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Summary. Accurate computer simulation of blood func-

tion can inform drug target selection, patient-specific dos-

ing, clinical trial design, biomedical device design, as well

as the scoring of patient-specific disease risk and severity.

These large-scale simulations rely on hundreds of inde-

pendently measured physical parameters and kinetic rate

constants. However, the models can be validated against

large-scale, patient-specific laboratory measurements. By

validation with high-dimensional data, modeling becomes

a powerful tool to predict clinically complex scenarios.

Currently, it is possible to accurately predict the clotting

rate of plasma or blood in a tube as it is activated with a

dose of tissue factor, even as numerous coagulation fac-

tors are altered by exogenous attenuation or potentiation.

Similarly, the dynamics of platelet activation, as indicated

by calcium mobilization or inside-out signaling, can now

be numerically simulated with accuracy in cases where

platelets are exposed to combinations of agonists. Multi-

scale models have emerged to combine platelet function

and coagulation kinetics into complete physics-based

descriptions of thrombosis under flow. Blood flow con-

trols platelet fluxes, delivery and removal of coagulation

factors, adhesive bonding, and von Willebrand factor

conformation. The field of blood systems biology has

now reached a stage that anticipates the inclusion of con-

tact, complement, and fibrinolytic pathways along with

models of neutrophil and endothelial activation. Along

with ‘-omics’ data sets, such advanced models seek to pre-

dict the multifactorial range of healthy responses and

diverse bleeding and clotting scenarios, ultimately to

understand and improve patient outcomes.
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thrombin, thrombosis.

Introduction

Perhaps no other aspect of medical biology is as well

defined, from a kinetic and mechanistic perspective, as

blood function during hemostasis, thrombosis, and bleed-

ing. The majority of molecular species that control coagu-

lation, platelet activation, platelet adhesion, fibrin

polymerization, fibrinolysis, and complement activation

are well characterized. Each individual reaction has been

studied in isolation to some extent. This foundational

knowledge is available because no other living tissue is as

readily available for clinical research as human blood.

Despite these advantages, blood function can be difficult

to predict due to nonlinearity, sensitivity to initial condi-

tions, network complexity, feedback regulation, and bio-

rheological/transport influences. In the face of these

challenges, computer modeling seeks to improve the pre-

diction of the dynamics of blood function.

Bottom-up systems biology is the definition of distinct

molecular entities, their specific molecular properties, and

quantified interactions (stoichiometry, kinetics, binding,

inhibition, diffusion, etc.). The resulting models then pre-

dict the regulated behavior of biochemical pathways,

cells, and tissues, either during homeostasis or during per-

turbation (i.e., hemostasis, thrombosis, drug regimen).

Biochemical reactions are quantified in terms of kinetic

rate constants. Importantly, every rate constant requires

the deployment of a mathematical rate model (e.g., r = k

[A], r = k[A][B], r = kcat [E][S]/(Km+[S]), etc.) that is a con-

ceptualization of a putative reaction mechanism. In blood

reactions, numerous species interact in solution or on sur-

faces, resulting in complex reaction networks. The static

linkages of protein–protein interaction (PPI) networks

obtained by proteomic or yeast 2-hybrid approaches simply

define nodes and linkages, but lack the directionality that is

highly relevant to irreversible protease reactions or platelet

activation. In contrast to PPI networks, kinetic models of

blood function require substantially more definition of each

reaction to be useful:

(i) reaction network

(ii) kinetic rate model (i.e., reaction mechanism)

(iii) kinetic parameters

(iv) initial condition
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‘Reaction topology’ refers to (i) and (ii). ‘Model param-

eterization’ refers to (iii) and (iv). Disease states or thera-

peutic intervention can occur due to altered kinetics (e.g.,

inactive factor IX, drug inhibition of thrombin) or altered

initial condition (e.g., low factor VIII level, elevation with

recombinant VIIa). Changes in reaction topology are less

common. While multicomponent kinetic models will

always be approximate descriptions of reality and subject

to continued improvement, their ability to describe large

data sets offers confidence in their use and predictive

capability.

Models that define concentrations with respect to a sin-

gle volume (plasma) are homogeneous. Models that define

species concentrations and kinetic rate constants for the

plasma (moles/L) and on the platelet surface (mole/cm2)

are heterogeneous. Models that ignore the fluid-particle

nature of blood and define concentrations based only on

the blood or platelet rich plasma (PRP) volume are

termed pseudo-homogeneous.

