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Abstract
The success of applying policy gradient reinforcement
learning (RL) to difficult control tasks hinges crucially
on the ability to determine a sensible initialization for
the policy. Transfer learning methods tackle this prob-
lem by reusing knowledge gleaned from solving other
related tasks. In the case of multiple task domains, these
algorithms require an inter-task mapping to facilitate
knowledge transfer across domains. However, there are
currently no general methods to learn an inter-task map-
ping without requiring either background knowledge
that is not typically present in RL settings, or an ex-
pensive analysis of an exponential number of inter-task
mappings in the size of the state and action spaces.

This paper introduces an autonomous framework that
uses unsupervised manifold alignment to learn inter-
task mappings and effectively transfer samples between
different task domains. Empirical results on diverse dy-
namical systems, including an application to quadrotor
control, demonstrate its effectiveness for cross-domain
transfer in the context of policy gradient RL.

Introduction
Policy gradient reinforcement learning (RL) algorithms
have been applied with considerable success to solve high-
dimensional control problems, such as those arising in
robotic control and coordination (Peters & Schaal 2008).
These algorithms use gradient ascent to tune the parameters
of a policy to maximize its expected performance. Unfor-
tunately, this gradient ascent procedure is prone to becom-
ing trapped in local maxima, and thus it has been widely
recognized that initializing the policy in a sensible manner
is crucial for achieving optimal performance. For instance,
one typical strategy is to initialize the policy using human
demonstrations (Peters & Schaal 2006), which may be in-
feasible when the task cannot be easily solved by a human.
This paper explores a different approach: instead of initial-
izing the policy at random (i.e., tabula rasa) or via human
demonstrations, we instead use transfer learning (TL) to ini-
tialize the policy for a new target domain based on knowl-
edge from one or more source tasks.

In RL transfer, the source and target tasks may differ
in their formulations (Taylor & Stone 2009). In particular,
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when the source and target tasks have different state and/or
action spaces, an inter-task mapping (Taylor et al. 2007a)
that describes the relationship between the two tasks is typ-
ically needed. This paper introduces a framework for au-
tonomously learning an inter-task mapping for cross-domain
transfer in policy gradient RL. First, we learn an inter-state
mapping (i.e., a mapping between states in two tasks) using
unsupervised manifold alignment. Manifold alignment pro-
vides a powerful and general framework that can discover
a shared latent representation to capture intrinsic relations
between different tasks, irrespective of their dimensional-
ity. The alignment also yields an implicit inter-action map-
ping that is generated by mapping tracking states from the
source to the target. Given the mapping between task do-
mains, source task trajectories are then used to initialize a
policy in the target task, significantly improving the speed
of subsequent learning over an uninformed initialization.

This paper provides the following contributions. First, we
introduce a novel unsupervised method for learning inter-
state mappings using manifold alignment. Second, we show
that the discovered subspace can be used to initialize the
target policy. Third, our empirical validation conducted on
four dissimilar and dynamically chaotic task domains (e.g.,
controlling a three-link cart-pole and a quadrotor aerial ve-
hicle) shows that our approach can a) automatically learn
an inter-state mapping across MDPs from the same domain,
b) automatically learn an inter-state mapping across MDPs
from very different domains, and c) transfer informative ini-
tial policies to achieve higher initial performance and reduce
the time needed for convergence to near-optimal behavior.

Related Work
Learning an inter-task mapping has been of major interest
in the transfer learning community because of its promise
of autonomous transfer between very different tasks (Tay-
lor & Stone 2009). However, the majority of existing work
assumes that a) the source task and target task are similar
enough that no mapping is needed (Banerjee & Stone 2007;
Konidaris & Barto 2007), or b) an inter-task mapping is pro-
vided to the agent (Taylor et al. 2007a; Torrey et al. 2008).
The main difference between these methods and this paper is
that we are interested in learning a mapping between tasks.

