Dynamic Domains in Polymersomes: Mixtures of Polyanionic and Neutral Diblocks Respond More Rapidly to Changes in Calcium than to pH

Kyle Spinler,† Aiwei Tian,†,‡ David A. Christian,† Diego A. Pantano,† Tobias Baumgart,*,†,‡,§ and Dennis E. Discher*,†,‡

†Department of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Laboratory for Research on the Structure of Matter, Materials Research Science and Engineering Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States

ABSTRACT: Chemical triggering of membrane domain dynamics is of broad relevance to cell signaling through lipid bilayers and might also be exploited in application of phase-separated vesicles. Here we describe the morphodynamics and remixing kinetics of spotted polymersomes made with mixtures of polyanionic and neutral amphiphiles plus calcium. Addition of the calcium chelator EDTA to vesicle dispersions produced a decrease in domain size within minutes, whereas increasing the pH with NaOH led to the viscous fingering of domains and decreased domain size over hours. Although the latter suggests that the charge of the polyanion contributes to domain formation, the remixing of more negative chains at high pH is surprising. Domain roughening at high pH is also accelerated by EDTA, which highlights the dominance of cross-bridging. Importantly, even though vesicles were perturbed only externally, the inner and outer leaflets remain coupled throughout, consistent with molecular dynamics simulations and suggestive of an order–disorder transition that underlies the remixing kinetics.

1. INTRODUCTION

Heterogeneity in membrane phases is of interest in various biological processes such as vesicle trafficking and signal transduction, but it is difficult to elucidate the role that phase separation plays in cell function because of the compositional complexity of biomembranes. However, a deep understanding of phase behavior within vesicles made of lipid or polymer amphiphiles is possible because of their simplicity. Bilayer liposomes or polymersomes can also encapsulate drugs and thus have the potential to advance biological insight as well as biomedical applications.

Giant unilamellar vesicles have been intensively studied as model membranes for years and exhibit well-characterized phase behavior.2−5 Domain dynamics have been examined mostly under physical perturbations such as temperature,6−7 osmotic pressure,8 and curvature.9 Although lipid membranes are fusogenic under electrolyte perturbations, mesoscale phase separation in lipid vesicles induced by hydrophobic immiscibility (e.g., electrostatic interactions) is still debated,10,11 and hydrophobic immiscibility should be inert to ionic strength changes. 12 Domain dynamics due to changes in high-valence salts and/or pH are thus understudied.

Polymersomes made with mixtures of amphiphilic diblock copolymers offer some advantages in study of domains. These vesicles are very stable mechanically and thermodynamically compared to liposomes,12−14 so studies of domain morphology upon chemical perturbation are feasible. Furthermore, the use of weak polyelectrolytes in block copolymers makes possible a susceptibility to changes in pH and ionic strength. Although kinetic investigations on the effects of pH and salt on assemblies of weak polyelectrolytes have been carried out with block copolymer brushes, micelles, and vesicles,15−22 domain dynamics in polymersome membranes have remained unstudied.

We recently described spotted polymersomes in a quasi-equilibrium state composed of a binary mixture of neutral poly(ethylene oxide)−polybutadiene (OB18) and negatively charged poly(acrylic acid)−polybutadiene (AB1).23 Divalent cations (e.g., calcium, copper, and barium) in solution electrostatically cross-bridge the anionic AB1 chains and induce the lateral segregation of the AB1 chains into domains. We observed the stability of these domains at room temperature for at least a year but had not previously studied their dynamics. Additionally, phase separation was also seen in only a surprisingly narrow range of solution pH and calcium concentration. This suggested the potential for rapid domain dynamics with changes in pH and calcium content.