In modeling, the availability of knowledge and data

dictates choices: A single reaction like prothrombin acti-

vation by prothrombinase may be described with an over-

all rate constant or many parameters to describe

multistep activation peptide release. The availability of

testable data and the anticipated application of the model

helps guide which approach is optimal. In isotropic sys-

tems, there is little computational penalty for reaction

complexity because solving 104 ordinary differential equa-

tions (ODEs) is relatively fast. However, such large mod-

els typically lack full parameterization. Once a kinetic

reaction network is formalized, reactions can also be

deployed under hemodynamic conditions that include

transport/biorheological effects. Such transport equations

are written for the i-th diffusive and reactive soluble spe-

cies in the plasma phase ci(x,y,z,t) for i = 1 to N species

and take a typical form:

@ci
@t

¼ v �rci
convection

�Dr2ci
diffusion

þ
PN

j¼1

Rijðci;cjÞ
reaction

�
@cboundi

@t
net binding

The above equation is a statement of conservation of

mass and is a full accounting of how each species concen-

tration changes in space and time. At each position in a

domain, a species may diffuse or convect from that loca-

tion, be created or destroyed by reaction, or leave the

liquid (plasma) by net binding to a surface (platelet). In

the above equation, the i-j reaction Rij occurs between cj
and ci and requires rate constants. If a concentration is

spatially uniform (isotropic), there will be no gradients

and thus no net diffusive or convective mass transfer. For

isotropic systems, the partial differential equations

(PDEs) above will reduce to an ODE, which captures

only kinetics by reaction or adsorption. Experiments in

test tubes (with or without vortexing), cone-and-plate

viscometers, and aggregometers tend to be isotropic

(albeit highly dynamic). Thrombosis on a wall is aniso-

tropic. In hemodynamic systems with a velocity field

v(x,y,z,t) and spatial gradients (the convection and

diffusion terms above), solving 102 PDEs could take

hours to weeks of computer time depending on spatial

resolution.

For a system volume where a given concentration can

be counted and is generally < 100, significant random

fluctuations are expected. Such systems, termed ‘stochas-

tic’, are typically solved by Monte Carlo simulation, for

example, that include: (i) single bond kinetics between

two adhering platelets or a platelet with a surface; (ii)

sub-pM levels of tissue factor (TF)/VIIa in a small vol-

ume; (iii) calcium ions in a single platelet; or (iv) < 100

platelets binding at a site of laser injury. Stochastic simu-

lations predict both the mean behavior of a repeated

experiment and the standard deviation. System volumes

that contain molecules at nM concentrations or above

behave in a highly repeatable and deterministic manner,

lacking the variability expected of systems with sto-

chastic random fluctuations. Classic enzyme kinetic mea-

surements are typically conducted in a deterministic

regime.

This review focuses primarily on modeling efforts that

quantitate protease cascades (Section 1) with some

emphasis on quantitating platelet signaling (Section 2) as

well as the dynamical assembly of a thrombus under flow

conditions (Section 3). For clarity, individual models are

named by the convention of a first author–last author

descriptor.

Models of coagulation and fibrinolysis

TF-triggered coagulation of plasma

Nesheim et al. [1] developed a hypothetical thin ‘interface

shell’ at the phospholipid vesicle surface to quantitate

prothrombinase assembly and function. This 2-compart-

ment model (bulk and vesicle) called ‘Clotspeed’ required

12 parameters for kinetic rates, Kd’s, lipid-binding capac-

ity, and initial conditions. The algebraic model solved for

the initial rate of thrombin generation for various initial

levels of prothrombin, Xa, and phospholipid vesicle, suc-

cessfully predicting that excessively high vesicle levels can

dilute reactants and reduce the rate. Even for this highly

purified and idealized system, several independent litera-

ture values were required, but still allowed for reasonably

quantitative predictions.

The Mann Laboratory further advanced modeling of

the extrinsic pathway by assuming a fully activated and

excess platelet surface at t = 0 and deploying pseudo-

homogenous rates. The Hockin–Mann model [2] used 34

ODEs and species, 42 rate constants with 10 non-zero ini-

tial concentrations for TF, VII, VIIa, X, IX, II, VIII, V,

tissue factor pathway inhibitor, and antithrombin. This

model predicts the reduction in initiation time and
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increase in peak thrombin as [TF] is increased from 1 to

25 pM. This model accurately describes the functionality

of recombinant proteins and phospholipid vesicles (i.e.,

reconstituted plasma) when activated with lipidated TF.