There has been some recent work on learning such map-
pings. For example, mappings may be based on seman-



tic knowledge about state features between two tasks (Liu
& Stone 2006), background knowledge about the range or
type of state variables (Taylor et al. 2007b), or transition
models for each possible mapping could be generated and
tested (Taylor et al. 2008). However, there are currently no
general methods to learn an inter-task mapping without re-
quiring either background knowledge that is not typically
present in RL settings, or an expensive analysis of an ex-
ponential number (in the size of the action and state vari-
able sets) of inter-task mappings. We overcome these issues
by automatically discovering high-level features and using
them to transfer knowledge between agents without suffer-
ing from an exponential explosion.

In previous work, we used sparse coding, sparse projec-
tion, and sparse Gaussian processes to learn an inter-task
mapping between MDPs with arbitrary variations (Bou Am-
mar et al. 2012). However, this previous work relied on a Eu-
clidean distance correlation between source and target task
triplets, which may fail for highly dissimilar tasks. Addition-
ally, it placed restrictions on the inter-task mapping that re-
duced the flexibility of the learned mapping. In other related
work, Bósci et al. (2013) use manifold alignment to assist in
transfer. The primary differences with our work are that the
authors a) focus on transferring models between different
robots, rather than policies/samples, and b) rely on source
and target robots that are qualitatively similar.

Background
Reinforcement Learning problems involve an agent choos-
ing sequential actions to maximize its expected return. Such
problems are typically formalized as a Markov decision pro-
cess (MDP) T = 〈S,A,P0,P, r〉, where S is the (poten-
tially infinite) set of states, A is the set of actions that the
agent may execute, P0 : S → [0, 1] is a probability distribu-
tion over the initial state, P : S × A × S → [0, 1] is a state
transition probability function describing the task dynamics,
and r : S × A × S → R is the reward function measuring
the performance of the agent. A policy π : S×A → [0, 1] is
defined as a conditional probability distribution over actions
given the current state. The agent’s goal is to find a policy
π? which maximizes the average expected reward:

π? = arg max
π

E

[
1

H

H∑
t=1

r(st,at, st+1)

∣∣∣∣π
]

(1)

= arg max
π

∫
T
pπ(τ )R(τ )dτ ,

where T is the set of all possible trajectories with horizonH ,

R(τ ) =
1

H

H∑
t=1

r(st,at, st+1) , and (2)

pπ(τ ) = P0(s1)

H∏
t=1

P(st+1|st,at) π(at|st) . (3)

Policy Gradient methods (Sutton et al. 1999; Peters et al.
2005) represent the agent’s policy π as a function defined
over a vector θ ∈ Rd of control parameters and a vector of
state features given by the transformation Φ : S → Rm.

By substituting this parameterization of the control pol-
icy into Eqn. (2), we can compute the parameters of the
optimal policy as θ? = arg maxθ J (θ), where J (θ) =∫
T pπ(θ)(τ )R(τ )dτ . To maximize J , many policy gradient

methods employ standard supervised function approxima-
tion to learn θ by following an estimated gradient of a lower
bound on the expected return of J (θ).

Policy gradient algorithms have gained attention in the
RL community in part due to their successful applications
on real-world robotics (Peters et al. 2005). While such al-
gorithms have a low computational cost per update, high-
dimensional problems require many updates (by acquiring
new rollouts) to achieve good performance. Transfer learn-
ing can reduce this data requirement and accelerate learning.

Since policy gradient methods are prone to becoming
stuck in local maxima, it is crucial that the policy be ini-
tialized in a sensible fashion. A common technique (Peters
& Schaal 2006; Argall et al. 2009) for policy initialization is
to first collect demonstrations from a human controlling the
system, then use supervised learning to fit policy parameters
that maximize the likelihood of the human-demonstrated ac-
tions, and finally use the fitted parameters as the initial pol-
icy parameters for a policy gradient algorithm. While this
approach works well in some settings, it is inapplicable in
several common cases: a) when it is difficult to instrument
the system in question so that a human can successfully per-
form a demonstration, b) when an agent is constantly faced
with new tasks, making gathering human demonstrations for
each new task impractical, or c) when the tasks in question
cannot be intuitively solved by a human demonstrator.

The next section introduces a method for using transfer
learning to initialize the parameters of a policy in a way
that is not susceptible to these limitations. Our experimental
results show that this method of policy initialization, when
compared to random policy initialization, is able to not only
achieve better initial performance, but also obtain a higher
performing policy when run until convergence.

