Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation

Joe Swift, Irena L. Ivanovska, Amnon Buxboim, Takamasa Harada, P. C. Dave P. Dingal, Joel Pinter, J. David Pajerowski, Kyle R. Spinler, Jae-Won Shin, Manorama Tewari, Florian Rehfeldt, David W. Speicher, Dennis E. Discher*

Introduction: Tissues can be soft like brain, bone marrow, and fat, which bear little mechanical stress, or stiff like muscle, cartilage, and bone, which sustain high levels of stress. Systematic relationships between tissue stiffness, protein abundance, and differential gene expression are unclear. Recent studies of stem cells cultured on matrices of different elasticity, \(E \), have suggested that differentiation is mechanosensitive, but the molecular mechanisms involved in particular tissues remain elusive.

Methods: We developed quantitative mass spectrometry algorithms to measure protein abundance, stoichiometry, conformation, and interactions within tissues and cells in relation to stiffness of tissues and extracellular matrix. Manipulations of lamin-A levels with small interfering RNA, overexpression, and retinoic acid or antagonist were applied to stem cells cultured on different matrices to assess lamin-A’s role in mechanosensitive differentiation. To characterize molecular mechanisms, promoter analyses, transcriptional profiling, and localization of transcription factors were complemented by measurements of nuclear mechanics and by modeling of the core gene circuit.

Results: Proteomic profiling of multiple adult solid tissues showed that widely varied levels of collagens in extracellular matrix and of lamin-A in nuclei followed power-law scaling versus \(E \). Scaling for mechanoresponsive lamin-A conformed to predictions from polymer physics, whereas lamin-B’s varied weakly. Tumor xenograft studies further demonstrated that matrix determined tissue \(E \), whereas lamin-A levels responded to changes in \(E \). In tissue culture cells, both lamin-A conformation and expression were mechanosensitive, with phosphorylation and turnover of lamin-A correlating inversely with matrix \(E \). Lamin-A knockdown enhanced mesenchymal stem cell differentiation on soft matrix that favored a low-stress, fat phenotype. Lamin-A overexpression or transcriptional induction with a retinoic acid (RA) antagonist enhanced differentiation on stiff matrix toward a high-stress, bone phenotype. Downstream of matrix stiffness, the RA pathway regulated lamin-A transcription, but feedback by lamin-A regulated RA receptor (RARG) translocation into nuclei. High lamin-A levels physically impeded nuclear remodeling under stress but also regulated coregulated genes. These factors included both serum response factor (SRF), which promoted expression of stress fiber–associated proteins involved in differentiation, and a Hippo pathway factor (YAP1) involved in growth.

Discussion: The characteristic stress in normal tissue favors collagen accumulation and a characteristic stiffness that cells transduce through nuclear lamin-A to enhance tissue-specific differentiation. Tension-inhibited turnover of rope-like filaments of lamin-A provides sufficient mechanical control of a core gene circuit to explain the steady-state scaling of lamin-A with \(E \). High lamin-A physically stabilizes the nucleus against stress and thereby stabilizes the nuclear lamina and chromatin, with implications for epigenetic stabilization and limiting of DNA breaks. Moreover, lamin-A levels directly or indirectly regulate many proteins involved in tissue-specific gene expression, and, because lamin-A levels can vary by a factor of 10 or more downstream of tissue mechanics, an important fraction of tissue-specific gene expression depends on tissue mechanics, which changes in development, injury, and many diseases.

*Corresponding author. E-mail: discher@seas.upenn.edu

Tissue micromechanics correlate with abundance of collagens and nuclear lamins, which influence cell differentiation. (Left) Collagen and lamin-A levels scale with \(E \), consistent with matching tissue stress to nuclear mechanics. (Right) Matrix stiffness in tissue culture increases cell tension and stabilizes lamin-A, regulating its own transcription and that of stress fiber genes, enhancing differentiation. RA, retinoic acid, i.e., vitamin A; RARG, YAP1, and SRF, transcription factors.
Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation

Joe Swift,1,2 Irena L. Ivanovska,2,3 Anmon Buxboim,3 Takamasa Harada,3 P. C. Dave P. Dingal,3 Joel Pinter,1 J. David Pajerowski,2 Kyle R. Spinler,2 Jae-Won Shin,1 Manorama Tewari,1 Florian Rehfeldt,1 David W. Speicher,2 Dennis E. Discher1,2†

Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.

Stiffness and strength of a tissue should in principle relate to the physical stress in that tissue. Low stresses in brain and fat may explain why these tissues are soft. High stresses on adult bone, in contrast, are thought to promote its growth and stiffening through a “mechanostat” that functions to match the stress (1). At a microscale, physical stress deforms cells (2) and can alter gene expression profiles (3), but cells in vivo might also directly sense the local tissue stiffness or microelasticity E (in kilopascals, kPa) (table S1), which should relate to the typical stress in that tissue (also in kPa). It is unclear, however, whether any specific proteins function across diverse tissues to not only match stiffness with stress but also impact differentiation processes.

When animal cells are cultured on various gels or elastomeric substrates, cell-generated stress or tension increases as cells spread on matrices with increasing elasticity, E (4, 5). Surprising effects on differentiation (5), as well as cell shape and motility (6), have also been observed. Although some studies have suggested a lack of response to matrix elasticity in two-dimensional (2D) (7) or 3D cultures (8), several other studies have found that gels that mimic the compliance of brain or fat, respectively, maximize neurogenesis or adipogenesis (9–11). Gels that are moderately stiff like muscle are best for myogenesis (12–14), and gels that are firm like precalcified bone optimize osteogenesis in 2D and 3D (5, 15, 16). A 3D hierarchy of soft/stiff rigid tissue might exist, but the presence of any molecular mechanostats that relate to tissue stiffness and that systematically affect lineage remain unknown. Widely expressed transcriptional regulators that include YAP1 of the Hippo pathway, which promotes growth and regeneration (17), as well as components of the serum response factor (SRF) pathway, which promotes cytoskeletal gene expression in differentiation (18), exhibit low nuclear activity in cells on substrates designed to limit cell spreading and cytoskeleton tensions (19, 20). How such factors or completely distinct pathways might relate to matrix elasticity and the stiffness of 3D tissues has yet to be addressed.

Forces on a tissue, as well as those generated by cells within a tissue (Fig. 1A), are sustained in rough proportion to microelasticity E by collagens and lineage-specific cytoskeletal proteins (4, 5). Some forces might also propagate into the nucleus and be resisted by the nuclear lamina. Lamin-A is an intermediate filament protein found in nearly all cell nuclei and contribute to nuclear stiffness (20, 21), and nuclear stability (22). Although laminins might be viewed as similar in mechanical function to keratin intermediate filament proteins that determine nail and skin structure (23), lamins are also believed to modulate transcription (24) and have been speculated to mechanoregulate the genome (25, 26). Here, initial analyses of proteomes from soft and stiff tissues motivated us to examine, both in vivo and in cultures on soft and stiff gels, whether the nuclear lamina is involved in sensing tissue elasticity in differentiation.

Results

Lamin-A and Collagen Levels Scale with Tissue Microelasticity

Allometric scaling laws for stress response would be understandable for polymer-based molecular mechanostats, so we examined proteomes for such trends across tissues from brain to bone (Fig. 1A). Nearly 100 of the most abundant structural and nuclear proteins were quantified relative to invariant proteins using label-free mass spectrometry (MS) (Fig. 1B and figs. S1 and S2). Lamin-A was found to increase systematically 30-fold from soft to stiff tissue (Fig. 1D and fig. S3). Lamin-B1 differed by less than threefold, and lamin-B2 varied even less (Fig. 1F), consistent with B-type lamins being constitutively expressed (27). An absolute stoichiometry of the lamin isoforms (lamin-A:B) was directly determined by MS quantitation of a peptide common to all lamins (see Materials and Methods) (fig. S4, A and B) as validated with recombinant protein (fig. S4C), and a power law fit versus tissue microelasticity gave Lamin-A:B $\sim E^{0.7}$ ($R^2 = 0.88$). Combined with findings that B-type lamins were roughly similar in abundance (fig. S4D), the weak scaling of both B-type lamins is consistent with the key result for Lamin-A versus E as a metric of tissue stress: Lamin-A $\sim E^{0.7}$.