Here we provide novel evidence of what is seen with spotted polymersomes when the solution pH and calcium are quickly shifted to regimes well outside those suited for lateral segregation. Domain mixing kinetics were obtained upon removal of calcium from the outer leaflet of AB1-rich domains by adding EDTA, a strong calcium-chelating reagent. Viscous fingering, domain bulging, and decreases in the AB1-rich domain

Special Issue: Interfacial Nanoarchitectonics

Received: November 18, 2012
Revised: January 15, 2013

DOI: 10.1021/la304602e
www.pubs.acs.org/Langmuir
1/28/2013 09:54:26 | 2012/12/04 10:21:00 | PROD-JCA1 | rq_1018594 | Language: en
Quantitative analysis of images was performed through MATLAB obtained by combining TMR images. TMR was excited using a 543 nm laser (Olympus, FV300) with a 60× scanning using a laser scanning confocal microscope. TMR was excited using a 543 nm laser. A single phase-separated vesicle was immobilized by means of micropipet aspiration while being imaged with confocal microscopy over a time course of minutes to hours. Vesicle imaging and manipulation were performed as described. EDTA or an EDTA/NaOH = 1.8 mol/mol concentration changes on polymersome domains by monitoring the domain kinetics after the asymmetric addition of EDTA and/or NaOH solutions, which should undermine the cross-linking within the domains and thereby affect the stability (Figure 1). EDTA and NaOH remove Ca²⁺ and H⁺, respectively, from the outer leaflet of AB1-rich domains of polymer vesicles, and these changes are shown to have dramatic effects on the domain morphology.

2. EXPERIMENTAL SECTION

2.1. Materials

Block copolymers of poly(ethylene oxide)−poly-(butadiene) (PEO₈₀−PBD₁₂₅) denoted as OB1 (Mₙ = 10 000 g/mol) and poly(acrylic acid)−poly(butadiene) (PAA₉₀−PBD₆₀₉) denoted as AB1 (Mₙ = 10 050 g/mol) were made as described. OB18 was labeled with tetracetylmethanidene (TMR) and denoted as OB18-TMR.

2.2. Preparation of Phase-Separated Polymersomes

Phase-separated polymersomes were formed via film hydration as described. At pH 3.5 with [Ca²⁺] = 0.1 mM at a total polymer concentration of 0.1 mg/mL.

2.3. Leaflet Asymmetric Treatment of Phase-Separated Polymersomes

After phase-separated vesicle formation, an ~50 μL vesicle dispersion was transferred to an imaging chamber. A single phase-separated vesicle was immobilized by means of micropipet aspiration while being imaged with confocal microscopy over a time course of minutes to hours. Vesicle imaging and manipulation were performed as described. EDTA or an EDTA/NaOH = 1.8 mol/mol aqueous solution was injected into the chamber through a 10 μL syringe (Hamilton, Reno, NV) while imaging. Because of the slow kinetics of domains subject to NaOH treatment, vesicles were allowed to incubate with NaOH in Eppendorf tubes for more than 4 h (typically overnight) and were then transferred to the imaging chamber.

2.4. Imaging

Phase-separated polymersomes were imaged by xyz scanning using a laser scanning confocal fluorescence microscope (Olympus, FV300) with a 60× water-immersion objective (Olympus). TMR was excited using a 543 nm laser.

2.5. Image Analysis

Hemisphere projections of vesicles were obtained by combining z-stack images using an Olympus Fluoview 300. Quantitative analysis of images was performed through MATLAB (Mathworks, Natick, MA) and ImageJ (National Institutes of Health, Bethesda, MD).

3. RESULTS

Polymersome have thick, highly stable membranes that are significantly less permeable to ions when compared to lipid membranes. Therefore, changes in the ion concentration and pH in the solution outside the polymer vesicle result in an asymmetric environment of the membrane as the aqueous lumen of the vesicle, which contacts the inner leaflet, remains unchanged. Here, we tested the effects of pH and calcium concentration changes on polymersome domains by monitoring the domain kinetics after the asymmetric addition of EDTA and/or NaOH solutions, which should undermine the cross-linking within the domains and thereby affect the stability (Figure 1).