A parameter sensitivity analysis [3] indicated that parame-

ter choice around the initial interactions of VIIa and VII

with TF had the greatest impact on model output. As no

contact pathway was included in this model, it cannot

predict blood clotting in the absence of TF.

The discourse about the differences between reconsti-

tuted plasma, platelet-free plasma (PFP), PRP, and whole

blood [4,5] only highlights the opportunities for the

improvement of both modeling and experimental design.

However, such discourse might be a tempest in a test tube

when compared to the even larger qualitative and quanti-

tative difference encountered with blood clotting under

hemodynamic conditions. During clotting under flow,

platelet levels in a depositing thrombus are 50–200-fold
greater than that of PRP. In contrast to the closed system

of a test tube, thrombosis is an open system where reac-

tive species are rapidly diluted away under flow condi-

tions. The effects of flow are discussed in Section 3.

The Hockin–Mann reaction network was also solved

stochastically by Monte Carlo simulation [6] to reveal

that small reaction volumes (~20 pL) can display highly

stochastic outcomes even at high levels of 5 pM TF. This

is relevant to laser injury models that can display signifi-

cant variability where focal reactions occur in 30- to 50-

micron-diameter arterioles.

The Chatterjee–Diamond model [7] extended the Hoc-

kin–Mann reaction network to include a coarse-grained

description of thrombin-mediated feedback activation of

the initially resting platelet in the presence of TF and/or

XIIa generation (Fig. 1). This modeling effort (76 ODEs

and species, 57 reactions, 105 kinetic parameters) also

included the generation of factor XIIa in the presence of

corn trypsin inhibitor (CTI). The model predicted the clot-

ting of resting and convulxin-activated human blood as

well as the initiation time of human blood under 50 differ-

ent initial conditions that titrated increasing levels of TF,

Xa, Va, XIa, IXa, and VIIa (Fig. 1B–D). While resting

blood will clot in this model at extremely low levels of TF

(1 molecule per 100 platelets), the authors concluded that

CTI-treated whole blood clots in the laboratory due to the

A

B

C

D

Fig. 1. Systems biology model of thrombin production in the presence of thrombin-dependent activation of platelets. The Hockin–Mann topol-

ogy (unshaded, [ref. 2]) was extended (shaded blue) to include contact activation, platelet activation that reduces protein dissociation rates from

complexes, thrombin-mediated cleavage of fibrinogen and fluorogenic detector, and other reactions (A) (from [7]). The Platelet–Plasma model

(dotted lines) and Hockin–Mann model (solid lines) were compared to diverse conditions where the initiation time was measured by fluorogenic

assay in blood treated with increasing concentrations of TF (B), prothrombinase components (Xa and Va) (C), and intrinsic pathway compo-

nents (IXa, XIa) or high doses of recombinant VIIa (D).
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lack of activity of CTI against aXIIa. The XII activation

was assumed to follow first-order dependence on XII

concentration. Estimating a first-order rate constant

(5 9 10�4 s�1) for XIIa generation resolves the disparity

between the Hockin–Mann model prediction and the

experimentally observed control with no added TF

(Fig. 1B).

Distinct from the pseudo-homogeneous models that do

not account explicitly for lipid binding, the Bungay–Gen-

try model [8] treats an isotropic reaction network (73

ODEs, 31 reactions, 74 rate constants, 17 reversible lipid

adsorption reactions, and 14 non-zero initial concentra-

tions) with special emphasis on TF/VIIa, VIIIa/IXa, Xa/

Va, thrombomodulin/thrombin assembly and function on

cell membranes. This system has 22 fluid phase reactions,

19 lipid bound factors, and 25 lipid bound complexes.

Using an average of 100 lipid head groups per protein for

all factors, they predict dynamic thrombin concentration

as a function of vesicle concentration for TF(t = 0) = 5

pM. They identify a low, threshold level of 25 nM lipid

required for thrombin production with 30–200 nM lipid

range being optimal. The simulation does not have molec-

ular scale resolution to predict the effect of vesicle com-

position (% phosphatidylserine) on reaction rates. Other

heterogeneous models that account for platelet activation

and surface binding reactions in the presence of blood

flow are also discussed in Section 3.