Primary and immortalized cell types derived from a range of human and mouse tissues follow this scaling in terms of E of the tissue of origin, which helps to generalize the result across species and perhaps ameliorate concerns over tissue heterogeneity. Immunoblotting also validated the A:B scaling and further suggested that the A and C splice-form products of the LMNA gene follow respective scaling exponents of 1.0 and 0.5, so that the 0.7 exponent for total lamin-A is a geometric mean (Fig. 1E and fig. S5). A power law between concentration of a polymer and its stiffness is typical in the physics of biopolymers (28–30). We had previously knocked down lamin-A in human lung-derived A549 cells without affecting lamin-B, and micropipette aspiration showed that knockdown nuclei are softer (20), suggesting that nuclear stiffness increases with A:B stoichiometry. Although the tissue E here provides a metric of the typical stress on a tissue, the power law exponent for lamin-A is midway between the linear response of a simple polymer network (31) and that of a nonlinear, semiflexible meshwork typified by stiffness versus concentration of actin (with exponent 0.4) (29).

The A:B stoichiometry in Fig. 1D (y axis) indicates that lamin-A dominates over a range of stiff tissues, consistent with LMNA mutations causing lipodystrophies, muscular dystrophies, and premature aging (progeria) that affects heart and large vessels while sparing soft tissues such as brain and marrow (32). Lamin-B dominates in soft tissues, consistent not only with lamin-A appearing low in antibody-staining of neuroendocrine tissues and hematopoietic cells (27) [despite epitope masking (33)] but also with lamin-B knockout mice dying at birth with defects in brain development and tissue innervation (34). In other words, the normal function of cells in stiff tissues is most dependent on lamin-A.

In nuclear-enriched fractions as well as whole tissue lysates, extracellular matrix proteins were the other detected tissue proteins that scaled...
with E and also showed transcripts scaling with E in both man and mouse (fig. S2). Collagen-1 is the most abundant protein in animals, and its two fiber-coassembling isoforms both gave collagen-1 $\sim E^{1.5}$ (Fig. 1G). Gels made with purified collagen-1 scale as $\sim E^{0.5}$ (35), but a different exponent for tissue seems consistent with additional matrix or cell components contributing to tissue mechanics. Indeed, collagen-3, -5, -6, -11, human adenocarcinoma epithelial cells from lung; C2C12, mouse myoblast cells from muscle; MSC, osteo-prone human mesenchymal stem cells from marrow. (E) MS trends were validated by immunoblotting (representative blots taken from fig. S5A). (F) Lamin-B1 scales very weakly with E, whereas lamin-B2 is constant on average. (G) Collagen-1 isoforms scale strongly with E. (H) Human glioblastoma cells U251Luc (expressing luciferase for imaging) were xenografted into mouse brain and flank, and 4-week-old tumors were profiled by MS proteomics. (I) Mouse-derived collagens in U251 grown in mouse brain and flank scale with E as observed for adult mouse tissues. (J) Stiffness of flank tumors made with high (A549) or low (U251) lamin-A:B cells was similar to the stiffness of the subcutaneous site (subQ). Tumors were 50% softer after only a brief treatment with collagenase (colase). (K) Lamincocomposition and stiffness of the tumors fit adult tissue scaling. All points are significantly different where indicated ($n \geq 3$ MS measurements).

Collagen levels determine tissue stiffness and lamin-A levels respond in xenograft models

Fig. 1. Lamin-A and collagen levels scale with tissue stiffness, but collagen determines stiffness while lamin-A responds. (A) Tissue deformation under force is quantified by E and transfers stresses through the extracellular matrix and the cytoskeleton into the nucleus. (B and C) The proteomes of adult mouse tissues were profiled to determine whether scaling of mechanical properties with biopolymer concentration exists across tissues. (D) Quantitative proteomics of multiple human and mouse tissues and cells revealed scaling with E of the absolute ratio or stoichiometry of lamin-A to lamin-B through MS quantification of a pan-lamin peptide. Differences in ratios are significant with brain $<\ldots$ liver $<\ldots$ fat $<\ldots$ heart, lung, and muscle $<\ldots$ skull $<\ldots$ femur and cartilage, where $<\ldots$ indicates $P \leq 0.05$ and $<\ldots$ indicates $P \leq 0.01$. Nuclei with abundant lamin-A are stiff (20). Cultured cells showed the same trend as their primary source tissue. HSCP, human hematopoietic stem cell progenitors from marrow; U251, human glioblastoma cells from brain; A549,
and -12 also scaled as $E^{0.01-0.15}$. Our tissue profiling was unable to identify any compelling cytoskeletal candidate [particularly in the SRF or YAP1 pathways (fig. S1, A to C)] that could be a universal “mechanostat” similar to lamin-A for the nucleus. A possible reason is tissue-specific isoform usage, such as with the intermediate filament protein vimentin, which is restricted to specific lineages rather than being expressed in all cell types. Similar specialization seems likely to apply to isoforms of actin, myosin, and microtubules.

Matrix Determines Tissue Stiffness and Lamin-A Adjusts in Vivo

To address the relative affect of extracellular matrix and lamin on tissue stiffness, human-derived U251 glioblastoma tumors were grown in the brain and in subcutaneous flank sites of nude mice for label-free MS proteomics (Fig. 1H and fig. S6, A to C). In standard culture, these cells had a low A:B ratio similar to normal mouse brain (Fig. 1D). However, flank tumors of U251s had more matrix and were much stiffer than brain tumors, with scaling of collagen density versus E appearing typical of normal adult tissue (Fig. 1I). Flank tumors of human-derived A549 lung cells (A:B ≈ 2:3) had similar E as U251 tumors and were only slightly stiffer than normal subcutaneous tissue, revealing a response independent of initial lamin levels (Fig. 1J and fig. S6D). Collagenase treatment of fresh tumors reduced E by >50% in just 10 min, suggesting that collagen is a key determinant of tissue stiffness, unlike lamin-A. Consistent with this interpretation, human matrix or matrix-associated proteins were among the few proteins more than twofold higher in the flank compared with the soft brain site. Moreover, human lamin-A levels proved higher in flank versus brain sites (fig. S6), whereas lamin-B1 and lamin-B2 were only slightly higher in brain. U251 cells thus adjust their lamin-A:B ratio by 1.5-fold, which fits remarkably well to the stiffness-dependent scaling of lamin-A:B found in normal tissues (Fig. 1K).

Two other intermediate filament (IF) proteins exhibited site-dependent differences in U251 cells that were notably similar to lamin-A. Human glial fibrillary acidic protein (GFAP) and vimentin were both lower in the softer brain than in the flank (fig. S6B). GFAP expression is known to be restricted to cells of the central nervous system plus a few nonneural lineages, so its up-regulation in flank by human brain–derived U251 cells was not expected. Indeed, mouse GFAP was almost undetectable in flank but abundant in brain (fig. S6C). On the other hand, human nestin (yet another IF protein) in the grafted U251 cells was slightly higher in brain than flank, similar in response to the human B-type laminas. These additional findings for lineage-restricted, cytoplasmic IFs thus reinforced the finding that different IFs exhibit different sensitivities to different microenvironments.

Lamin-A Conformation and Abundance Are Mechanosensitive in Cultured Cells

To understand how laminas sustain stress, we focused on cultures of human-derived U251s, A549s, and low-passage mesenchymal stem cells (MSCs), which collectively span the broad range in lamin-A:B (Fig. 1D). Imaging of laminas under constant immunostaining conditions showed the expected increase in lamin-A intensity as well as juxta-posed networks (24) of laminas (Fig. 2, A and B). To dissect molecular responses of laminas to physical stress, we applied cysteine-shotgun MS (CS-MS) which involves using a fluorescent dye to covalently tag cysteines that are conformationally cryptic but exposed by stress (36). When nuclei were isolated from cells and subjected to controlled shear (Fig. 2C), stability against nuclear rupture was seen to increase with lamin-A levels: U251 < A549 < [A549 overexpressing green fluorescent protein (GFP)–lamin-A] (Fig. 2D). Peeling of lamin-A off of stressed nuclei as seen by immunofluorescence demonstrated the responsiveness of lamin-A to stress. CS-MS revealed several nuclear proteins in the 60 to 80 kD range as susceptible to stress (fig. S7), with Cys522 in lamin-A’s immunoglobulin (lg) domain identified as a stress-sensitive site (Fig. 2E). Studies of pure recombinant Ig domain showed the labeling kinetics of Cys522 captured domain unfolding in thermal and solvent denaturation (Fig. 2F and fig. S8, A to E), and this same site in nuclear lamin-A showed 70% more labeling as shear was increased. A nearby Cys509 in the tail was also labeled but was insensitive to stress. A lamin-A point mutation R453W in the Ig domain that causes muscular dystrophy (37) and that destabilized the purified domain (Fig. 2F) also produced dysmorphic nuclei in A549 cells expressing a GFP-lamin-A with the mutation (Fig. 2G). After labeling the adherent cells with the Cys-reactive fluorescent dye, lamin-A was enriched by immunoprecipitation and analyzed by MS (IP-MS). Labeling of the Ig’s Cys522 increased significantly (Fig. 2H), whereas labeling of the tail’s Cys509 was unaltered. The mutant also showed fivefold less phosphorylation at a proximal Ser390 without differences at head or tail phospho-Ser (Fig. 2I and fig. S8, F and G); synthetic peptides and phosphopeptides were made and confirmed the linearity of quantitation by MS (fig. S8F). Lamin-A phosphorylation is known to promote disassembly (38) and also protein turnover (39).