3.1. Removing Calcium Cross-Bridges from PAA Chains by EDTA Addition

Calcium cross-bridges weak polyanion chains (e.g., PAA) in polyelectrolyte gels, brushes, and the hydrophilic brushes of PAA−PBD (AB1) vesicles. This cross-bridging between AB1 chains mediates the domain formation in polymersomes containing neutral PEO−PBD (OB18). Therefore, removing calcium would lead to domain dissolution. To test the domain mixing kinetics after calcium removal from the outer leaflet of the membrane, excess EDTA (0.36−0.96 mM) was added to the vesicle dispersion (originally containing 0.1 mM Ca²⁺). The resulting calcium concentrations were calculated from the equilibrium constant of the EDTA−calcium complex and pH-dependent fractional compositions of EDTA (fraction of free EDTA). As predicted, domain remixing was observed within minutes after EDTA addition, and vesicles became homogeneous within minutes to hours.

Dark AB1-rich domains mix with OB18-rich domains mainly though an area shrinking process. To quantify the domain mixing kinetics, vesicles with a 25 or 60% mixing weight ratio of AB1 were examined. Domain dynamics after EDTA addition are depicted in Figure 2, where AB1-rich domains display an area shrinking process as they begin to mix with OB18 domains. Interestingly, fluorescence intensities at shrinking...
domain boundaries appear to be greater than for the surrounding OB18*-rich domains because of the membrane curvature at domain boundaries (arrows in Figure 2b). When calcium is removed from the outer leaflet, PAA chains in the outer leaflet are expected to expand, which leads to a larger AB1-rich domain area of the outer leaflet compared to that of the inner leaflet. This area difference would lead to outward AB1-rich domain budding. However, AB1-rich domain boundaries have mixed with OB18* and hence are softer than the center of AB1-rich domains. Therefore, we observed only boundary curvature effects instead of bulk domain bulging. Aside from the increased fluorescence intensity at the domain boundary, only two levels of fluorescence intensity were observed in the membrane: OB18*-rich domains (bright red) and AB1-rich domains (dim red). No intermediate level of fluorescence intensity was seen indicating complete registration between the outer and inner leaflets of the membrane. Therefore, we propose that interleaflet coupling is maintained during asymmetric leaflet chemical stimuli. Subsequent coarse-grained molecular dynamics simulation confirmed this hypothesis.24

The phenomenon of varying the outer leaflet chemical environment leading to the change in both leaflets is also observed by the Keller group while applying β-cyclodextrin to deplete cholesterol from the outer leaflet of giant lipid vesicles as well as by Samsonov et al., who found that the addition of cholesterol oxidase to one side of a supported bilayer affected the phase behavior in both monolayers.30 The above domain-coupling examples could be due to cholesterol’s ability to flip-flop within lipid bilayers. However, the asymmetric leaflet domain registration of lipid membranes has also been documented, ruling out cholesterol flip-flop.31

The inner and outer leaflet domain coupling (leaflet registration) and domain shrinking kinetics under EDTA addition are illustrated in the schematic drawings of Figure 2c. Because of the high molecular weight of diblock copolymers and the resulting chain entanglement in the vesicle bilayer,5 the rate-limiting step of domain mixing can be considered to be polymer interdiffusion instead of the removal of calcium cross-bridges by excess EDTA. The shrinkage of the domain area is consistent with the interdiffusion process during the demixing–remixing transition of polymer blends upon annealing.33 To obtain the
interdiffusion of OB18\(^*\) during domain demixing induced by EDTA stimuli, a simple diffusion model according to Fick’s second law is applied

\[
D \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C}{\partial r} \right) = \frac{\partial C}{\partial t}
\]

where \(C \) is the concentration of OB18\(^*\) in the mixing AB1-rich domain, \(r \) is the radius of the AB1-rich domain, and \(D \) is the interdiffusion coefficient of OB18\(^*\). Together with the continuity equation, an effective diffusion coefficient can be calculated (details in Appendix I):

\[
D_E = \frac{1}{4\pi} \frac{A_0 - A}{t}
\]

By fitting the above equation to the plot of the AB1-rich domain area versus time (Figure 2d), we calculated the effective