Policy Gradient Transfer Learning
Transfer learning aims to improve learning times and/or
behavior of an agent on a new target task T (T ) by
reusing knowledge from a solved source task T (S). In
RL settings, each task is described by an MDP: task
T (S) = 〈S(S),A(S),P(S)

0 ,P(S), r(S)〉 and T (T ) =

〈S(T ),A(T ),P(T )
0 ,P(T ), r(T )〉. One way in which knowl-

edge from a solved source task can be leveraged to solve the
target task is by mapping optimal 〈state, action, next state〉
triples from the source task into the state and action spaces
of the target task. Transferring optimal triples in this way al-
lows us to both provide a better jumpstart and learning abil-
ity to the target agent, based on the source agent’s ability.

While the preceding idea is attractive, complexities arise
when the source and target tasks have different state and/or
action spaces. In this case, one must define an inter-task
mapping χ in order to translate optimal triples from the
source to the target task. Typically (Taylor & Stone 2009), χ
is defined by two sub-mappings: (1) an inter-state mapping
χS and (2) an inter-action mapping χA.



Phase I:  Learn cross-domain mapping 

�S

↵T
(T )↵T

(S)

shared representation⇡?
(S)(·)traces from traces from target

GT

...

...

...

↵T
(T )

↵T
(S)

P(S)
0

P(T )
0

Phase II:  Cross-domain transfer via  �S

2.) reflect target

4.) transfer tracking signal

⇡?
(S)(.)3.) execute 1.) sample initial states 

Source Domain Target Domain

GS

↵T+
(S)

↵T+
(T )

... ...

Figure 1: Transfer is split into two phases: (I) learning the
inter-state mapping χS via manifold alignment, and (II) ini-
tializing the target policy via mapping the source task policy.

By adopting an RL framework where policies are state-
feedback controllers, we show that we can use optimal state
trajectories from the source task to intelligently initialize a
control policy in the target task, without needing to explicitly
construct an inter-action mapping. We accomplish this by
learning a (pseudo-invertible) inter-state mapping between
the state spaces of a pair of tasks using manifold alignment,
which can then be used to transfer optimal sequences of
states to the target. The fact that our algorithm does not re-
quire learning an explicit inter-action mapping significantly
reduces its computational complexity.

Our approach consists of two phases (Figure 1). First, us-
ing traces gathered in the source and target tasks, we learn an
inter-state mappingχS using manifold alignment (“Phase I”
in Figure 1). To perform this step, we adapt the Unsuper-
vised Manifold Alignment (UMA) algorithm (Wang & Ma-
hadevan 2009), as detailed in the next section. Second, we
useχS to project state trajectories from the source to the tar-
get task (“Phase II” in Figure 1). These projected state tra-
jectories define a set of a tracking trajectories for the target
task that allow us to perform one step of policy gradient im-
provement in the target task. This policy improvement step
intelligently initializes the target policy, which results in su-
perior learning performance than starting from a randomly
initialized policy, as shown in our experiments. Although we
focus on policy gradient methods, our approach could eas-
ily be adapted to other policy search methods (e.g., PoWER,
REPS, etc.; see Kober et al. 2013).

Learning an Inter-State Mapping
Unsupervised Manifold Alignment (UMA) is a tech-
nique that efficiently discovers an alignment between two
datasets (Wang & Mahadevan 2009). UMA was developed
to align datasets for knowledge transfer between two super-
vised learning tasks. Here, we adapt UMA to an RL set-
ting by aligning source and target task state spaces with
potentially different dimensions mS and mT . To learn χS
relating S(S) and S(T ), trajectories of states in the source

task, τ ?(S) =
{

s(i),(S)?1 , . . . , s(i),(S)?HS

}nS

i=1
, are obtained by

following π?(S), and trajectories of states in the target task,

τ(T ) =
{
s
(j),(T )
1 , . . . , s

(j),(T )
HT

}nT

j=1
, are obtained by utiliz-

ing π(T ), which is initialized using randomly selected policy
parameters. For simplicity of exposition, we assume that tra-
jectories in the source domain have length HS and those in
the target domain have lengthHT ; however, our algorithm is
capable of handling variable-length trajectories. We are in-
terested in the setting where data is scarcer in the target task
than in the source task (i.e., nT � nS).