Stresses in the cell are transmitted to the nucleus and lamina through various interactions, and because cytoskeletal tension increases with matrix stiffness (3), CS-MS was used to assess matrix effects on lamin-A. MSCs cultured on either soft gels (0.3 kPa) or stiff gels (40 kPa) exhibited the expected low- and high-tension phenotypes with stiffness-induced increases in (i) cell and nuclear spreading (Fig. 3A and fig. S9A), (ii) stress fiber assembly (Fig. 3A and fig. S9, B and C), and (iii) levels of α-smooth muscle actin (Fig. 3, B and C). On soft matrix, the nuclear envelope appeared highly wrinkled (Fig. 3D), but stiff matrix and high tension “smoothed out” nuclear wrinkles and flattened the nucleus. CS-MS was applied to 3-day cultures, with an anticipation of more labeling of the stress-sensitive Ig domain in the high-tension state, but Cys labeling proved similar in both the Ig and tail sites in cells on soft versus stiff gels (Fig. 3, E and F). On the other hand, phosphorylation proved significantly higher in cells on soft matrices at all four MS-detectable sites (Fig. 3, G and H, and fig. S9D). Because lamin-A phosphorylation promotes disassembly (38) and turnover (39), the results suggested an inverse relationship between phosphorylation and matrix stiffness. Indeed, the total amount of lamin-A increased significantly in both MSCs and A549 cells on stiff substrates (Fig. 3, I and J, and fig. S9, E to G). Lamin-A’s increased levels could thus compensate in part for the increased force per molecule in cells on stiff substrates, and this increased level would tend to maintain stability of the protein and its folded domains. Consistent with an increase in IF assembly with cell tension, MSCs treated with a myosin-II inhibitor to inhibit cell tension have also been found to depolymerize vimentin filaments (36). However, because lamin-B did not change significantly with matrix stiffness (fig. S9G) and no lamin-B phosphopeptides were detected, additional study of this mechanism for lamin-A and other mecanosensitive IFs is needed.

Lamin-A Enhances Matrix Elasticity-Directed Differentiation

Matrix elasticity directs lineage specification of human bone marrow–derived MSCs in culture toward bone, fat, or other tissue types with mechanisms based in part on myosin-II generated stresses (5). Because lipodystrophy is one of the many diseases involving LMA and because adipocytes are common in human marrow, the softness of fat was mimicked with a soft gel ($E = 0.3$ kPa), and precalcified bone or “osteo” was mimicked with a stiff gel ($E = 40$ kPa). Bone marrow–derived MSCs typically have a very high A:B ratio (Fig. 1D) that probably reflects their osteogenic niche origins (40), and indeed even with standard adipogenic media only a very small percentage of MSCs on stiff matrix (~1%) (Fig. 4A) showed after 2 weeks of culture the oil-red–positive lipid droplets that are phenotypic of fat. In these cells, stress fibers were displaced by oil droplets that sometimes deformed the nuclear envelope (fig. 4B and fig. S10A). Soft matrix increased adipogenesis to 8%, but this increased to nearly 20% with partial knockdown of LMA. MS profiling also revealed an abundant fatty acid ligase (ACSL1) up-regulated nearly 100-fold with knockdown (fig. S11A). Knockdown did not affect adipogenesis of cells on stiff matrix, which invariably showed about 20-fold fewer adipogenic cells than knockdown cells on soft matrix.

Osteogenesis of MSCs was moderated over a 20-fold range through a combination of matrix elasticity and controlled expression of lamin-A (Fig. 4, C and D). Soft matrix always repressed osteogenesis, but stiff matrix plus lamin-A overexpression led to 80% of cells being positive for a standard marker of osteogenesis. Optimal osteogenic conditions also increased endogenous lamin-A expression (by twofold), whereas adipogenic
Matrix elasticity–directed lineage specification of MSCs is based in part on myosin-II–generated cell tension and the accompanying cell spreading (5, 11), which roughly paralleled nuclear shape changes (Figs. 3A and 4E, and fig. S9, A and B). Myosin-IIA was indeed increasingly active and assembled with stiffness-dependent decreases in phosphorylation near myosin-IIA’s coiled-coil tail (fig. S9C), as we reported recently (43). Thus, phosphorylation of Ser/Thr residues just beyond the coiled coils (e.g., Fig. 3H) inhibits assembly of both myosin-IIA and lamin-A homodimers into the respective functional higher-order filaments, and such phosphorylation appeared consistently higher in cells on soft matrices compared with stiff matrices for both proteins. On the other hand, overexpression of lamin-A in cells on stiff matrix did not increase tail phosphorylation of myosin-IIA, suggesting a nonlinear relationship between cytoskeleton tension and lamin-A at the highest levels.

Additional indicators of cell tension tended to increase in vitro with matrix elasticity and/or...
lamin-A levels in MSCs. Not only was α-smooth muscle actin suppressed on soft matrix where lamin-A was low (Fig. 3, B and C), but knockdown of lamin-A also suppressed α-smooth muscle actin (ACTA2) transcript and protein (Fig. 4, F and G and fig. S12, A and B), together with many other key targets and components of the SRF pathway that regulates expression of ACTA2 as well as many cytoskeletal genes (18) involved in differentiation to both soft and stiff tissue lineages [neurogenesis (44), myogenesis (18), and osteogenesis (45)]. SRF is regulated in part by nuclear actin (18, 46), and lamin-A binds nuclear actin (47) as well as other proteins that also bind nuclear actin (48); this provided a mechanism for SRF regulation by lamin-A, as also suggested by overexpression studies of one protein (emerin) that binds both lamin-A and actin (49). Tissue analyses showed that SRF target proteins did not generally scale with tissue E (figs. S2B and S3D) and that SRF and ACTA2 transcripts increased nontrivially with E (fig. S2C). Because high SRF activity can inhibit differentiation of some lineages [e.g., epithelial cells (11)], mechanosensitive lamin-A is likely just one coregulator of the SRF pathway.

One transcription factor implicated in lipodystrophy, SREBP1 (SREBF1), is known to bind lamin-A in distributing between nucleus and cytoplasm (50). SREBP1 is not only an early response factor in adipogenesis (51) but, according to chromatin-IP (fig. S12C), it also regulates ACSL1 and another adipogenic survival factor FABP5 (52), both of which increased with LMNA knockdown (Fig. 4F). YAP1 has been reported to be excluded from the nucleus in a functionally important manner during adipogenesis of MSCs and also functionally localized to the nucleus during osteogenesis of MSCs (11), but neither YAP1 transcript levels nor its binding partners or target genes changed with lamin-A knockdown (Fig. 4F). Although YAP1 protein levels did decrease with lamin-A knockdown (fig. S12, A and B), and YAP1 did tend to translocate as expected into the nucleus with increased matrix E (Fig. 4, H to I, and fig. S12D), lamin-A overexpression in cells on stiff matrix also produced decreases in both total YAP1 levels and nuclear localization (Fig. 4H). Fluorescence intensity profiles through the nucleus further showed many of the overexpressing cells as well as a fraction of wild-type cells on stiff matrix with YAP1 enriched at the nuclear envelope. The nonmonotonic response of YAP1 versus lamin-A levels in vitro was also found for YAP1 protein and transcript levels versus tissue stiffness (Fig. 4K and fig. S12E). Consistent with this, neither YAP1 nor SRF were predicted to directly drive LMNA expression (fig. S13A), and LMNA has not been found to be a direct target of these factors as detected by chromatin-IP (18, 53). We thus sought a pathway that could directly regulate LMNA and thereby impact lineage.