Figure 3. Domain morphologies in phase-separated vesicles with a weight ratio of AB1/OB18\(^*\) = 50:50 after adding NaOH. Confocal z-stack hemispheres displaying fingering domains imaged (a) 24 and (b) 48 h after adding 0.6 mM NaOH to the vesicle dispersion. No systematic difference in domain patterns was observed with time. (c) Equatorial section of a dumbbell-shaped vesicle imaged 24 h after 0.6 mM NaOH addition. The AB1-rich phase is aspirated into the micropipet at 150 Pa, which suggests a softening of the AB1-rich phase. Insets in panel c are vesicles before NaOH treatment (left) and under osmotic deflation by evaporation (right). The creased, folded configurations reveal the original solid feature of AB1-rich domains. (d) AB1-rich domain positive curvature induced by the chain repulsion in the outer leaflet after 24 h of NaOH treatment. Insets in panel d are vesicles before NaOH treatment, from which we see either no curvature or negative curvature of AB1-rich domains. The scale bar is 5 \(\mu \)m.
interdiffusion coefficient of OB18* to be $D_E = (2.3 \pm 0.5) \times 10^{-5}$ mm^2/s ($N_{\text{domain}} = 17, N_{\text{vesicle}} = 4$).

The interdiffusion coefficient of OB18* is orders of magnitude smaller than OB18* self-diffusion ($0.0024 \, \mu\text{m}^2/\text{s}$). This smaller diffusion coefficient could be due to the asymmetric application of EDTA to the outer leaflet only. Inner leaflets of AB1-rich domains are not in contact with EDTA, which limits the bilayer OB18* interdiffusion according to the domain registration. Further interpretation of the interdiffusion coefficient requires an experimental understanding of the domain registration mechanism, which is unclear even in lipid bilayer systems. However, recent coarse-grained molecular dynamics (CGMD) simulations suggest the raft registration arises spontaneously in bilayers with a calcium cross-linked ordered phase segregated from a liquid disordered phase. Calcium straightens the cross-bridged chains, all the way into the hydrophobic core (Figure 1b). Any perturbation that interrupts the registration of rafts of straightened chains will also induce a thickness mismatch between phases and a “bump” in the opposing liquid-phase leaflet. This local curvature mismatch is sufficient to guide rafts together and stabilize the registered state.

However, the EDTA effects confirm that calcium cross-bridging of negatively charged PAA chains plays an essential role in the phase separation of polymer vesicles.

3.2. Calcium Chelation Results in a Decrease in the Overall AB1 Area Fraction.

Phase-separated vesicles composed of either 25 wt % AB1 (Figure 2e) or 60 wt % AB1 (Figure 2f) were used to characterize the kinetics of the overall AB1 area fraction effect following EDTA addition (either 0.48 or 0.83 mM). When fit with a single-exponential decay, the domain dynamics in 25 wt % vesicles are very weakly dependent on the EDTA concentration. Both concentrations of EDTA can be fit with a time constant of 19 min. The 60 wt % vesicles produce fits with time constants of 9 to 10 min for 0.48 and 0.83 mM EDTA, which again demonstrates a weak dependence on EDTA concentration. The results show that roughly doubling the weight percentage of AB1 roughly doubles the rate of domain shrinkage, and although 60 wt % vesicles show higher EDTA shrinkage domains more so than lower EDTA shrinkage domains, the rate results otherwise indicate a weak dependence on EDTA concentration. This suggests that remixing kinetics are not reaction-limited but rather diffusion-limited. CGMD simulations lend some molecular-scale insight: a phase-separated bilayer with a molecular cross-linker shows a stably registered domain (Figure 1b, upper image), followed by the removal of all of the cross-linkers from the upper leaflet, which produces a dissolution of the periphery of the upper domain with diffusive intermixing (Figure 1b, lower image). More experiments could lend deeper insight, but the present results certainly highlight the importance of Ca$^{2+}$ for the maintenance of phase separation by polyanion cross-bridging.