Contact pathway kinetics

The impaired thrombosis in a factor XII knockout mouse

has renewed interested in contact activation as a pharma-

cological target to control thrombosis with minimal effect

on hemostasis. Expanded kinetic models of contact acti-

vation would help score the therapeutic potential and

risks of contact pathway inhibitors. Kinetic descriptions

of XIIa activation as a function of different triggers (dex-

tran sulfate, kaolin, polyphosphate, misfolded protein,

DNA, RNA, etc.) are not yet available. The kinetics of

contact activation reactions as a function of high molecu-

lar weight kininogen (HMWK) or prekallikrein are also

not well established, either on artificial surfaces or on

platelet membranes. Finally, the exact molecular mecha-

nism(s) by which a surface-adsorbed XII zymogen cleaves

XII to XIIa is not well defined.

Guo et al. [9] fit the plasma clotting time as a function

of added XIIa and added trigger (glass). Titrating XIIa

into plasma or into XIIa-depleted plasma showed that 1–
50 pM of added XIIa had little effect on clotting time.

Thus, they concluded that contaminating trace XIIa was

not the most proximal trigger of clotting, rather the gen-

eration of kinetically significant XIIa involves biomaterial

autoactivation of XII and/or kallikrein amplification as

the rate-controlling events. In this case, the combination

of cogent experimental design and reasonably applied

modeling allowed for hypothesis discrimination.

Fibrin polymerization and fibrinolysis

Partially coupled to coagulation are the processes of

fibrin polymerization and fibrinolysis. For example,

thrombin may get incorporated into fibrin fibers, an

important event with respect to clotting kinetics as well as

rethrombosis following thrombolytic therapy. Also, the

production of fibrin has a large effect on clot strength

during thrombosis under flow conditions [10]. The model-

ing of fibrin polymerization seeks to simulate the dynam-

ics of fibrinopeptide release as well as the prediction of

gelation kinetics, fiber diameter, and branching statistics.

Under flow conditions, the effect of convection will sup-

press fibrin formation as well as flow-align the fibrin.

Weisel and Nagaswami [11] formulated ODEs for fibrin

monomer production from fibrinogen, dimer formation,

protofibril growth by dimer incorporation, fiber initiation

by protofibril association, and fiber growth by protofibril

addition. Comparing predictions to measurement demon-

strated that the prediction of a time lag in turbidity

required a minimum protofibril length (10–20-mers) prior

to aggregation into fiber bundles. The authors conclude

that kinetic rates dictate the extent of lateral aggregation

(fiber thickness) under a wide variety of conditions.

Guy and Fogelson [12] modeled the kinetics of fibrin

formation on a surface exposed to flow. Isotropic aggrega-

tion/fragmentation kinetics are routinely modeled using

the Smoluchowski coagulation equation, which can be

solved for continuous or discrete distributions of k-mers

and can be solved deterministically or stochastically. The

Guy–Fogelson model includes a source of monomer (via

thrombin) and sink of k-mers (via convection). This PDE

model follows prothrombin, thrombin, and fibrinogen in

space and time. Based on available kinetics for fibrinogen

activation, fibrin monomer binding, and fibrin polymeriza-

tion, the overall model predicts a fibrin gel thickness that

decreases dramatically from ~50 lm to < 5 lm as wall

shear rates increase from 100 to ~500 s�1. Such thicknesses

are typical of fibrin observed in microfluidic experiments

for whole blood flow over TF/collagen surfaces [10].

Anand and Diamond [13] developed a 12-species PDE

model of fibrinolysis triggered by single-chain urokinase

or tissue plasminogen activator (tPA) which accounted

for the conversion of plasminogen to plasmin, fibrinolysis,

plasmin inhibition by a2-antiplasmin and macroglobulin,

and inhibition of urokinase plasminogen activator and

tPA by plasminogen activator inhibitor type 1. This

model solved for the pressure-driven permeation and dif-

fusion of reactive species as they bind the dissolving

fibrin. A time-evolving inlet condition of species allowed

for dynamic plasma levels due to an intravenous lytic reg-

imen. This model predicted tPA-driven lysis front move-

ment across fibrin in the presence of constant permeation

velocity. Pressure-driven permeation is the dominant

mode of transport allowing clinically relevant arterial

thrombolysis. The biophysics of thrombolysis are
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reviewed in [14] and have been extended with more recent

modeling efforts such as the work of Wooton et al. [15]

and Bannish et al. [16].