Retinoic Acid Pathway Regulates Lamin-A Transcription, but Lamin-A Protein Regulates on RA Receptor

LMNA is transcriptionally regulated, with both message and protein fitting the same power law scaling in mouse and man ($R^2 = 0.95$) (Fig. 5A). Promoter methylation was minimal in LMNA across a range of cell types (fig. S13B). Bioinformatics analyses of promoters for LMNA, LMNB1, and LMNB2 predict retinoic acid (RA) transcription factor sites only in LMNA (Fig. 5B and fig. S14), and chromatin-IP has confirmed binding of RA nuclear receptors to LMNA (fig. S12C) consistent with experiments on RA-responsive elements (RARE) in LMNA (54). Neither RA factors nor collagens were greatly affected by lamin-A knockdown (Fig. 4F and fig. S12C), except for RARB, which is a downstream target of the RA pathway. This placed extracellular matrix upstream of lamin-A together with the level of transcription factors that likely regulate lamin-A, while also suggesting that the RA pathway might be modulated by lamin-A.

Fig. 3. Cell and nuclei spread on stiff matrix, suppressing lamin-A phosphorylation and increasing lamin-A and cell tension. Response of MSCs to substrate stiffness was characterized. (A) Cells are more rounded on soft (0.3 kPa) matrix, whereas on stiff (40 kPa) matrix they spread with more pronounced stress fibers, consistent with higher cell tension. (B and C) Levels of α-smooth muscle actin were higher on stiff matrix. (D) Confocal microscopy showed wrinkled nuclei on soft matrix, and smoothed-out and flattened nuclei on stiff matrix. Images are of the middle z-section of different nuclei. (E and F) Cell and nuclei rapidly label with mBBr, but quantitation of lamin-A labeling by IP-MS showed no significant difference in labeling of either the Ig domain or tail sites on soft versus stiff substrate. (G and H) Phosphorylation at Ser390 is ∼30% higher on soft substrate, predictive of solubilization. (I and J) Quantitative immunofluorescence and immunoblot show lamin-A increased with substrate stiffness. This tends to reduce the mechanical stress per molecule and maintain the Ig fold. Blots were taken from the same membrane. All points are significantly different ($P < 0.05$; $n > 3$ MS and IF measurements).
Fig. 4. Matrix elasticity directs stem cell differentiation, which is enhanced by lamin-A as it regulates SRF and YAP1. (A) Partial knockdown (KD) of lamin-A in MSCs with si-LMNA in combination with soft matrix (0.3 kPa) and an adipo-inducing media-maximized adipogenesis ($P \leq 0.02$ knockdown versus control). Stiff matrix (40 kPa) suppressed adipogenesis in parallel cultures, with no significant effect of knockdown. Knockdown of lamin-A was to 35% of wild-type or scrambled-siRNA. (B) Adipogenesis in MSCs on plastic showed that cells with oil droplets (phase contrast microscopy; nucleus indicated by blue arrow with asterisk) had minimal stress fibers (myosin-IIa immunofluorescence) compared with cells without oil droplets (nucleus indicated by blue arrow without asterisk). (C) Overexpression (OE) of lamin-A in MSCs in combination with stiff matrix and an osteo-inducing media-maximized osteogenesis ($P \leq 0.0001$). Soft matrix suppressed osteogenesis in parallel cultures, with no significant effect of knockdown. (D) Alkaline phosphatase (ALP) staining was done after 1 week as a measure of osteogenic signal, together with the fraction of cells with staining. (E) Correlation between nuclear area and lamin-A level with treatments on soft and stiff matrix (normalized to Hoechst stain). NT, non-treated control. Inset cartoons highlight the relationship between cell and nuclear spread area as well as cell tension. (F) Pathway analyses after knockdown of LMNA in three different MSCs. Gene symbols are colored according to mRNA abundance in MSCs (green, low; red, high) from microarray data for 11 soft tissues in human and 10 soft tissues in adult mouse (of 14,985 gene annotations common to mouse and human), and genes are ranked based on Pearson correlations with lamin-A. SRF and related transcription factors and target genes all show reduced levels with lamin-A knockdown, whereas neither YAP1 nor its target genes were affected. (G) The decrease in ACTA2, downstream of SRF, was confirmed at the protein level in MSCs by immunofluorescence. (H) High-resolution confocal microscopy of YAP1 in MSCs cultured on substrates of increasing stiffness show increasing nuclear localization, as reported previously. (I) Plot shows a fourfold increase in nuclear to cytoplasmic ratio of YAP1 with increasing matrix stiffness in MSCs, except that lamin-A overexpression decreases nuclear YAP1. (J) YAP1 was also bimodally distributed on substrates of intermediate stiffness (10 kPa). (K) YAP1 protein and mRNA levels in tissues of increasing stiffness showed nonmonotonic trends, with the mRNA data averaged from human and mouse microarrays. All points are significantly different, as indicated ($n \geq 3$ imaging, IF, and immunoblot experiments).
Enzymatically derived from vitamin A, RA regulates development and regeneration and is a normal component of serum (~10 nM). It enhances lamin-A expression in embryonic carcinoma cells (54) while repressing lamins in adult granulocyte differentiation (55). Here, a lamin-A promoter driving GFP in A549 cells (Fig. 5C and fig. S14B) showed that RA was repressive, whereas an antagonist (AGN-193109, denoted AGN) enhanced expression (Fig. 5D). RA nuclear receptors are the major RA effectors and were likely involved; indeed, a mutated promoter construct (Δ-LMNA) lacking four of six RAREs (Fig. 5B and fig. S14B) showed no significant response to RA or AGN (Fig. 5D). Immunoblots of endogenous lamin-A confirmed RA responsiveness (fig. S15, A to E), and a pharmacodynamics study demonstrated nM activity (56) as well as a twofold dynamic range in lamin-A:B expression (fig. S15, F and G). MSCs transfected with the promoter constructs showed an increased expression in cells on stiff matrix compared with soft matrix for the full promoter, whereas Δ-LMNA showed no significant difference (Fig. 5E). Mechanical and chemical cues were combined to assess lamin-A protein in MSCs cultured on gels (Fig. 5, F and G), with the cells on stiff matrix (or on plastic) showing the expected lamin-A increase with AGN treatment and decrease with RA, but the effects were entirely suppressed on soft matrix. Matrix elasticity is thus upstream of the RA pathway, which is, in turn, upstream of lamin-A transcription.

Based on RA pathway effects on lamin-A expression in cells on stiff matrix (Fig. 5F), we hypothesized measurable effects on osteogenesis. AGN indeed enhanced osteogenesis of MSCs on stiff matrix, consistent with the AGN-driven increase in lamin-A level, whereas RA suppressed osteogenesis on stiff matrix, and neither drug had shown any significant difference. (F) RA and AGN regulate lamin-A in MSCs only on stiff matrix. Gels were coated with collagen-I for comparison to cultures on untreated plastic, and immunoblotting (G) was performed after 36 hours culture (mean ± SEM from titration; all blots from same membrane; P ≤ 0.05; n ≥ 3 immunoblots). (H) AGN coupled with stiff matrix to increase osteogenesis, determined by ALP staining (I). (J) Increased osteogenic potential was coincident with increased lamin-A levels, measured by immunofluorescence. (K) Lamin-A was necessary for the increased osteogenic potential of MSCs treated with AGN as coincident treatment with siRNA against LMNA-abrogated osteogenesis.
an effect on MSCs on soft matrix (Fig. 5, H and I). The increased osteogenic potential of AGN-treated MSCs on stiff matrix was reflected in higher lamin-A levels (Fig. 5J), and the effect was nullified by simultaneous treatment with small interfering RNA (siRNA) against LNMA (Fig. 5K). Ectopic bone with MSC grafts has been found to be inhibited by RA and a RARG-specific agonist (57, 58), and RARG knockout mice also exhibit osteochondral defects and live only weeks longer than the few weeks that LNMA-deficient mice survive (59–61). Chromatin-IP has thus far identified the RUNX2 gene to be a target of RA transcription factors but not yet SRF (fig. S12C). RARG message generally increased in mouse and man versus tissue E, and RARG protein likewise increased in mouse tissue (Fig. 6A and fig. S12E). Fat showed low levels of RARG, and lamin-A knockdown did appear to switch RA pathways toward one that should favor adipogenesis (Fig. 4F). In MSCs, RARG was mostly nuclear in immunostaining (Fig. 6B), and its levels were relatively unperturbed by knockdown of lamin-A (fig. S12, A and B). However, RARG’s nuclear-to-cytoplasmic ratio increased fourfold from soft to stiff matrix and was further suppressed by lamin-A knockdown (Fig. 6C). This effect of the lamina on nuclear translocation of RARG was similar in magnitude to the translocation of mechanosensitive YAP1 (Fig. 4I). Moreover, in cells on stiff matrix, RARG also localized to the nuclear envelope (Fig. 6B).