3.3. Increasing the pH by NaOH Incubation.

In addition to calcium, another key factor controlling the phase behavior is the pH, which could modulate calcium condensation onto PAA chains in a critical concentration range. To test the domain change upon losing H$^+$ from PAA chains in the outer leaflet of vesicle, we increased the pH by adding NaOH at concentrations ranging from 0.15 to 6.25 mM. To control for the addition of sodium ions by NaOH, NaCl was added to phase-separated vesicle suspensions at equal concentration with no observed alteration to the domain size or shape (data not shown). Therefore, phenomena observed upon addition of NaOH are most likely due to the increase in the charge on the PAA chains that results from the increase in pH as well as the osmotic pressure between chains resulting from Na$^+$ replacing free H$^+$. Changes in the domain shape and area fraction were not obviously dependent on the NaOH concentration. However, the speed of vesicle disintegration accelerates as the NaOH concentration increases (data not shown). Near the upper bound of the NaOH concentration tested (6.25 mM), a resulting pH of 7.9 causes vesicles to break down into membrane patches or wormlike micelles within hours. Because the focus of this study is on changes in domain architecture rather than vesicle stability, NaOH treatments were limited to a regime where vesicles remained intact.

Upon addition of NaOH, the increasing pH leads to the deprotonation of carboxylic groups of the PAA chains, which become increasingly more negatively charged. The removal of H$^+$ causes metal ions from solution to bind to PAA chains. However, as our earlier investigation pointed out, the entropy penalty, favoring mixing, associated with confining counterions to PAA-rich domains increases with counterion concentration. Calcium cannot be confined in PAA chains at high concentrations, and the electrostatic repulsion between PAA chains increases. Another possible mechanism for the observation of swelling polymersomes is that whereas NaOH removes H$^+$ ions, Na$^+$ ions are incorporated with the PAA brushes, which induces an osmotic pressure increase and "pushes" the brushes apart. Domain persistence under asymmetric NaOH treatment allowed the observation of dramatic changes in domain morphology such as viscous fingering, bulging AB1-rich domains, and a change in the domain area fraction.

3.3.1. Fingering in Mixing/Demixing and In-plane Swelling of AB1-Rich Domains.

The treatment of phase-separated polymersomes with NaOH for several hours is asymmetric with respect to leaflet perturbations and results in a small number (\sim10%, $N_{\text{vesicle}} = 30$) of vesicles exhibiting fingering domain boundaries (Figure 3a,b). This fingering pattern could be due to the swelling and softening of AB1-rich domains with increasing interchain electrostatic repulsion. As previously shown, AB1-rich domains are calcium cross-bridged gels that cannot be aspirated into a micropipet at low aspiration pressures ($<200 \, \text{Pa}$). Furthermore, AB1-rich domains show irregular rigid creases under osmotic deflation (Figure 3c, insets), which also suggests gel-like AB1-rich domains. In contrast, incubation with NaOH softens AB1-rich domains to a liquidlike state as evidenced by facile aspiration into the micropipet (Figure 3c). The AB1-rich domain deformed while being projected into the pipet and later disassembled, resulting in the failure of vesicle integrity (data not shown). Therefore, liquid-like AB1-rich domains are not mechanically stable after NaOH stimulus because of the electrostatic repulsion between chains.

The addition of NaOH increases the electrostatic repulsion between AB1 chains, which maximizes the distance between AB1 chains and favors swelling domains. Therefore, NaOH treatment leads to the growth of the AB1/OB18* domain interface length. A similar fingering pattern is found in phase-separated giant lipid vesicles close to a temperature-dependent mixing/demixing critical point.33 It is likely that these NaOH-treated phase-separated polymersomes are approaching a mixing/demixing critical point because the rigidity difference between the AB1 and OB18* phases decreases with the softening of the AB1-rich domains. Although mixing/demixing is induced differently, chemically versus physically, phase-separated polymersomes and liposomes display a similar phenomenon as they reach a mixing/demixing critical point.

\[\text{dx.doi.org/10.1021/la3046602} \]
3.3.2. Bending Outward: Three-Dimensional AB1-Rich Domain Swelling. In addition to viscous fingering, nearly 14% \((N_{vesicle} = 30)\) of vesicles have AB1-rich domains bulging outward (Figure 3d) after incubation with NaOH. This positive curvature is in contrast to the AB1-rich domains in untreated vesicles that mostly display no curvature or negative curvature (Figure 3d, insets). We propose that the change in curvature of AB1-rich domains results from the difference in the interfacial area of AB1 molecules in the outer and inner leaflets. As NaOH is added to alter the pH asymmetrically, the repulsion between PAA chains in the outer leaflet leads to the expansion of the AB1 molecular area, whereas the AB1 molecular area remains constant in the inner leaflet. When the outer leaflet has more area compared to the inner leaflet, the domain bends outward. Therefore, the change in membrane curvature in AB1-rich domains reflects leaflet asymmetry after NaOH treatment.