Given trajectories from both the source and target tasks,
we flatten the trajectories (i.e., we treat the states as un-
ordered) and then apply the task-specific state transforma-
tion to obtain two sets of state feature vectors, one for the
source task and one for the target task. Specifically, we cre-
ate the following sets of points:

X(S) =

{
Φ(S)

(
s
(1)(S)?
1

)
, . . . ,Φ(S)

(
s
(1)(S)?
HS

)
,

Φ(S)
(
s
(nS)(S)?
1

)
, . . . ,Φ(S)

(
s
(nS)(S)?
HS

)}
X(T ) =

{
Φ(T )

(
s
(1)(T )
1

)
, . . . ,Φ(T )

(
s
(1)(T )
HT

)
,

Φ(T )
(
s
(nT )(T )
1

)
, . . . ,Φ(T )

(
s
(nT )(T )
HT

)}
.

Given X(S) ∈ RmS×(HS×nS), X(T ) ∈ RmT×(HT×nT ), we
can apply the UMA algorithm (Wang & Mahadevan 2009)
with minimal modification, as described next.

Unsupervised Manifold Alignment (UMA) The first
step of applying UMA to learn the inter-state mapping is
to represent each transformed state in both the source and
target tasks in terms of its local geometry. We use the no-
tation R

x
(S)
i
∈ R(k+1)×(k+1) to refer to the matrix of pair-

wise Euclidean distances among the k-nearest neighbors of
x
(S)
i ∈ X(S). Similarly, R

x
(T )
j

refers to the equivalent ma-

trix of distances for the k-nearest neighbors of x
(T )
j ∈ X(T ).

The relations between local geometries in X(S) and X(T )

are represented by the matrix W∈R(nS×HS)×(nT×HT ) with
wi,j=exp

{
−dist

(
R

x
(S)
i
,R

x
(T )
j

)}
and distance metric

dist
(

R
x
(S)
i
,Rx(T )

j

)
=

min
1≤h≤k!

[
min

(∥∥∥oRx(T )
j
oh − γ1R

x
(S)
i

∥∥∥
F
, (4)

∥∥∥R
x
(S)
i
− γ2oRx(T )

j
oh
∥∥∥

F

)]
.

We use the notation o · oh to denote the hth variant of the k!
permutations of the rows and columns of the input matrix,
|| · ||F is the Frobenius norm, and γ1 and γ2 are defined as:

γ1 =
tr
(

RT

x
(S)
i

oRx(T )
j
oh
)

tr
(

RT

x
(S)
i

R
x
(S)
i

) γ2 =
tr
(
oRx(T )

j
oTh R

x
(S)
i

)
tr
(
oRx(T )

j
oTh oRx(T )

j
oh
) .



To align the manifolds, UMA computes the joint Laplacian

L =

(
LX(S) + µΓ(1) −µΓ(2)

−µΓ(3) LX(T ) + µΓ(4)

)
(5)

with diagonal matrices Γ(1) ∈ R(nS×HS)×(nS×HS) and
Γ(4) ∈ R(nT×HT )×(nT×HT ), where Γ

(1)
i,i =

∑
j wi,j and

Γ
(4)
j,j =

∑
i wi,j . The matrices Γ(2) ∈ R(nS×HS)×(nT×HT )

and Γ(3) ∈ R(nT×HT )×(nS×HS) join the two manifolds with
Γ
(2)
i,j = wi,j and Γ

(3)
i,j = wj,i.

Additionally, the non-normalized Laplacians LX(S) and
LX(T ) are defined as: LX(S) = DX(S)−WX(S) and LX(T ) =
DX(T ) − WX(T ) , where DX(S) ∈ R(nS×HS)×(nS×HS) is
a diagonal matrix with D(i,i)

X(S) =
∑
j w

(S)
i,j and, similarly,

D(i,i)

X(T ) =
∑
j w

(T )
i,j . The matrices W(S) and W(T ) repre-

sent the similarity in the source and target task state spaces
respectively and can be computed similar to W.