One of the very few other factors found in the nuclear proteome that correlated well with tissue E was polymerase I and transcript release factor (PTRF) (fig. S1). PTRF transcript also correlated strongly with both LMNA and COL1A1 across mouse and man transcriptomes (fig. S2D), and lamin-A knockdown strongly decreased PTRF levels in MSCs (fig. S13C). Consistent with PTRF being downstream of lamin-A, chromatin-IP identifies PTRF to be a target gene for both RA and SRF transcription factors (fig. S12C).

To directly perturb the nuclear envelope by means other than knockdown or overexpression of lamin-A, we overexpressed the membrane protein SUN2, which shuttles from the endoplasmic reticulum (ER) to the inner nuclear envelope, where it cross-links the nuclear lamina to the cytoskeleton (48). We hypothesized that SUN2 overexpression would saturate cross-linking sites and effectively decouple the nucleus from the cytoskeleton. SUN2 overexpression indeed produced nuclear rounding and decreased lamin-A levels (figs. S16, A and B), and it also increased cytoplasmic RARG (fig. S16C). SUN2 interacted with lamin-A based on MS analyses of proteins that communoprecipitated with lamin-A (Fig. 6D) [as seen in other assays (62)]. Consistent with such an interaction, nucleus-enriched tissue proteomics indicated SUN2 — E409, even though total SUN2 showed no trend with E (fig. S1B). SUN2 was also found in one co-IP with RARG (Fig. 6E), which might explain RARG’s enrichment at the envelope (Fig. 6B); however, interactions are likely to be indirect and/or weak at least because cytoplasmic RARG appeared more diffusible than SUN2 in the ER (fig. S16C). In the same set of experiments, a similar IP-MS approach was taken to identify possible binding partners for YAP1, particularly any factors involved in enrichment at the envelope (Fig. 4H). IP-MS (Fig. 6E) identified the YAP1 paralog TAZ (WWTR1), which has been reported to form a heterodimer with YAP1 (63), and YAP1 phosphorylation at a serine indicated interactions with a key kinase in the Hippo pathway (64). In addition, the co-IP included ELYS (AHCTF1 and MEL-28), which is known to be enriched at the nuclear envelope (65), but any YAP1-ELYS interactions are again likely to be indirect and/or weak and in need of further study together with RARG and SUN2. Nonetheless, our finding that lamin-A protein indirectly regulated lamin-A transcription (through factors that might also bind RARG) means that the apparent mechanoregulation of message could simply be a consequence of feedback from mechanoregulated protein.

High Lamin-A Impedes Nuclear Remodeling Under Stress

Because tissue stress and matrix stiffness stabilize expression of lamin-A, which clearly conferred protection against stress-driven rupture of isolated nuclei (Fig. 2D), we sought a real-time analysis of single-cell nuclear responses to stress. Nuclei in diverse cell types—including embryonic stem cells with very low lamin-A (20)—were aspirated into micropipettes at stresses of kPa, which is similar to tensions in cells (5) and also similar to magnitudes to tissue stiffnesses (Fig. 1D). Each nucleus was found to extend in a viscoelastic manner within just ~10 s (Fig. 7, A to C). As a function of lamin-A:B stoichiometry, the effective viscosity increased more rapidly than the effective elasticity (Fig. 7, D and E). Lamin-B thus acted like the elastic walls of a balloon, driving the nucleus to return to its original shape, whereas lamin-A contributed more as a highly viscous fluid within the balloon to impede deformation. Consistent with this physical distinction between lamin isoforms, fluorescence correlation spectroscopy has shown lamin-A to be mobile and lamin-B to be immobile (24).

In vivo cell migration has been seen to dynamically distort a nucleus by twofold or more reversibly over tens of minutes (20). On such long time scales, stress might extend a nucleus locally to a length similar to a typical chromosome (e.g., 5 μm), but a stiffness-limited extension rate is likely important because elongation of chromatin within the extended nucleus (20) implies rearrangements of chromatin-lamina interactions (66, 67). We hypothesized therefore that across distinct cell types with very different epigenetic features, the time needed for the nucleus to rearrange or relax, t, would depend primarily on lamin-A level (Fig. 7F). Indeed, for a broad range in lamin-A:B ratio across various gial, epithelial, and mesenchymal cell types with or without knockdown or overexpression of lamin-A, t varied ~10,000-fold. This level of variation is similar to time-scale differences that would be obtained in aspirating water versus honey. As functions of lamin-A:B stoichiometry, the steeply positive power laws t ~ (Lamin-A+B)−0.7 (fig. 7, G and H) were also consistent with predictions from polymer physics (Box 1). The scaling revealed a dominating contribution of lamin-A to nuclear viscosity relative to lamin-B’s contribution to nuclear elasticity. While low lamin-A proved insufficient to protect against extreme stresses that completely disrupted chromatin packing (Fig. 2D), the 30-fold higher lamin-A in stiff tissue relative to soft tissue (Fig. 1D) would tend to impede rapid nuclear distension. Thus, high stresses and/or stress fluctuations typical in a stiff tissue such as muscle, heart, or bone (high E in Fig. 1D) will not “shock” the nucleus and disrupt chromosome territories or chromatin-lamina interactions (Fig. 7I) that contribute to epigenetic regulation (66, 67) or, in the extreme, cause DNA breaks.

Many progeroid syndromes—beyond progeria due to defective lamin-A—involve mutations that impair proteins important to DNA repair (68). The finding by IP-MS (Fig. 6D) that one DNA repair factor, XRCC6 (Ku70) (69), pulled down with lamin-A from two cell types using high-affinity antibody and that XRCC6 was slightly but consistently decreased upon LMNA knockdown (fig. S13C) suggests a mechanochemochemical link of DNA repair to lamin-A. Further study is motivated by a previous MS finding that both XRCC6 and ELYS pull down with biotinylated lamin-A bound with low affinity (μM) to a streptavidin analog (70). Regardless of a possible molecular link to DNA repair factors, lamin-A clearly protects the nucleus against stress.

Systems Mechanobiology: Core Gene Circuit Yields Steady-State Scaling for Lamin-A

High matrix stiffness is associated with an increased stress or tension on the nucleus and promotes lamin-A expression and a physically stiffer nucleus. If we thus assume that tension in the rope-like supercoil assemblies of lamin-A filaments suppresses the affinity of an enzyme that initiates phosphorylation/solubilization/degradation of lamin-A, then a parsonsion gene circuit (Fig. 8A) could be modeled mathematically (Fig. 8, B and C), with lamin-A protein effectively feeding back on its own message. Mechanics was explicitly included only in the stress-dependent protein turnover term; synthesis of message and protein as well as degradation of message were all assumed to be linear, with all rate constants chosen to be of order unity. As a test of whether such a model could capture key experimental trends, computational results showed that steady-state lamin-A levels scaled with tension (71), which parallels the scaling of lamin-A with tissue microelasticity E (Fig. 1D), noting that tension ~ E. Kinetic measurements of lamin-A changes with cell mechanical perturbations are clearly needed to further develop such a model.

Discussion

Matrix elasticity is upstream of lamin-A levels in the 3D xenograft model as well as in the 2D...
Fig. 6. Lamin-A protein regulates nuclear translocation of RA receptor. (A) RARG protein and message (mouse and human average) increased in tissues of increasing stiffness. (B) High-resolution confocal microscope images of RARG in MSCs on matrices of various stiffnesses and with knockdown or overexpression of lamin-A. Nuclear midsections showed cytoplasmic RARG on soft matrix and increasing localization of RARG to the nuclear periphery with increasing lamin level. (C) Nuclear-to-cytoplasmic ratio of RARG scales with matrix elasticity and was directly affected by lamin-A knockdown or overexpression. (D) Proteins coimmunoprecipitated with lamin-A, common to both A549s and MSCs but not found in a nonspecific control (against GFP, which was not present in the sample), were analyzed by MS. (E) Proteins associated with immunoprecipitated RARG or YAP1, but not with control samples (a combined list of proteins precipitating with antibody to GFP, not present in the sample, and proteins binding to antibody-free beads). Protein lists were compiled by combining hits from duplicate experiments. The nuclear membrane protein SUN2 was common to both lamin-A and RARG immunoprecipitation experiments. N.D., not detected.
culture models. Lamin-A knockdown in MSCs indeed did not affect expression of the key collagens that scale with tissue stiffness but did suppress the SRF pathway that promotes expression of abundant actin-myosin cytoskeletal components. Soft matrix likewise appears to minimize cytoskeletal stress or tension on the wrinkled nucleus, which thus minimizes stress on lamin-A and thereby favors its phosphorylation and turnover. Low lamin-A protein limits its own transcription by altering nuclear localization of RA transcription factors: Soft matrix and low lamin-A produce the highest cytoplasmic levels of RARG, and the same conditions not only showed the lowest LMNA promoter activity but also showed no significant changes of lamin-A protein levels with added RA and AGN. With adipogenic stimuli that include a soft matrix, partial knockdown of lamin-A in MSCs (to lamin-A:B ~ 3) maximized in vitro adipogenesis, consistent with A:B scaling in tissue profiling.