Models of platelet signaling

Activated platelets are required for assembly of coagula-

tion complexes. However, the modeling of platelet activa-

tion and function remains in early stage development.

The simplest models are coarse-grained descriptions that

consider the platelet as either fully resting or fully acti-

vated depending on a prevailing threshold ‘activator’ con-

centration, typically with the activator representing a

lumping of several important species together. This lump-

ing of soluble platelet activators facilitates computational

approaches, but prevents a quantitative evaluation of

pharmacological inhibitors that uniquely target a specific

clotting factor or platelet pathway.

A detailed bottom-up description of ADP-mediated sig-

naling of P2Y1 was carried out by Purvis et al. [17] using

77 reactions and 70 species. In the Purvis–Diamond

model, a total of 132 fixed kinetic parameters were

obtained for reactions involving P2Y1 G-coupled protein

receptor activation, phospholipase-Cb activation and

downregulation, protein kinase C translocation and acti-

vation, phosphoinositol metabolism, IP3-receptor regula-

tion by IP3 and Ca2+, and sarco-endoplasmic reticulum

Ca2+/ATPase pump function. The model accurately pre-

dicted resting Ca2+ levels and ADP dose–responses,
phosphoinositide metabolism as well as the volume of the

dense tubular system. Stochastic simulation of the kinetic

model demonstrated that the asynchronous Ca2+ spiking

observed in single platelets was the result of stochastic

fluctuations expected in cells as small as platelets. In

large-scale modeling of the platelet metabolism, it is

important that the initial condition of the model also be

a valid steady state. In other words, a resting platelet

stays resting until activated by a stimulus. In this case,

the steady states of smaller modules within these large

metabolic ODE models can be used to efficiently predict

global steady states by a principle component analysis

(PCA) to reduce the search space [18].

In a similar ODE approach, the Lenoci–Hamm model

[19] defines kinetics for agonist stimulation of protease-

activated receptor (PAR) 1, PAR1 activation of Gq and

G12/13, activation of phospholipase-C, generation of IP3,

followed by calcium mobilization. The model also defines

intermediate signaling through protein kinase C, protein

kinase B, phospholipase D to activate Rap1, CalDAG-

GEF, and RIAM, which in turn activates aIIbb3 integrin

and dense granule release. With over 80 reactions and

kinetic constants and 23 non-zero initial conditions, this

is the first bottom-up model to mechanistically link out-

side-in signaling with inside-out signaling, a critical step

for embedding discrete platelets into aggregation models

[20,21] or deposition models [22] of thrombus formation.

As model development of signaling through individual

receptor pathways such as P2Y
1
or PAR1 progresses, the

bottom-up signaling approaches have yet to address sig-

naling through combinatorial and time-dependent activa-

tors. The first platelets at a clotting site encounter collagen

and thrombin to form a core region, and then, the subse-

quent platelets in the growing thrombus shell are regulated

by ADP and thromboxane signaling [23]. A top-down sys-

tems biology model of platelet signaling can be powerful if

sufficiently powered with sufficient data. Top-down refers

to the relating of inputs to outputs without necessarily

defining every molecular linkage. To understand how

human platelets integrate numerous signals, Chatterjee

et al. [24] used a high throughput assay to measure intra-

cellular Ca2+ in response to all pairwise combinations of

6 major agonists: ADP (P2Y1, P2Y12, and P2X1 activa-

tor), convulxin (glycoprotein (GP) VI activator), U46619

(thromboxane A2 receptor agonist), SFLLRN (PAR1 ago-

nist), AYPGKF (PAR4 agonist), and prostaglandin E2 (IP

and EP receptor agonist). The Ca2+responses to 18 single

agonist stimulations (each agonist at 0.1, 1, 10 9 EC50)

and to 135 pairwise combinations of the 6 agonists at the

3 doses produced 34 000 data points for training a neural

network (NN) model, for prediction of the entire 6-dimen-

sional platelet response space. Once trained, the NN

model then successfully predicted responses to sequential

additions of agonists and ternary stimulation. With 4077

NN simulations fully spanning the 6-dimensional space,

45 combinations of 4, 5, and 6 agonists (predicted to range

from strong synergism to strong antagonism) were selected

and confirmed experimentally, revealing a high-dimen-

sional risk at high U46619/prostaglandin E2 ratio, consis-

tent with the thrombotic risk of cyclooxygenase-2 therapy.