3.3.3. Decreasing Area Fraction: Slow Partial Remixing of AB1/OB18*. After NaOH is added, the area fraction of AB1-rich domains decreases because of the mixing of AB1-rich and OB18*-rich domains. To estimate the extent of mixing, we quantify the area fraction of each phase per vesicle. A surface-mapping tool was developed that projects the 3D vesicle surface onto an equal-area 2D map. The working principle of the algorithm is obtained by searching for the maximum fluorescence intensities along lines normal to the surface of the sphere calculated from the estimation of the center and the radius of the vesicle. A confocal z projection of an example vesicle (Figure 4a) with a mixing ratio of AB1/OB18* = 50:50 w/w (51:49 mol/mol) is mapped to a 2D surface (Figure 4b,c), from which the AB1-rich domain area fraction was calculated to be 51.8%. With this mapping tool, the domain area fractions were calculated at different mixing ratios. AB1-rich domain area fractions of vesicles were measured to be \(22 \pm 5\% \) (av ± S.E., \(N_{vesicle} = 5\)) and \(48 \pm 2\% \) (\(N_{vesicle} = 11\)) for AB1 weight fractions of 25 and 50%, respectively. However, after the NaOH stimulus, the AB1-rich domain area fractions were reduced after overnight incubation as shown in area fraction plots (Figure 5a). Average values of AB1-rich domain area fractions were significantly decreased to \(10 \pm 1\% \) (\(N_{vesicle} = 5\), \(p < 0.05\)) for a 25% AB1 weight fraction and \(33 \pm 4\% \) (\(N_{vesicle} = 19\), \(p < 0.005\)) for a 50% AB1 weight fraction. The decrease in the AB1 area fraction reveals the increase in miscibility of AB1 in OB18*-rich domains after NaOH treatment, which also impacts the domain shape (Figure 5b). The miscibility between AB1 and OB18* is tuned by the electrostatic repulsion between charged PAA chains, which is sensitive to changes in pH. As expected from previous work, increasing the pH without changing the calcium concentration will result in the slow mixing of the phase-separated polymer-some membrane when compared to the kinetics of EDTA treatment.

3.4. Removal of Both Calcium and H+ by Adding EDTA Plus NaOH. In addition to adding EDTA and NaOH to vesicles...
4. DISCUSSION

As the schematic phase diagram in Figure 7 illustrates, external chemical stimuli were applied to phase-separated vesicles (white star), by which the system was shifted out of the region of phase separation (pink region) in roughly three directions: decreasing [H\(^+\)] (black line), decreasing [Ca\(^{2+}\)] (blue line), and decreasing both [H\(^+\)] and [Ca\(^{2+}\)] (red line). Decreases in [Ca\(^{2+}\)] were achieved by the addition of excess concentrations of calcium-chelating agent EDTA. Once calcium was removed from the AB1-rich domains in the outer leaflet of the vesicle, domains began mixing within minutes. The addition of NaOH increased the pH and subsequently induced decreases in AB1-rich domain area fractions and fingering domain boundary patterns and changes in AB1-rich domain curvature. A commonality in both EDTA and NaOH effects is the mixing behavior of AB1-rich and OB18*-rich domains. In both cases, domain mixing results from a disruption of the calcium cross-bridging that induces the lateral segregation of AB1 into domains either by the removal of calcium by chelation or by increasing calcium entropy. The difference in mixing kinetics upon EDTA and NaOH stimuli could be due to these different mechanisms for cross-bridge disruption, where the decrease in the area of AB1-rich domains upon EDTA addition shows fast (minutes–hours) total mixing and the area fraction decrease induced by NaOH features slow (hours–days) partial mixing. The difference in mixing speed reflects the sensitivity of AB1-rich domains, changing from solid to fluid, upon external stimuli and is consistent with our previous finding that the effective rigidity of AB1 membranes is more sensitive to changes in calcium concentration than pH. \(^{23}\) Although the mixing kinetics are faster with EDTA addition, large increases in pH have a more dramatic effect on the total vesicle architecture. \(^{45}\) As seen in the gray region of Figure 6, vesicles become unstable within minutes after being doused with high concentrations of NaOH as they disassemble to form worms or membrane patches. \(^{44}\) We propose that the strong electrostatic repulsion between PAA chains at such large increases in pH (pH 3.5–7.9) gives rise to leaky vesicles. Importantly, at physiological pH (pH 7.4) phase-separated polymersomes remain intact and undergo slow partial domain mixing. This stability presents promise for the application of spotted polymersomes in controlled drug release under physiological conditions. \(^{46}\)