At least for stiff tissue cells with abundant RARG, the response in the vitamin A pathway was also downstream of matrix stiffness. Stiff matrix and high lamin-A led to the highest nuclear levels of RARG, and the same conditions showed not only the highest LMNA promoter activity but also about a twofold variation in lamin-A levels upon addition of RA and AGN. AGN enhanced lamin-A, typical of a stiff tissue, and MSC osteogenesis also increased. Differentiation might also be sensitive to splice-forms because AGN increased the A splice-form of LMNA, as did forced overexpression, and tissue profiling showed bone has more A than C splice-form, all of which motivates further study. In human bone tissue, lamin-A is among the 20 most abundant proteins detected by MS, together with several SRF-regulated gene products (ACTB, ACTA2, and MYL9) (71), and whereas SRF positively regulates a key transcription factor (RUNX2) in osteogenesis (45), chromatin-IP has thus far identified the RUNX2 gene to be a direct target of RA transcription factors and not of SRF. Lamin-A overexpression in MSCs on stiff matrix not only enhanced osteogenesis but also produced a modest decrease in nuclear YAP1 consistent with the measured nonmonotonic responses of YAP1 across tissues. A complex interplay between YAP1 and/or lamin-A might reconcile past observations that YAP1 promotes osteogenesis (11) but also inhibits RUNX2 (72); switching between YAP1 and TAZ (WWTR1) activities is also possible, because TAZ can promote osteoblast differentiation of MSCs by enhancing RUNX2-dependent transcriptional response.

Fig. 7. Lamin-A confers a viscous stiffness to nuclei that impedes nuclear remodeling by stress. (A) Micropipette aspiration of an A549 cell nucleus expressing GFP-lamin-A shows extension of the lamina with time. (B) Schematic showing how nuclear compliance is calculated from image analysis as a function of time and aspiration pressure. (C) Modeling compliance over the first 12 s of deformation, with contributions from elasticity (G) and viscosity (n) in nuclei with different lamina compositions. (D and E) Relationship between the characteristic lamin-A:B ratio and (D) the elastic modulus or (E) the viscosity. The outlier points, A549 OE and MSC, indicated by open symbols, were omitted from the linear fits. (F) The response of the lamina can be considered as a combination of elastic and viscous components, with an elongation response time, τ (see Box 1). τ was calculated for nuclei extended to ~5 μm by micropipette aspiration over seconds-to-minutes time scales in cells with different lamin-A:B ratios (G) and in A549 cells overexpressing GFP-lamin-A (H). Lamin ratios were calculated from a combination of immunoblotting and MS methods. The scaling of τ with changes in the lamin-A:B ratio, β, was found to be the same in both experiments. (I) A potential biological consequence of nuclear distension is the remodeling of chromosome territories and chromatin-envelope interactions. All points are significantly different where indicated (n ≥ 3 nuclei).
activation (73), and the IP-MS data suggested a YAP1-TAZ interaction. Regardless, the proposed gene circuit for lamin-A seems to be one important core module that modulates various transcriptional pathways (RA, SREBP1, SRF, and YAP1) in enhancing matrix elasticity–directed differentiation.

Our multifaceted approach to a broad range of solid tissues using proteomics and transcriptomics plus knockdown in a highly plastic stem cell that expresses abundant lamin-A seems useful for generic pathway analyses. Indeed, polymerase I and transcript release factor (PTRF) was one of the few factors that not only correlated well with tissue E, and decreased with lamin-A knockdown, but also is a known target of RA and SRF transcription factors. The additional fact that mutations in human PTRF cause muscular dystrophies and lipodystrophies that also result from LMNA mutations (74) suggests an additional feedback into intersecting pathways. Understanding the physiological determinants of normal lamin levels could thus begin to clarify why some laminopathies have phenotypes that dominate in a particular subset of tissues.

Beyond a role in regulating transcription factors, the lamins interact directly with many other nuclear proteins and form lamina-associated domains (LADs) that are repressive regions rich in heterochromatin (66, 67). LADs have roles in some aspects of lineage-specific differentiation, and so the 30-fold variations in lamin-A with tissue stiffness imply a physical regulation of LADs. The relative abundance of A versus B-type lamins could be critical, and despite the weak scaling observed for lamin-B1 and -B2 in solid tissues, nucleated blood cells show large variations in lamin-B (55)."
Additional structural modulators of supercoil assembly are also likely to contribute to pathophysiological responses. The Ig domain of lamin-A, which affects filament assembly (84) and interacts with a range of nuclear and nucleolar membrane proteins in addition to the SUNs (62) responds conformationally to stress. Phosphorylation at the nearby Ser(850), a target of CDK1 (85), was found to differ between wild-type lamin-A and the less stable mutant. Force-driven structural changes in the cytoskeletal protein p130Cas (86) also regulate its phosphorylation by tyrosine kinases, although stress increases phosphorylation of p130Cas and decreases it in lamin-A. Density of lamin-A is ultimately regulated to limit the stress per molecule, thereby adjusting nuclear strength and stiffness consistent with polymer physics and with expectations for a mechanostat. The multifunctionality of a nuclear IF protein such as lamin-A thus results in mechanosensitive feedback on multiple pathways that contribute to differentiation.

Materials and Methods

Whole-Mouse Tissue Lysis

NSG mice (NOD/SCID/IL-2Rγ−/−) were 4 to 8 months in age (n = 5 mice). Protocols approved by Penn’s Institutional Animal Care and Use Committee (IACUC) were used throughout. Sections of fresh tissue (~50 mm³ heart, brain, liver, lung, kidney, and cartilage from ear) were finely chopped with a razor blade on ice. Additional experiments used flash-frozen tissue (~50 mm³ heart, brain, liver, lung, skeletal muscle, kidney, cartilage from ear, skull, and marrow-free thigh bone), which was finely ground in a pestle and mortar on dry ice. The resulting pastes were suspended in 300-μL ice-cold lysis buffer [1x RIPA buffer (radio immunoprecipitation assay buffer), 1x NuPAGE LDS running buffer (polyacrylamide gel electrophoresis, lithium dodecyl sulfate, from Invitrogen), 0.1% protease inhibitor cocktail (PIC)]. Nuclear material was pelleted by centrifugation (10 min at 5000 rpm at 4°C), resuspended in 1 mL ice-cold lysis buffer [1x RIPA, 1x NuPAGE LDS running buffer (Invitrogen), 0.1% PIC]. After 30 min incubation at 4°C, samples were subjected to 15 × 1 s pulses with a probe sonicator (low setting, on ice). Before gel electrophoresis, a reducing agent was added (BME to 1%), heated to 80°C for 10 min, and centrifuged to pellet any insoluble material (10 min at 13,300 rpm).