With patient-specific NN models of platelet activation,

larger-scale simulations of thrombosis under flow become

possible. The Flamm–Diamond model [22] takes advan-

tage of the speed of NN calculations of individual platelet

Ca2+ to conduct large-scale and donor-specific simula-

tions with 103–105 activating platelets under conditions of

flow (Fig. 2A,B). Lattice kinetic Monte Carlo simulations

of platelet motion in convective and dispersive flow fields

(with red blood cell-driven drift toward the wall) allowed

each platelet to activate separately in response to multi-

ple, local and dynamic agonists including collagen, ADP,

and thromboxane. Additionally, pharmacological modu-

lators can be used in the NN training data. For example,

iloprost to activate IP receptors was part of the NN train-

ing data and allowed prediction of platelet deposition in

the presence of IP activation.

Models of blood function with flow

Thrombosis under flow

A major advance in modeling blood clotting on a TF sur-

face under flow was the Kuharsky–Fogelson model [25],
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which assumes a well-mixed boundary layer near the sur-

face. In the model of the TF surface exposed to blood

flow, platelets can deposit and Xa can be generated by

both extrinsic and intrinsic Xase. With 59 ODEs, the

model predicted that platelet deposition is a major mech-

anism by which the extrinsic pathway is shut down via

coverage of surface TF. The model made compelling pre-

dictions about factor deficiencies such as hemophilia A

and B. The Kuharsky–Fogelson model predicted a sharp

threshold concentration of surface TF necessary for the

triggering of thrombin generation under flow, consistent

with experimental measurements [26] that found thres-

holding between 2 and 10 molecules TF/lm2.

Recently, Leiderman, and Fogelson [27] analyzed

assembly of the coagulation pathway on activating plate-

lets that deposit on a TF surface under flow conditions.

The changing velocity profile is obtained by solution of

the Navier–Stokes equation with Brinkman flow through

the platelet deposit. Platelets are activated by released

ADP and thrombin, undergo convection–dispersion, and
can adhere to the subendothelium or to other bound

platelets. The kinetic model contains 8 subendothelium

reaction ODEs, 23 platelet bound reaction ODEs, 18 fluid

phase PDEs, and > 100 physical, kinetic, initial condition

parameters. A TF density between 0 and 10 fmol/cm2

was determined to be the critical threshold level between

little and maximal thrombin production (> 100 nM

thrombin). At a wall shear rate of 1500 s�1 and surface

TF concentration of 15 fmol/cm2, ADP-mediated activa-

tion of platelets was pronounced on the TF surface at

10–60 s and on the leading edge of the clot at 480–600 s

(Fig. 2C). In the simulation, thrombin-mediated activa-

A

C

D

B

Fig. 2. Multiscale models of thrombosis and inner clot dynamics. (A) Combinatorial measurements of intracellular calcium in platelets exposed

to pairs of activators of GPVI, TP, P2Y1, P2Y12, and IP receptors, allowed training of a platelet activation multiscale model (B) for platelets

arriving on collagen (red bar), mobilizing intracellular calcium (platelet gray scale), and releasing ADP (orange- to blue- color scale) (from

[22]). (C) Platelet mass and velocity field (arrows) after 30-s perfusion at wall shear rate of 1500 s�1 over 15 fmol/cm2 of TF (from [27] used

with permission). (D) Platelet accumulation at a site of laser injury with concomitant production of thrombin and fibrin (from [29]) where

thrombin was detected with a thrombin-sensitive fluorogenic peptide-antibody construct (ThS-Ab) that binds platelets.
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tion became prominent on the outer surface of the ~30-
lm thick clot between 240 and 600 s. The addition of

thrombin-mediated feedback activation of XI to XIa had

relatively minor effects on total clot thrombin production

indicating that this pathway might actually be difficult to

observe experimentally [28]. A thrombin biosensor [29]

was recently developed to detect thrombin within clots

forming in microfluidic devices and in the mouse laser

injury model. In these experiments, high levels of throm-

bin were detected in a thin ~10-50 lm layer immediately

adjacent to collagen/TF in microfluidic devices or adja-

cent to the wall in the laser injury model (Fig. 2D).