To join the manifolds, UMA first defines two matrices:

Z =

(
τ ?(S) 0

0 τ(T )

)
D =

(
DS(S) 0

0 DS(T )

)
. (6)

Given Z and D, UMA computes optimal projections to re-
duce the dimensionality of the joint structure by taking the d
minimum eigenvectors ζ1, . . . , ζd of the generalized eigen-
value decomposition ZLZT ζ = λZDZT ζ. The optimal pro-
jections α(S) and α(T ) are then given as the first d1 and d2
rows of [ζ1, . . . , ζd], respectively.

Given the embedding discovered by UMA, we can then
define the inter-state mapping as:

χS [·] = αT+
(T )α

T
(S)[·] . (7)

The inverse of the inter-state mapping (to project target
states to the source task) can be determined by taking the
pseudo-inverse of Eqn. (7), yielding χ+

S [·] = αT+
(S)α

T
(T )[·].

Intuitively, this approach aligns the important regions of
the source task’s state space (sampled based on optimal
source trajectories) with the state space explored so far in
the target task. Although actions were ignored in construct-
ing the manifolds, the aligned representation implicitly cap-
tures local state transition dynamics within each task (since
the states came from trajectories), providing a mechanism to
transfer trajectories between tasks, as we describe next.

Policy Transfer and Improvement
Next, we discuss the procedure for initializing the target pol-
icy, π(T ). We consider a model-free setting in which the pol-
icy is linear over a set of (potentially) non-linear state fea-
ture functions modulated by Gaussian noise (where the mag-
nitude of the noise balances exploration and exploitation).
Specifically, we can write the source and target policies as:

π?(S)

(
s
(S)
t

)
= Φ(S)

(
s
(S)
t

)T
θ(S)? + ε

(S)
t

π(T )

(
s
(T )
t

)
= Φ(T )

(
s
(T )
t

)T
θ(T ) + ε

(T )
t ,

where ε(S)t ∼ N
(
0,Σ(S)

)
and ε(T )

t ∼ N
(
0,Σ(T )

)
.

To initialize π(T ), we first sample m initial target trajec-

tories D(T ) =
{
τ
(T )
i

}m
i=1

from the target task using a ran-
domly initialized policy (these can be newly sampled tra-
jectories or simply the ones used to do the initial manifold
alignment step). Next, we map the set of initial states inD(T )

to the source task using χ+
S . We then run the optimal source

policy starting from each of these mapped initial states to
produce a set of m optimal state trajectories in the source
task. Finally, the resulting state trajectories are mapped back
to the target task usingχS to generate a set of reflected state-

trajectories in the target task, D̃(T ) =
{
τ̃
(T )
i

}m
i=1

. For clar-
ity, we assume that all trajectories are of length H; however,
this is not a fundamental limitation of our algorithm.

We define the following transfer cost function:

JT (S)→T (T )

(
θ(T )

)
=

m∑
i=1

pθ(T )

(
τ
(T )
i

)
R̂(T )

(
τ
(T )
i , τ̃

(T )
i

)
(8)

where R̂(T ) is a cost function that penalizes deviations be-
tween the initial sampled trajectories in the target task and
the reflected optimal trajectories:

R̂(T )

(
τ (T ), τ̃ (T )

)
=

1

H

H∑
t=1

∣∣∣∣∣∣s(T )
t − s̃(T )

t

∣∣∣∣∣∣2
2
. (9)

Minimizing, Eqn. (8) is equivalent to attaining a target pol-
icy parameterization θ(T ) such that π(T ) follows the re-
flected trajectories D̃(T ). Further, Eqn. (8) is in exactly the
form required to apply standard off-the-shelf policy gra-
dient algorithms to minimize the transfer cost. The Mani-
fold Alignment Cross-Domain Transfer for Policy Gradients
(MAXDT-PG) framework is detailed1 in Algorithm 1.

Special Cases
Our work can be seen as an extension of the simpler model-
based case with a linear-quadratic regulator (LQR) (Bempo-
rad et al. 2002) policy, which is derived and explained in the
online appendix2 accompanying this paper. Although the as-
sumptions made by the model-based case seem restrictive,
the analysis in the appendix covers a wide range of appli-
cations. These, for example, include: a) the case in which
a dynamical model is provided beforehand, or b) the case in
which model-based RL algorithms are adopted (see Buşoniu
et al. 2010). In the main paper, however, we consider the
more general model-free case.