Mass Spectrometry

Gels from SDS–polyacrylamide gel electrophoresis (SDS-PAGE) (NuPAGE 4 to 12% bis-tris, Invitrogen) were loaded with 12 μL of lyse per lane and run at 10 min × 100 V, followed by 20 min × 160 V. Coomassie-stained polyacrylamide gel sections were washed [50% 0.2 M ammonium bicarbonate (AB) solution, 50% acetonitrile (ACN), 30 min at 37°C], dried by lyophilization, incubated with a reducing agent [20 mM tris(2-carboxyethyl)phosphine (TCEP) in 25 mM AB solution at pH 8.0, 15 min at 37°C], and alkylated [40 mM iodoacetamide (IAM) in 25 mM AB solution at pH 8.0, 30 min at 37°C]. The gel

Fig. 8. A feedback-based gene circuit for lamin-A exhibits polymer physics scaling if cell tension suppresses protein turnover. (A) Gene circuit connecting matrix stiffness to osteogenesis; not shown is an overlapping circuit for adipogenesis on soft matrix that includes the positive regulator SREBP1. LMNA protein level is regulated by a stress-sensitive phosphorylation mechanism and feeds back to LMNA transcript interaction with RARG, possibly through an intermediary, α, and can be perturbed with antagonist (AGN) or agonist (RA). LMNA protein also influences location of YAP1 (through a possible intermediary, ψ) to drive cell fate (11), and LMNA regulates SRF through interaction with nuclear actin (49). A simple model was generated based on this circuit: Time evolution of LMNA mRNA (M) level is dependent on the LMNA protein level (P), whereas the protein level itself is regulated by a tension-dependent degradation term, h. The model shows that tension-regulated protein turnover can produce steady-state (SS) protein levels that scale with cell tension. (B) Trajectories of lamin-A message and protein as the model converges from a range of initial conditions to a single steady-state solution appropriate to the tension. (C) Setting the kinase/protease binding coefficient, K_m, to be proportional to (Tension)^θ allows the model to generate steady-state lamin scaling with tension consistent with experiment (Fig. 3D).
sections were dried by lyophilization before in-gel trypsinization [20 µg/mL sequencing grade modified trypsin in buffer as described in the manufacturer’s protocol (Promega), 18 hours at 37°C with gentle shaking]. The resulting solutions of tryptic peptides were acidified by the addition of 50% digest dilution buffer (60 mM AB solution with 3% methanolic acid).

Peptide separations (5 µL injection volume) were performed on 15-cm PicoFrit column (75 µm inner diameter, New Objective) packed with Magic 5 µm C18 reversed-phase resin (Michrom Bioreources) using a nanoflow high-pressure liquid chromatography system (Eksigent Technologies), which was coupled online to a hybrid LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific) via a nanoelectrospray ion source. Chromatography was performed with solvent A (Milli-Q water with 0.1% formic acid) and solvent B (acetonitrile with 0.1% formic acid). Peptides were eluted at 200 nL/min for 3 to 28% B over 42 min, 28 to 50% B over 26 min, 50 to 80% B over 5 min, and 80% B for 4.5 min before returning to 3% B over 0.5 min. To minimize sample carryover, a fast blank gradient was run between each sample. The LTQ-Orbitrap XL was operated in the data-dependent mode to automatically switch between full-scan MS [in terms of mass m and charge z: m/z = 350 to 2000 in the Orbitrap analyzer (with resolution of 60,000 at m/z 400)] and the fragmentation of the six most intense ions by collision-induced dissociation in the ion-trap mass analyzer.

Raw mass spectroscopy data was processed using Elucidator (version 3.3, Rosetta Biosoftware). The software was set up to align peaks in data from samples derived from corresponding molecular weight regions of the 1D gels. Peptide and protein annotations were made using SEQUEST (version 28, Thermo Fisher Scientific) with full trypptic digestion and up to two missed cleavage sites. Peptide masses were selected between 800 and 4500 amu with peptide mass tolerance of 1.1 amu and fragment ion mass tolerance of 1.0 amu. Peptides were searched against a database compiled from UniRef100 (November 2010) mouse and human, plus contaminants and a reverse decoy database. A deltaCn of 0.01 and mass error limit of 20 parts per million (ppm) was used, with error correction and search against a data-dependent database. A deltaCn of 0.01 and mass error limit of 20 parts per million (ppm) was used, with error correction and search against a data-dependent database. The LTQ-Orbitrap XL was operated in the data-dependent mode to automatically switch between full-scan MS [in terms of mass m and charge z: m/z = 350 to 2000 in the Orbitrap analyzer (with resolution of 60,000 at m/z 400)] and the fragmentation of the six most intense ions by collision-induced dissociation in the ion-trap mass analyzer.

Real-time MS analysis allowed the relative (fold) change in lamin level to be established in the lamin-A,C overlap region, lamin-B1, lamin-B2, and an overlap peptide that is common to all laminas, LLEGEE ER (fig. S4). These ratios were combined to calculate the absolute ratio between A-type and B-type lamin

\[
\frac{[\text{Lamin } A]}{[\text{Lamin } B]} = \frac{f_{\text{LLEGEE ER}} - f_{\text{Lamin } B_1, B_2}}{f_{\text{Lamin } A} - f_{\text{LLEGEE ER}}}
\]

where \(f \) represents the fold change in protein level in going from condition 1 (e.g., the control) to condition 2 (e.g., the knockdown). Because this measurement was dependent on detection of a single peptide, it was repeated a number of times to obtain a confident measure of the A:B ratio in condition 1. Subsequent derivation of the ratio in condition 2 had no additional dependence on detection of LLEGEE ER.

\[
\frac{[\text{Lamin } A]}{[\text{Lamin } B]} = \frac{[\text{Lamin } A]}{[\text{Lamin } B]} \times \frac{f_{\text{Lamin } A}}{f_{\text{Lamin } B_1, B_2}}
\]

The parameter \(f_{\text{Lamin } B_1, B_2} \) represents the overlap between the two B-type laminas. Although we show that lamin-B1 and lamin-B2 were detected in similar quantities and that neither change to a great extent compared with lamin-A,C (Fig. 1F and fig. S4D), we derived this value from median ion current values.

\[
R = \frac{\text{Median ion current}_{\text{Lamin } B_1, B_2}}{\text{Median ion current}_{\text{Lamin } A}}
\]

The tissue experiments shown in Fig. 1D were measured relative to a “condition 1” average of brain and heart denoted as <brain, heart>, a reference point chosen in the middle of the elasticity scale for which we had many tissue duplicates (\(n = 4 \) mice for heart and brain). A lysate of A549 cells (\(n = 3 \) culture replicates) was used as a reference point for all cell measurements in Fig. 1D. MS measurements of isolated nuclear material were made in technical triplicates.

Fluid Shear on Isolated Nuclei

Isolated A549 nuclei suspended in nuclei wash buffer were diluted to about 250 nuclei per µL. Nuclei samples were labeled with 150 µM mBBr and immediately loaded into a cone and plate rheometer (Bohlin Gemini) with the stage heated to 37°C. To control for baseline labeling at this temperature an identical sample was placed in a 37°C water bath. Samples were spun in the rheometer for 10 to 40 min with a 10-µm gap. Shear force varied from 0.5 to 5 Pa in different samples. After the run, labeling in both sample and control was quenched with 2 mM glutathione. For each condition, a sample was taken to be imaged. Samples were prepared for MS as described above. To facilitate identification of the labeled lamin Ig domain peptide by MS, recombinantly expressed, mBBr labeled, and trypsinized lamin Ig domain was spiked into control A549 lysate.

Labeling Cytosine with mBBr in Adherent Cells

Low-passage primary human MSCs were seeded on soft (0.3 kPa), intermediate (10 kPa), and stiff (40 kPa) polyacrylamide gels and cultured for 2 days in Dulbecco’s minimum essential medium (Invitrogen) supplemented with 10% fetal bovine serum. A549 cells cultured on plastic were transfected with wild-type and R453W-mutant GFP-lamin constructs using Lipofectamine 2000 (LF2k, Invitrogen) per the manufacturer’s protocol. Cells were washed with phosphate-buffered saline (PBS) before labeling with freshly prepared 400 µM mBBr in PBS at 37°C. After 10 min, the cells were harvested by trypsinization, suspended in ice-cold media, pelleted, and frozen at −20°C. Samples were enriched before MS analysis by immunoprecipitation of lamin-A or GFP, as described below. In addition, a portion of cells was washed thoroughly after mBBr labeling, fixed with formaldehyde, and immunostained for lamin-A (mouse monoclonal sc-7292, Santa Cruz), α-smooth muscle actin (mouse monoclonal A5228, Sigma Aldrich), and nonmuscle myosin-IIA (rabbit polyclonal M0864, Sigma Aldrich) for imaging at high resolution.