Domain registration across the inner and outer leaflets of polymer bilayer membranes is suggested from the phenomenon under asymmetric chemical treatment. Domain registration becomes clear when mapping 3D z-stack projections to 2D area maps revealed no third, intermediate fluorescence intensity. \(^{46}\)
Domain registration is generally accepted in lipid systems such as planar lipid bilayers, and giant unilamellar vesicles (GUV). Although several hypotheses of transmembrane domain registration is maintained. These chemical milieu is shown to disrupt phase separation, interleaflet coupling and ordering within domains due to the ligand cross-bridging of chains. The experimental observations are consistent with results from Naumann and co-workers, who also suggest that the interleaflet coupling of polymer-tethered lipid bilayer coupling may aid the understanding of cell membrane leaflet coupling and offer new insights into this important topic.

The work here extends such findings with kinetics and provides experimental observations of the roles that divalent ligands play in stabilizing phase separation within polymersomes. Furthermore, although the alteration of the surrounding chemical milieu is shown to disrupt phase separation, interleaflet registration is maintained. These findings may provide motivation for future applications in drug delivery platforms or contrast agents for in vivo tissue imaging.

APPENDIX

According to Fick’s second law, diffusion-like behavior in cylindrical systems is shown in eq 1. Assuming that diffusion is slow enough for the system to reach steady state, eq 1 can be simplified to the following differential equation:

\[
\frac{\partial}{\partial r} \left(r \frac{\partial C}{\partial r} \right) = 0
\]
and boundary conditions

\[C_{mR_0} = C_0 \]
\[C_{mR_0} = 0 \]

where \(C_0 \) is the OB18* concentration in OB18* domain, as illustrated in Figure 2c. \(R_0 \) is the original AB1 domain radius at \(t = 0 \), and \(R_m \) is the moving radius of the AB1 domain by the invading phase. Solving eq A2, we obtain

\[\frac{C}{C_0} = \frac{\ln(r/R_m)}{\ln(R_0/R_m)} \]

(A3)

Given the continuity equation

\[-\frac{\partial R_m}{\partial t} C_0 = D \frac{\partial C}{\partial r} |_{R_m} \]

(A4)

\[\frac{\partial C}{\partial r} |_{R_m} (r/R_m) = (C_0/R_m) \ln(R_0/R_m) \]

calculated from eq A3 is inserted into eq A4. We integrate eq A4 over the interval \([R_0, R_m]\). It follows that

\[\frac{1}{x} \left(1 - x^2 \right) + \frac{1}{2} x^2 \ln x = \frac{D t}{R_0} \]

(A5)

where \(x = R_m/R_0 < 1 \). Neglecting terms higher than second order in \(x \), eq A5 is then simplified to

\[\frac{1}{4} \left(R_0^2 - R_m^2 \right) = D t \]

(A6)

from which the diffusion coefficient formula shown in eq 2 is obtained.

AUTHOR INFORMATION

Corresponding Author

E-mail: baumgart@sas.upenn.edu, discher@seas.upenn.edu.

Author Contributions

K.S. and A.T. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the UPenn MRSEC grant from the National Science Foundation (award no. DMR05-20020) and by NIH EB007049 (D.E.D.).

REFERENCES