Experiments and Results
To assess MAXDT-PG’s performance, we conduced experi-
ments on transfer both between tasks in the same domain as
well as between tasks in different domains. Also, we studied

1Lines 9-11 of Algorithm 1 require interaction with the target
domain (or a simulator) for acquiring the optimal policy. Such an
assumption is common to policy gradient methods, where at each
iteration, data is gathered and used to iteratively improve the policy.

2The online appendix is available on the authors’ websites.



Algorithm 1 Manifold Alignment Cross-Domain Transfer
for Policy Gradients (MAXDT-PG)

Inputs: Source and target tasks T (S) and T (T ), optimal
source policy π?(S), # source and target traces nS and
nT , # nearest neighbors k, # target rollouts zT , initial #
of target states m.

Learn χS :
1: Sample nS optimal source traces, τ ?(S), and nT random

target traces, τ(T )

2: Using the modified UMA approach, learn α(S) and
α(T ) to produce χS = αT+

(T )α
T
(S)[·]

Transfer & Initialize Policy:
3: Collect m initial target states s(T )

1 ∼ P(T )
0

4: Project these m states to the source by applying χ+
S [·]

5: Apply the optimal source policy π?(S) on these projected

states to collect D(S) =
{
τ
(S)
(i)

}m
i=1

6: Project the samples in D(S) to the target using χS [·] to
produce tracking target traces D̃(T )

7: Compute tracking rewards using Eqn. (9)
8: Use policy gradients to minimize Eqn. (8), yielding θ(0)(T )

Improve Policy:
9: Start with θ(0)(T ) and sample zT target rollouts

10: Follow policy gradients (e.g., episodic REINFORCE)
but using target rewardsR(T )

11: Return optimal target policy parameters θ?(T )

the robustness of the learned mapping by varying the num-
ber of source and target samples used for transfer and mea-
suring the resultant target task performance. In all cases we
compared the performance of MAXDT-PG to standard policy
gradient learners. Our results show that MAXDT-PG was able
to: a) learn a valid inter-state mapping with relatively little
data from the target task, and b) effectively transfer between
tasks from either the same or different domains.

Dynamical System Domains

We tested MAXDT-PG and standard policy gradient learn-
ing on four dynamical systems (Figure 2). On all systems,
the reward function was based on two factors: a) penalizing
states far from the goal state, and b) penalizing high forces
(actions) to encourage smooth, low-energy movements.

Simple Mass Spring Damper (SM): The goal with the
SM is to control the mass at a specified position with zero
velocity. The system dynamics are described by two state-
variables that represent the mass position and velocity, and
a single force F that acts on the cart in the x direction.

Cart Pole (CP): The goal is to swing up and then bal-
ance the pole vertically. The system dynamics are described
via a four-dimensional state vector 〈x, ẋ, θ, θ̇〉, represent-
ing the position, velocity of the cart, and the angle and an-
gular velocity of the pole, respectively. The actions consist
of a force that acts on the cart in the x direction.
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Figure 2: Dynamical systems used in the experiments.

Three-Link Cart Pole (3CP): The 3CP dynam-
ics are described via an eight-dimensional state vector
〈x, ẋ, θ1, θ̇1, θ2, θ̇2, θ3, θ̇3〉, where x and ẋ describe
the position and velocity of the cart and θj and θ̇j represent
the angle and angular velocity of the jth link. The system is
controlled by applying a force F to the cart in the x direc-
tion, with the goal of balancing the three poles upright.

Quadrotor (QR): The system dynamics were adopted
from a simulator validated on real quadrotors (Bouabdal-
lah 2007; Voos & Bou Ammar 2010), and are described via
three angles and three angular velocities in the body frame
(i.e., e1B, e2B, and e3B). The actions consist of four rotor
torques {F1,F2,F3,F4}. Each task corresponds to a differ-
ent quadrotor configuration (e.g., different armature lengths,
etc.), and the goal is to stabilize the different quadrotors.