A number of multiscale approaches are now becoming

computationally feasible for the simulation of reactive

platelets flowing in complex geometries, sometimes in the

presence of coarse grained and approximate descriptions

of coagulation proteases, platelet signaling, or fibrin poly-

merization. These efforts include the use of dissipative

particle dynamics [30], stochastic Cellular Potts models

[31], and Lattice Boltzmann method [32].

In general, the mathematical description and numerical

solution of the physical events (convection, diffusion and

dispersion, cellular deformation, adhesion, embolization)

are highly complex phenomena but require only a handful

of physical parameters. In contrast, the description of

coagulation relies on an abundance of simple processes

(e.g., E+S < ->ES->E+P) that unfortunately require a

large number of rate constants, many of which are not

well measured for platelet surfaces or in a blood milieu.

The deployment of single bond kinetics into large-scale

models of thrombosis is very computationally intensive

due to the near molecular length scale required to define

bond formation and rupture under hemodynamic loading.

The single bond models and parameterization for von

Willebrand factor/GPIb or fibrinogen/aIIbb3 bonding

remain a subject of active investigation.

Diffusional transport processes

Under static conditions, blood or plasma can be placed in

contact with a surface that triggers a reaction-diffusion

wave across the activating fluid. The velocity of a reaction

front can be visualized and is dictated by the rate-limiting

reactions and least mobile species [33]. Such experiments

have revealed the role of TF in a cell monolayer control-

ling the initiation time and the intrinsic Xase controlling

the propagation velocity [34].

When diffusion is the only transport mechanism, inter-

esting phenomenon can be observed in plasma in contact

with patterned TF. The interplay of characteristic diffu-

sion distances and diffusion times with characteristic reac-

tion times allows diffusion to act like an apparent

‘container volume’. If reactive species escape rapidly from

a site by diffusion, local prevailing concentrations remain

low, and thus, plasma clotting is extinguished. If species

can build up rapidly enough relative to their diffusive dis-

sipation, then clotting can amplify autocatalytically. Simi-

lar plasma reaction–diffusion interplays can be created

with compartment volumes in microfluidic devices. Using

microfluidic devices and patterned TF surfaces, Kastrup

et al. [35] observed a role for a minimum TF patch size

of ~100 microns needed to trigger plasma clotting, consis-

tent with a reaction–diffusion PDE model. It remains

unclear whether such a patch threshold exists in flowing

blood where platelets can provide ample surface for reac-

tion assembly and flow can alleviate diffusion limitations.

For example, the patch size of a single, laser-damaged

endothelial cell (~10 microns) is fully sufficient to trigger

a clotting event under flow.

Conclusions

Unified blood models are emerging for combined platelet

activation and coagulation. The incorporation of robust

descriptions of fibrin polymerization, fibrinolysis, and

complement activation are well underway. Such models

require ~10–100 parameters that are physics based and

account for fluid flow, membrane mechanics, and molec-

ular/particle transport. More challenging is the validation

of a robust kinetic description of platelet signaling and

coagulation reactions which requires ~100–1000 reactions

and rate parameters, either for individual reactions or

from top-down data-driven approaches. Such kinetic

models must at least describe the clotting rates of

plasma, PRP, and whole blood when activated by TF

and/or contact activators in the presence of various mod-

ulators. Prediction of known genotype/phenotype link-

ages is also a particularly important form of model

validation.

It is a fallacy, based on curve fitting in two dimensions,

to think that any model with more than 5 parameters can

fit any data set. With multicomponent reaction systems

where numerous pathways can be attenuated or potenti-

ated simultaneously, an experiment on a 96- or 384-well

plate or on microfluidic chips could easily follow throm-

bin production or platelet activation under 101–103 differ-

ent initial conditions. Such high-dimensional and time-

evolving data sets are actually quite difficult and compu-

tationally challenging to fit, even with ten or a hundred

parameters to adjust. When a unique set of parameters

cannot be found, network topology may need revision. It

is also possible to have an ensemble of different parame-

ter sets that equally predict the data. The structure of this

ensemble may indicate which parameters are highly rate

controlling and which parameters have relatively minor

effect on system outcome.

Even when biochemical pathways have been measured,

a wide variety of values may exist for a given parameter.

