevance of this ratio in dictating the overall
collision efficiency. Equation (13) and Fig. 5(a) provide
the correspondence between the spatially resolved particle
interactions, through the rate of aggregation and the inter-
action time, and the spatially averaged collision efficiency
in the PBE. Since the interaction time depends only on
the local flow characteristics in this model, only one free
parameter, �agg, needs to be specified in LKMC. Choice of
this parameter for a physical system is discussed in Sec. III C.

LKMC simulations of aggregation in the periodic,
two-dimensional constant-shearing flow were performed for
10−2 < (�agg/G) < 102 and G = 1 s−1. The temporal evolu-
tion of the total number of clusters for the different cases is
compared to the corresponding PBE simulations in Fig. 5(b).
In each PBE case, the corresponding value of ε was obtained
from Fig. 5(a), and agreement between the two simulation ap-
proaches is observed over 4 orders of magnitude in the param-
eter (�agg/G). Note that for coarse size distributions, the total
number of clusters is small, and the corresponding statistical
fluctuations in the LKMC result become larger.

C. Platelet aggregation in tubular channels

Here, we demonstrate the ability of the contact time
model to reproduce the behavior of a physical system with
hydrodynamic interactions and cellular bonding. Bell et al.4

have measured size distributions of adenosine diphosphate
(ADP)-stimulated platelet aggregates at the outlet of a tube at
four average shear rates: 41.9, 168, 335, and 1000 s−1. By as-
suming a linear velocity profile at the average shear rate of the
tube, it was possible to extract an effective collision efficiency
for platelets. Overall, the collision efficiency was found to
decrease with increasing shear rate, a result that is qualita-
tively consistent with the particle interaction model presented
in Sec. III B.

We make an explicit connection to the LKMC contact
time by finding the single aggregation rate parameter that
leads to the best match to the inferred collision efficiency at
each shear rate in Ref. 4. The best fit value of the aggrega-
tion rate is found to be �agg = 0.683 s−1. As shown in Fig. 6,
the contact time model used in the LKMC model provides a
good quantitative description of the shear-rate dependence on
the collision efficiency for platelets. The dotted lines repre-
sent ±50% of the regressed rate of aggregation, which cap-
tures some of the uncertainty due to the approximations used
to calculate the collision efficiency in Ref. 4. The regressed
aggregation rate can be qualitatively interpreted in terms of
the time required to form bonds that are strong enough to
hold platelets together. The value of �agg = 0.683 s−1 is a
net aggregation rate that characterizes the result of fast (but
unstable) GPIb–von Willebrand bonds and slower (but sta-
ble) glycoprotein α2bβ3-fibrinogen bonds. Multiple bonds be-
tween α2bβ3 on one platelet and bound fibrinogen on an-
other platelet are required for stable aggregation, and �agg

= 0.683 s−1 is consistent with O(1s) time for the multiple
high affinity α2bβ3-fibrinogen complex to form since O(0.1s)
time is needed for a single bond to form.32
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FIG. 6. Comparison of particle interaction model with experimentally deter-
mined collision efficiencies for ADP stimulated platelet aggregation. Circles
show data from Ref. 4. Solid line is the particle interaction model with an
aggregation rate of 0.683 s−1. Dotted lines are the particle interaction model
with an aggregation rate of 0.683 ± 50%.

D. Aggregation in nonperiodic, open systems

We now consider the more general case of open systems,
in which the aggregation process takes place along a domain
of finite length under specified inlet conditions. We consider
four types of flow: plug flow, constant-shear flow, parabolic
parallel-plate flow, and a more complex situation with baffles.
In the following simulations, the inlet condition is a fixed par-
ticle volume fraction of monomers with a uniform radius dis-
tribution, R0. This inlet condition is implemented by defining
a new event in the LKMC simulation that inserts a particle
into the domain such that the center of mass is R0/h lattice
units from the boundary, which allows for the insertion of the
entire particle onto the lattice. The rate for inserting a parti-
cle with center of mass located at a specific lattice site i is
proportional to the total flux of fluid through that lattice site,
vi h, and the concentration of monomer particles in the inlet,
C0, or

�inlet (i) = vi hC0. (14)

Only the overall inlet rate, ��inlet ( j), where the summation
is only over valid inlet sites, is used as an event in LKMC
to determine when a new particle is inserted into the do-
main. After that event is chosen to occur, the particle’s cen-

ter of mass is placed at a specific lattice site i with probabil-
ity �inlet (i)/��inlet ( j). If this causes particle-particle overlap,
this site is rejected and a new site is chosen until site exclusion
is satisfied.