Model of Lamin Transcript and Protein Levels

The rate equations for lamin-A protein (P) and mRNA (M) concentrations, respectively, include synthesis and degradation

\[
\frac{dM}{dt} = aP - bM
\]

\[
\frac{dP}{dt} = gM - hP
\]

where \(a \) is first-order protein-induced mRNA production rate constant, \(b \) is first-order mRNA degradation rate constant, \(g \) is first-order mRNA...
translational rate constant, h is force-dependent protein degradation rate, modeled as

$$h = k \cdot \frac{p_n - p_m}{K_m + p_m}$$

where k is maximal protein degradation rate, n is cooperativity coefficient ≥ 2 typical of dimer-based interactions, and K_m is affinity of kinase/protase for the lamin-A meshwork, which increases with stress or tension sustained by the meshwork. Pulling on a coiled rope, the key idea is that tension on this meshwork of lamin-A coil-coil protein squeezes out free volume and sequesters the enzyme’s binding site on lamin-A. At steady-state

$$\frac{dp}{dt} = \frac{dm}{dt} = 0$$

thus yielding nonzero steady-state values for P and M

$$\langle P_{SS}, M_{SS} \rangle = \left\{ \frac{bk}{a} \cdot \frac{1}{\sqrt{2}} \left(\frac{k_{2}}{ka} - 4K_m a_{PS} b \right) \right\}$$

Based on the steady-state analysis above, a solution only exists if

$$\left(\frac{k_{2}}{ka} - 4K_m a_{PS} b \right) > 0$$

Time evolution of P and M was modeled in Mathematica (Wolfram) with example trajectories in Fig. 8B as a phase plot of $P(t)$ versus $M(t)$ converging to $\langle P_{SS}, M_{SS} \rangle$. Although steady-state values depend on the various rate constants, we assumed all to be important and of order ~ 1 as we focus on K_m. At high stresses where lamin-A assembly is favored, K_m increases so that lamin-A phosphorylation-degradation decreases. Plotting P_{SS} against different values for K_m, fit a power-law $P_{SS} \sim K_m^{-x}$. If $K_m = 0$ (tension)3, then $P_{SS} \sim$ (tension)1, as found experimentally for lamin-A (Fig. 8C).
64. B. Zhao et al., Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007). doi:10.1101/gad.216290; PMID:17974916
67. W. Meuleman et al., Constitutive nuclear lamin-geno-ma interactions are highly conserved and associated with AR-rich sequence. Genome Res. 23, 270–280 (2013). doi:10.1101/gr.138014.112; PMID:23142521
75. J.-W. Shin et al., Mechanobiology of bone marrow stem cells: From myosin-II forces to compliance of matrix and nucleus in cell forms and fates. Differentiation 2013, 80(12), 1159–1169 (2013). doi:10.1016/j.celrep.2013.05.001; PMID:23970394
84. H. A. Barnes, Handbook of Elementary Rheology (University of Wales, Institute of Non-Newtonian Fluid Mechanics, Cardiff, 2000).

Acknowledgments: We greatly appreciate support from the U.S. National Institutes of Health (NIH RO1HL062352, PO1DK04537, R21DK072152, R21DK088003), the U.S. National Science Foundation (grant 1200834, the University of Pennsylvania’s Materials Research Science and Engineering Center, and Nano Science and Engineering Center, Nano/Bio Interface Center), the Human Frontier Science Program (to J.-I. and D.-Y.), and Stem Cell Xenograft Core (to A. Secretro, J. Glover, and D. Deran-Deyoung) and Microarray Core (P30-090096). We thank the Walter Institute Proteomics Core for assistance with MS and standard data analyses. This work was also supported in part by U.S. NIH grants HD088794 (to D.W.S.) and CA018051 (National Cancer Institute core grant to the Walter Institute). We thank D. Gilbert (Florida State University, Department of Biological Science, H. Herrmann (Heidelberg, DKFZ), and H. Woermann (Columbia University, Department of Medicine), respectively, for GFP-lamin-A, recombinant laminins, and SUN2 plasmas.

Supplementary Materials
www.sciencemag.org/cgi/content/full/123/6141/240104/DC1 Materials and Methods
Figs. 1 to 51 to 56 Tables 1 to 53 References (95–123)

6 May 2013; accepted 19 July 2013

www.sciencemag.org

RESEARCH ARTICLE

VOL 341 30 AUGUST 2013

SCIENCE 341 30 AUGUST 2013

1240104-15

1240104
Mechanical tension on a cell from its environment alters the expression of a protein that changes the physical properties of the nucleus.

Mechano-response. Tension from the extracellular matrix affects cytoskeletal tension on the nucleus. This affects the turnover of lamin A in the nuclear envelope, expression of LMNA, and stiffness of the nucleus.

Mechanical tension and force can change transcription of the gene LMNA and stability of the encoded protein, lamin A/C, to alter nuclear rheology. This indicates that mechanically driven cell differentiation involves interdependent changes in nuclear composition and transcriptional state.

Mechanical tension on a cell from its environment alters the expression of a protein that changes the physical properties of the nucleus.

Mechanical tension and force can change transcription of the gene LMNA and stability of the encoded protein, lamin A/C, to alter nuclear rheology. This indicates that mechanically driven cell differentiation involves interdependent changes in nuclear composition and transcriptional state.

Mechanical tension and force can change transcription of the gene LMNA and stability of the encoded protein, lamin A/C, to alter nuclear rheology. This indicates that mechanically driven cell differentiation involves interdependent changes in nuclear composition and transcriptional state.
acquire stiffness optima as an emergent property of the physical and biochemical interactions between their constituent cells. This tensional equilibrium confers macroscopic compliance properties that are critical for processes such as stem cell differentiation, embryonic development, and tissue homeostasis.

The specific mechanisms by which individual cells physically remodel themselves to functionally drive macroscopic changes in tissue compliance are not well understood, however. In addition to responding dynamically to immediate physical cues, cells must integrate mechanical signals to alter their long-term molecular state and cellular phenotype. Accordingly, such mechanisms must operate on long time scales to promote phenotypic stabilization, likely by directing transcriptional and epigenetic changes.

Swift et al. show that the relative abundance of lamin A is a key component of mechano-reciprocal responses and a major determinant of cell and tissue stiffness (see the figure). The authors observed that increased cell tension reduces the turnover of lamin A in the nuclear lamina. This causes accumulation of the mechanosensitive Yes-associated protein (YAP), a master transcriptional regulator. An increase in lamin A also triggers the serum response factor (SRF) signaling pathway, whose gene targets control the actin cytoskeleton. The accumulation of lamin A also drives translocation of the retinoic acid receptor into the nucleus to stimulate transcription of LMNA and the production of more lamin A. The findings suggest a mechanism that could explain the strong correlation between relative abundance of lamin A in diverse cell types with macroscopic tissue stiffness. Interestingly, as the relative abundance of lamin A increases, the viscosity of the nucleus also increases. It is possible that in addition to activating mechanosignaling pathways, an increase in lamin A may play a role in physically stiffening the nucleus as part of the cellular response to increased tension.

The model presented by Swift et al. proposes how cells that are otherwise acutely sensitive to mechanical signals can structurally acclimate to tissue environments that are pervasively subject to a sizable mechanical load. In such circumstances, lamin A could physically reinforce the nuclear envelope, which would stabilize interactions between chromatin and the nuclear lamina and inure the cell to subsequent nuclear distortions that might otherwise occur in a high-tension tissue environment. Indeed, such an observation could explain why many tumors, which are typically stiffer than the surrounding tissue and are characterized by increased interstitial pressure, also often have greater amounts of lamin A compared to normal cells (6, 7). Moreover, the model hints at a deeper interplay between mechanosensitive signaling pathways, which are apparently affected by both external stress and elevated lamin A abundance, and transcriptional changes that are induced by direct tension on the nucleus from cytoskeletal contacts, which are likely to be modified in cells with lamin A–rich nuclear envelopes. Alternatively, increased tissue-level stiffness might compensate for lamin A–induced changes in nuclear compliance, such that the cytoskeleton simply transmits a greater mechanical load to enable cytoskeletal contact points on the nucleus to remain mechanically sensitive.

The provocative feed-forward mechanism governing lamin A concentration in the model of Swift et al. is critically dependent on retinoic acid receptor activity and provides another potential layer of mechanosensitive regulation. For instance, in the absence of ligand, the retinoic acid receptor will heterodimerize with one of the nuclear receptor co-repressor repressor proteins which, together with their associated histone deacetylases, inhibits transcription from specific promoters to maintain heterochromatin. Given the importance of the nuclear lamina in stabilizing heterochromatin, the data presented by Swift et al. implicate epigenetic silencing of laminA-associated chromatin as a key component of tension-mediated transcriptional regulation.

Additional studies are required to explicitly link mechano-reciprocal nuclear stiffening to gene-regulatory mechanisms. Elucidating the phenomena that collectively define cellular mechanosensation will also require studies to more completely unify the functionality of direct and indirect force-mediated transcriptional mechanisms. For cells, it seems that tension can become a source of considerable strength.

References
6. L. Kong et al., Carcinogenesis 33, 751 (2012).