For example, many Km’s have been published for pro-

thrombin conversion [5] due to variations in measurement

technique, experimental conditions, reagent quality, or

analytical approach. Computer simulation may help (i)
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reject measured values as being physiologically unbeliev-

able; (ii) constrain acceptable bounds for a parameter to

be consistent with other rates that are well known and

consistently measured; (iii) demonstrate that the system

output is insensitive to a particular parameter value

because the species is not rate controlling and in excess,

or (iv) highlight extreme sensitivity to a parameter that

requires renewed investigation [3], perhaps because it

quantifies a valued drug target or the bounds of a safe

pharmaceutical intervention.

Why model blood when models will always be imper-

fect? Blood function in the presence of flow is highly non-

linear, and models help extract kinetic information from

real data. When a computer model fails to predict mea-

sured data, it typically is the result of imperfect topology

and not parameterization. This means that new insights

are required to explain experimental data, thus focusing

hypothesis testing and experimental design. With validated

models, blood responses to therapy or to disease processes

are better predicted. Such systems biology tools, when

coupled with high throughput analysis of patient-specific

blood samples, would be particularly useful in characteriz-

ing undefined platelet or coagulation defects as well as

provide strategies for the design of patient-specific phar-

maceutical therapies. As computer models of neutrophil

and endothelial function emerge, the role of inflammation

and vascular function will complete the description of

blood as a living tissue.
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Glossary

Systems Biology is the analysis and prediction of global

or emergent properties of a biological ensemble based

upon knowledge of its components or measured responses

to inputs or perturbations. An ensemble can be repre-

sented as a network comprised of nodes (species) that

interact via linkages (e.g. binding or reaction). Related

term: Integrative Biology.

Bottom-up Systems Biology is an approach that focuses

on building up collections of individual interactions in an

effort to predict outcomes. The focus on dynamical phe-

nomena and regulation often involves: bifurcation theory/

nonlinear analysis, thermodynamics, kinetic and transport

rates, control theory, and computer simulation. Prior

knowledge of the system is usually required.

Top-down Systems Biology is an approach driven by large

scale omics research that seeks new correlations between

system outcomes and large datasets. Such correlations

allow hypotheses to test for new mechanisms and path-

ways. Prior knowledge of the system is not necessarily

required.

Multiscale or Hierarchical Systems Biology is a treatment

of a system that contains varying length and time scales

appropriate to molecular, cellular, and organ levels. Often

this requires coarse graining where information from one

scale is processed or simplified and passed between scales.

Partial Differential Equation (PDE) describes the rate of

change of a quantity with respect to multiple continuous

variables such as position and time, etc [eg. the partial

time derivative of a species concentration oC(x,y,z,t)/o t].

PDEs are used to describe the temporal-spatial dynamics

of a species.

Ordinary Differential Equation (ODE) Standard method

of representing how molecular species change over time.

In systems biology, the time derivative of a species con-

centration [dC(t)/dt] is related to all the pathways by

which it is created, destroyed, and transported between

compartments, particularly for an isotropic system lack-

ing spatial gradients.

Neural Network Model An example of machine learning

where measured outputs are related to defined inputs

through processing layers that are akin to a set of linked

neurons, each having a characteristic input/output

response (e.g. sigmoidal).

Homogeneous Reaction A reaction that occurs in a single

phase and with concentrations defined by a single system

volume. An example is Michaelis–Menton analysis of

enzyme-substrate interactions.

Heterogeneous Reaction A reaction that occurs in multiple

phases such as between a liquid and a surface. Formation

of thrombin from platelet bound prothrombinase is a het-

erogeneous reaction.

Pseudo-homogeneous Reaction An approximation that

treats a heterogeneous system as homogeneous. Systems

with excess membrane, no diffusional limitations, and

rapid binding equilibrium are often approximated as

pseudo-homogeneous.

Stochastic chemical kinetics A reaction system can display

random fluctuations due to molecular populations with

low copy number. The discreteness of random reaction

events, when averaged over many samplings, yields the

average kinetic rates of a deterministic reaction.

Monte Carlo simulation A class of simulation techniques

based on random sampling to pick among possible out-
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comes based on the probability of those outcomes. For

example, Monte Carlo can be used to simulate what hap-

pens to discrete and stochastic reactive-diffusive-convec-

tive species or particles (platelets).
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