In the following examples, a finite, rectangular domain
with dimensions Lx = 20, L y = 1 was employed. A uni-
formly distributed square lattice with h = 0.001 was used
in all cases. We first compare the behavior of aggregation
in two flows: constant shear and parabolic. In the constant-
shear case, the prescribed velocity profile is given by vx (y)
= 2 × 105 y, while the parabolic velocity profile is vx (y)
= 3 × 105

(
1 − y2

)
. In the latter case, the y origin is defined

at the centerline of the domain. The total flow rate in both
cases is the same. Steady-state quantities, averaged over suf-
ficiently long time intervals, are measured for open systems
whereas time-dependent quantities were measured in Figs. 3
and 5. In Fig. 7, the aggregation rates at steady state are com-
pared for both flows. As seen by Eqs. (6) and (7), the aggre-
gation rates scale as ∼ GC2. Note that although the shear rate
is constant across the height of the domain in the first case
[Fig. 7(a)], the aggregation rate is not. The reason for this
apparent anomaly is a direct consequence of the variation in
residence time across the height of the channel. Thus, more
time for particle aggregation is available in the slower-moving
streamlines and the aggregation rate decreases more rapidly
with distance along the length of the channel. The large val-
ues for aggregation rate are a direct result of the large shear
rate. In the parabolic flow case, the y locations with the high-
est aggregation rates along the channel occur near, but not at,
the plate surfaces. These regions present an optimal balance
between high shear rate and relatively low residence time. The
corresponding average particle sizes at steady state as well as
a representative snapshot are shown in Fig. 8 for both cases.
As expected, regions that exhibit the longest residence time
show the largest particles—in both cases, this is the region of
the flow adjacent to the channel walls. Note that the average
particle size is expected to correlate with the product of the
aggregation rate and the residence time integrated along the
length of the channel.

The mixing-cup averaged size distributions of particles
exiting the two channels are shown in Fig. 9, along with re-
sults obtained from an idealized plug-flow case. Although the
total flow rate is the same in all three cases, the parabolic flow
example leads to the largest particles on average. The reason

FIG. 7. Comparison of aggregation rates for constant shear rate and parabolic flow in an open system. Colorbar is in units of aggregation events per unit area
time. Flow is from left to right with dimensions Lx = 20 and L y = 1. The aspect ratio of each panel is 10:1 for readability. α = 10, h = 0.001. φ = 0.01, and
R0 = 0.01. (a) Constant shear rate with an average velocity of 2E5. (b) Parabolic flow with an average velocity of 2E5.
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FIG. 8. Comparison of particle size for constant shear rate and parabolic flow in an open system. Flow is from left to right with dimensions Lx = 20 and
L y = 1. The aspect ratio of each panel is 10:1 for readability: α = 10, h = 0.001, φ = 0.01, and R0 = 0.01. (a,c) Constant shear rate with an average velocity
of 2E5. (b, d) Parabolic flow with an average velocity of 2E5. (a-b) Snapshot of particles during simulation. Radii of particles enhanced by a factor of 3. (c-d)
Color bar represents average particle size relative to the monomer size: (R/R0)2.

for this can be understood mathematically by considering an
approximate solution to the PBE in which all particles are as-
sumed to be the same size. The PBE system is reduced to a
single differential equation of the form6

dC∞
dt

= −2φ

π
GC∞, (15)

where C∞ is the concentration of the single-particle size in the
system and φ is the area fraction of particles in 2D. Integrating
along a particular streamline in unidirectional flow33 gives

C∞
C∞ (0)

= exp

(
−2


π
G

(
L

v

))
, (16)

where L is the length and v is the velocity along the stream-
line. The mixing-cup averaged concentration of particles

FIG. 9. Outlet distribution at steady state for open systems. Triangles–plug
flow. Squares–constant shear rate. Circles–parabolic flow. Flow is from left
to right with dimensionsLx = 20 and L y = 1. α = 10, h = 0.001, φ = 0.01,
and R0 = 0.01, average velocity of 2E5.

exiting the channel is then given by the expression

C∞
C∞ (0)

=
∫

v C∞(y)
C∞(0) dy∫
vdy

. (17)

Numerical solution of Eq. (17) demonstrates that, for short
channels, more aggregation takes place in parabolic flow due
to the low-velocity regions near the walls, consistent with the
results in Fig. 9. However, as the channel length increases, the
averaged aggregation extent becomes greater in the constant-
shear-rate case due to regions of low shear near the center
of the channel in parabolic flow. The crossover occurs at a
length-to-height ratio of 65.