Same-Domain Transfer
We first evaluate MAXDT-PG on same-domain transfer.
Within each domain, we can obtain different tasks by vary-
ing the system parameters (e.g., for the SM system we varied
massM , spring constantK, and damping constant b) as well
as the reward functions. We assessed the performance of us-
ing the transferred policy from MAXDT-PG versus standard
policy gradients by measuring the average reward on the tar-
get task vs. the amount of learning iterations in the target. We
also examined the robustness of MAXDT-PG’s performance
based on the number of source and target samples used to
learn χS . Rewards were averaged over 500 traces collected
from 150 initial states. Due to space constraints, we report
same-domain transfer results here; details of the tasks and
experimental procedure can be found in the appendix2.

Figure 3 shows MAXDT-PG’s performance using varying
numbers of source and target samples to learn χS . These re-
sults reveal that transfer-initialized policies outperform stan-
dard policy gradient initialization. Further, as the number of
samples used to learn χS increases, so does both the ini-
tial and final performance in all domains. All initializations
result in equal per-iteration computational cost. Therefore,
MAXDT-PG both improves sample complexity and reduces
wall-clock learning time.
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Figure 3: Same-domain transfer results. All plots share the same legend and vertical axis label.
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Figure 4: Cross-domain transfer results. Plots (a)–(c) depict target task performance, and share the same legend and axis labels.
Plot (d) shows the correlation between manifold alignment quality (Procrustes metric) and quality of the transferred knowledge.

Cross-Domain Transfer
Next, we consider the more difficult problem of cross-
domain transfer. The experimental setup is identical to the
same-domain case with the crucial difference that the state
and/or action spaces were different for the source and the tar-
get task (since the tasks were from different domains). We
tested three cross-domain transfer scenarios: simple mass to
cart pole, cart pole to three-link cart pole, and cart pole to
quadrotor. In each case, the source and target task have dif-
ferent numbers of state variables and system dynamics. De-
tails of these experiments are available in the appendix2.

Figure 4 shows the results of cross-domain transfer,
demonstrating that MAXDT-PG can achieve successful trans-
fer between different task domains. These results reinforce
the conclusions of the same-domain transfer experiments,
showing that a) transfer-initialized policies outperform stan-
dard policy gradients, even between different task domains
and b) initial and final performance improves as more sam-
ples are used to learn χS .

We also examined the correlation between the quality of
the manifold alignment, as assessed by the Procrustes metric
(Goldberg & Ritov 2009), and the quality of the transferred
knowledge, as measured by the distance between the trans-
ferred (θtr) and the optimal (θ?) parameters (Figure 4(d)).
On both measures, smaller values indicate better quality.
Each data point represents a transfer scenario between two
different tasks, from either SM, CP, or 3CP; we did not con-
sider quadrotor tasks due to the required simulator time. Al-

though we show that the Procrustes measure is positively
correlated with transfer quality, we hesitate to recommend
it as a predictive measure of transfer performance. In our
approach, the cross-domain mapping is not guaranteed to be
orthogonal, and therefore the Procrustes measure is not theo-
retically guaranteed to accurately measure the quality of the
global embedding (i.e., Goldberg and Ritov’s (2009) Corol-
lary 1 is not guaranteed to hold), but the Procrustes measure
still appears correlated with transfer quality in practice.

We can conclude that MAXDT-PG is capable of: a) auto-
matically learning an inter-state mapping, and b) effectively
transferring between different domain systems. Even when
the source and target tasks are highly dissimilar (e.g., cart
pole to quadrotor), MAXDT-PG is capable of successfully
providing target policy initializations that outperform state-
of-the-art policy gradient techniques.

Conclusion
We introduced MAXDT-PG, a technique for autonomous
transfer between policy gradient RL algorithms. MAXDT-PG
employs unsupervised manifold alignment to learn an inter-
state mapping, which is then used to transfer samples and
initialize the target task policy. MAXDT-PG’s performance
was evaluated on four dynamical systems, demonstrating
that MAXDT-PG is capable of improving both an agent’s ini-
tial and final performance relative to using policy gradient
algorithms without transfer, even across different domains.
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