We conclude this section by noting that the plug-flow
channel (vx = 2 × 105) also leads to measurable aggregation
(Fig. 10), even though the aggregation kernel should be zero.
Here, all aggregation events are driven by the algorithmic

FIG. 10. Comparison of 1D Brownian aggregation [kernel in Eq. (B2)] (line)
to plug flow LKMC simulation (symbols). The radius of particles in LKMC
is taken as the average particle radius at that position. Dimensions of Lx = 20
and L y = 1. α = 10, h = 0.001, φ = 0.01, R0 = 0.01, and v = 2 ∗ 105.
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FIG. 11. Streamlines for baffle reactors with flow from left to right. Overall dimensions of reactor are Lx = 20 and L y = 2. Inlet and outlet have length 1 and
width 0.5. Baffles are 0.2 units thick and (a) 1.5 units, (b) 1 unit, (c) 0.5 units, and (d) 0 units long. α = 10, h = 0.00133, φ = 0.02, and R0 = 0.00133.

diffusion in the LKMC simulation. It is possible to demon-
strate that the aggregation rate obtained in the plug-flow case
can be quantitatively reproduced by solving the PBE using a
Brownian motion kernel (see the Appendix). The amount of
artificial aggregation is small, however, and particle size in-
creases slowly along the channel relative to the real, shear-
driven process. We note once again that this artificial source
of aggregation can be reduced arbitrarily by increasing the
grid resolution relative to the monomer size.

E. Aggregation in complex flows: Parallel plate
reactor with baffles

The validated LKMC model was used to investigate parti-
cle aggregation in a more complex flow produced in a rectan-
gular channel containing baffles to introduce additional fluid
shear. Our choice of this type of flow geometry is moti-
vated by stenotic or valvular flows, which present regions of

high shear (squeeze flow) and regions of high residence time
(standing vortices). Such geometries cannot be considered in
a mean-field PBE framework, necessitating the use of a spa-
tially resolved approach. The LKMC simulation domain con-
sidered here includes a total of eight baffles that are equally
spaced and originate from alternating channel walls, as shown
in Fig. 11. Four cases are considered in which the baffle height
is varied from zero to 0.75 of the channel width. The resulting
flow streamlines for each case are shown in Fig. 11. The fluid
is incompressible, and the average normal velocity in the in-
let is 20 (Re = 10). The velocity field for each geometry was
determined by a finite-element solution of the Navier-Stokes
equation (COMSOL MultiphysicsTM, Burlington, MA).

The particle aggregation rates are shown for all four cases
in Fig. 12. The effect of the baffles is generally to locally in-
crease the shear rate and therefore the aggregation rate, an
effect that increases with increasing baffle height. Note that
as the particles coarsen, the aggregation rate decreases down

FIG. 12. Aggregation rate at steady state in baffle reactors from Fig. 11. Color bar is in units of aggregation events per unit area time. Overall dimensions of
the reactor are Lx = 20 and L y = 2. Inlet and outlet have length 1 and width 0.5. Baffles are 0.2 units thick and (a) 1.5 units, (b) 1 unit, (c) 0.5 units, and (d) 0
units long. α = 10, h = 0.00133, φ = 0.02, and R0 = 0.00133.
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FIG. 13. Average dimensionless particle size at steady state in baffle reactors from Fig. 11. Color bar represents average particle size relative to the monomer
size: (R/R0)2. Overall dimensions of reactor are Lx = 20 and L y = 2. Inlet and outlet have length 1 and width 0.5. Baffles are 0.2 units thick and (a) 1.5 units,
(b) 1 unit, (c) 0.5 units, and (d) 0 units long. α = 10, h = 0.00133, φ = 0.02, and R0 = 0.00133.

the channel due to lower particle concentration. In the recircu-
lation regions adjacent to each baffle, the aggregation rate is
very low corresponding to the very low shear rate there. The
corresponding average particle-size distribution for each case
is shown in Fig. 13. Most notably, extremely large particles
are found in the recirculation regions where the residence time
is very long, leading to a broad size distribution at the reactor
exit. This often undesirable effect increases with increasing
baffle height, demonstrating how the present simulation tool
could be used to optimize reactor geometries in the presence
of competing objectives.

IV. CONCLUSIONS

A new approach based on the lattice kinetic Monte Carlo
(LKMC) method is presented for simulating particle aggrega-
tion in the presence of complex fluid flow. In this work, we
build on a recently developed method to include convection
within LKMC simulations. LKMC is a versatile and com-
putationally attractive technique for simulation of the spa-
tiotemporal evolution of a collection of particles. For exam-
ple, an open-system simulation that tracked on the order of
100 000 particles and aggregates of up to 80-mers required
approximately 6 h on a single CPU. However, essentially no
work has been applied toward the consideration of convection
(e.g., flow) as a driving force for particle motion. In previous
work, we demonstrated an algorithm that resolves unexpected
numerical difficulties associated with the sequential single-
particle move nature of the LKMC technique when drift is
present. In the present paper, we extended this work to include
explicit particle aggregation, thereby allowing us to consider
a far broader range of problems than has been possible with
LKMC.

A key aspect of the aggregation physics embodied in the
present algorithm is a contact time model that was developed
to account for the finite time that particles in close proximity
have to establish an aggregated state. The need for an explicit

contact time model stems from the lack of hydrodynamic in-
teractions within the present implementation of the LKMC al-
gorithm. The contact time model accounts for the local shear
rate and particle-particle contact angle to generate an expres-
sion for the probability of particle-particle binding in terms of
the LKMC parameters that is compatible with the sticking co-
efficient parameter commonly employed in mean-field mod-
els and experimental measurements. We analyzed the contact
time model further in the context of platelet aggregation using
regression to experimentally inferred sticking coefficients in a
tubular microchannel. Here, we find that it is possible to make
a quantitative connection between the LKMC aggregation rate
parameter and “bond” formation during platelet-platelet stick-
ing. Specifically, a single extracted aggregation rate is able to
adequately describe an experimentally inferred platelet col-
lision efficiency across a large range of averaged shear rates
within tubular flow. Moreover, the inferred aggregation rate is
physiologically reasonable, which provides further evidence
for the utility of the computationally efficient approach taken
in this work.

The LKMC model presented in this paper was vali-
dated using a series of simple examples that can be described
with a population balance equation formulation. Although
the LKMC simulations were fully able to capture the spa-
tiotemporal evolution in all tested cases, we find that the
lattice spacing relative to the particle size is an important
parameter in setting the accuracy of the method. In general,
coarser grids lead to an increase in numerical diffusion, which
alters the physics of the aggregation process. The LKMC
model was then applied to flow examples that are well be-
yond the scope of PBE-based approaches. In particular, we
considered a baffled parallel-plate geometry with variable baf-
fle geometry that produces a highly heterogeneous shear-rate
distribution within the domain. It was demonstrated that the
LKMC approach is easily able to address such complex
situations and generate an explicit particle-size distribution
throughout the geometry.
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APPENDIX A: TWO-DIMENSIONAL AGGREGATION
KERNEL IN SHEARING FLOW

The flux of particles of radius R j at a concentration, C j ,
to reference particles of radius Ri in a constant shearing flow
is given by

Ji j = 2
∫ Ri +R j

0
C j Ci vi j dr

= 2C j Ci

∫ Ri +R j

0
Grdr

= C j Ci G
(
Ri + R j

)2
(A1)

where vij is the relative particle velocity. With the relation
Jij = kijCi C j , the result in Eq. (7) is obtained.

APPENDIX B: ONE-DIMENSIONAL BROWNIAN
AGGREGATION KERNEL

To derive the time-dependent aggregation kernel, con-
sider a set of particles at initial concentration C0 diffusing in
one dimension. Here, we consider the motion of the particles
with respect to a reference particle in the positive x direction.
The boundary condition at the surface of the reference particle
is C (x, t) = 0 for ideal collisions. To compare the results to
the pseudo-steady aggregation kernel, we assume that the far-
field concentration does not change, i.e., C (∞, t) = C0. The
concentration profile around the reference sphere is given by
the diffusion equation (∂C/∂t) = 2D(∂2C/∂x2), where the
factor of 2 comes from fixing the reference particle. The solu-
tion for this PDE collapses onto a single solution with respect
to a penetration length that grows as the square root of time
C (x, t) = C0erf(− x

g(t) ), g (t) = 2 (2Dt)1/2. The flux of parti-
cles to the reference particle surface at x = 0 is

Flux+ = −2Rcollision D
∂C

∂x

∣∣∣∣
x=0

= 2
(
Ri + R j

) (
2D

π t

)1/2
C0, (B1)

where ∂C
∂x

∣∣
x=0

= C0
(

2
π Dt

)1/2
, Rcollision = Ri + R j , and

the subscript + indicates flux of particles from the pos-

itive x direction. The total flux per unit area is Fluxtotal

= 1
2 (|Flux+| + |Flux−|)C0 = 2(Ri + R j )(2D/π t)1/2C2

0 ,
where the factor of 1/2 arises from double counting colli-
sions and the absolute value of the flux from the positive and
negative directions are equal. The kernel is

k = 2(Ri + R j )

(
2D

π t

)1/2

. (B2)
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