
Gridworld Search and Rescue:
A Project Framework for a Course in Artificial Intelligence

Eric Eaton
University of Maryland Baltimore County

Department of Computer Science and Electrical Engineering
ericeaton@umbc.edu

Abstract

This paper describes the Gridworld Search and Rescue sim-
ulator: freely available educational software that allows stu-
dents to develop an intelligent agent for a search and rescue
application in a partially observable gridworld. It permits stu-
dents to focus on high-level AI issues for solving the problem
rather than low-level robotic navigation. The complexity of
the search and rescue problem supports a wide variety of solu-
tions and AI techniques, including search, logical reasoning,
planning, and machine learning, while the high-level GSAR
simulator makes the complex problem manageable. The sim-
ulator represents a 2D disaster-stricken building for multiple
rescue agents to explore and rescue autonomous injured vic-
tims. It was successfully used as the semester project for
CMSC 471 (Artificial Intelligence) in Fall 2007 at UMBC.

Introduction
From the increasing nationwide concern with domestic dis-
asters, there has been a surge in developing rescue mecha-
nisms for victims of these disasters. One major recent effort
includes developing autonomous robots that search a disas-
ter area for victims. These autonomous robots can search ar-
eas that would be hazardous for rescue workers, aiding their
search and possibly providing limited treatment to victims.

The search and rescue problem is important and highly
relevant to current societal concerns. Additionally, it is rel-
atively easy to create a simple solution (albeit a poorly per-
forming solution) to this problem in the form of a random-
walking rescue agent. The impact and real-world nature of
the problem coupled with the ease of getting started makes
the search and rescue problem ideal as a semester project for
a general course in artificial intelligence.

The RoboCup-Rescue (Kitanoet al. 1999) competitions
are a popular forum for developing intelligent systems to
solve this problem, based around either actual robots in the
NIST Urban Search and Rescue test arenas (Jacoff, Messina,
& Evans 2002) or virtual rescue agents in the RoboCup-
Rescue simulation league. The simulation league includes
building-level search and rescue with virtual robots using the
USARSim simulator (Wang, Lewis, & Gennari 2003) and
virtual NIST test arenas, or large-scale multiagent disaster

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

coordination through the RoboCup-Rescue Agents Simula-
tor. However, the current simulators offered by these groups
focus on realistic simulation, which makes them unsuitable
for short-term development projects. The large-scale Agents
Simulator is beyond the scope of most basic AI courses, and
the smaller-scale USARSim focuses much of the initial de-
velopment of an intelligent agent on low-level robotic issues,
such as driving in a straight line from one location to another.
The realistic focus of these two simulators, while important
for research purposes, make these simulators inappropriate
for use in an introductory AI course.

This paper introduces theGridworld Search and Rescue
simulator1: a smaller-scale simulator suitable for educa-
tional use that allows students to develop an intelligent agent
to solve the search and rescue problem from a higher-level
perspective. The intelligent agent’s task is to search a sim-
ulated disaster-stricken building, represented as a 2D grid-
world, for victims and carry as many as possible to safety in
a limited period of time. The simulator is designed to allow
students to ignore low-level details and focus on applying
AI techniques to the problem. Several gridworlds are in-
cluded in the distribution, and the map editor facilitates the
creation of new environments. Additionally, the distribution
provides a manual client for user control of a rescue robot.
The simulator supports multiple interacting agents and can
be extended to support new features.

The intelligent agent controls a simulated robot with high-
level sensors and effectors, including a long-range object
recognition system, short-range medical diagnostic sensors,
a positioning system, and accurate navigation. The agent’s
primary objective is to locate victims and to carry them to
one of the building’s exits. Agents are only credited with
rescuing live victims, so the robot is equipped with short-
range medical diagnostic sensors that provide information
on the victim’s vital signs. Students may use this sensor
data with machine learning techniques to generate a model
for triaging a patient’s injuries and predicting how long they
will survive. The agent might use this model to determine
the priority order in which to rescue the victims.

The agent is preloaded with the structural plans for the
building, but will need to explore the building for victims

1The Gridworld Search and Rescue simulator is available on-
line at http://maple.cs.umbc.edu/∼ericeaton/searchandrescue/.



simultaneously with other competing agents. The structural
plans of the building include only the floor plan, so the agent
should be robust to the location of objects (such as desks and
chairs) and other agents within the building that may compli-
cate navigation. Additionally, the disaster may have blocked
certain areas of the building, so the agent must be robust
to such changes. The robot’s long-range object recognition
system and positioning system provide information on the
agent’s surroundings in the gridworld.

The Gridworld Search and Rescue (GSAR) simulator uses
a networked client-server framework to allow students to run
their intelligent agent on local computers while interacting
with the remote simulation server. The distribution also in-
cludes a visualization display client that connects to the re-
mote server and provides a graphical display of the grid-
world simulation. The simulator is written in Java2 for sys-
tem portability, and includes client interface libraries that fa-
cilitate intelligent agent development in either Java or Lisp.

The partial observability and uncertainty inherent in the
GSAR problem make it sufficiently complex to challenge a
variety of AI techniques, yet easy to understand. Students
could apply a wide variety of AI techniques in their solu-
tions to the GSAR problem, including search techniques,
logical and probabilistic reasoning, planning, robotic navi-
gation methods, and machine learning. The opportunity to
triage victims’ injuries provides a straightforward opportu-
nity to apply machine learning techniques.

In Fall 2007, undergraduate students in the CMSC 471
(Artificial Intelligence) course at UMBC developed intelli-
gent agents for the GSAR simulator as the course project.
Students worked in small groups developing their agents,
which incorporated A* search, state-space planning, rein-
forcement learning, and logical reasoning, to name a few
techniques used in their designs. The GSAR project received
high praise from students, who seemed to greatly enjoy it.
At the end of the semester, the students participated in a
competition to see which team’s agent could rescue the most
disaster victims.

Gridworld Search and Rescue Description
The Gridworld
The simulated building lies on a rectangular gridworld. Each
cell in the grid can be occupied by only one object at a time
(with the single exception of an agent carrying an object).

The gridworld has cardinal directions north, south, east
and west and an inherent coordinate system, with the ori-
gin located at the southwest corner cell. A cell’s coordinates
remain fixed throughout the duration of the simulation, pro-
viding absolute locations for the agent’s positioning system.

Each cell in the gridworld may have up to four walls,
corresponding to each of the four directions. Objects can-
not move through walls and sensors cannot penetrate walls.
Walls cannot be demolished. For simplicity, the building
does not contain any doors that require opening. Certain
gridworld cells contain markers signifying some special na-
ture of the locations; these markers are detected by the
agent’s long-distance sensors.

2The current GSAR implementation requires Java 1.5 or later.

Each agent starts at one of the building’s entrances (as-
signed randomly) and must rescue victims by returning them
to any of the building’s entrances (for simulated pickup by
rescue workers). The cells at the building’s entry points are
flagged with the marker “EXIT.” In the provided gridworlds,
the building’s outer walls lie inside the gridworld’s bound-
aries, forming a perimeter outside of the building for the
agent to move between entrances, if necessary.

Initial Knowledge
The intelligent rescue agent has access to “blueprints” of the
building, but no knowledge of its contents. At initialization,
the agent is given the gridworld’s dimensions, and the lo-
cation of all walls and building entry points. The numbers
and locations of victims, other agents, and objects within the
building are unknown to the agent at this time. However, it
is known that no victim is outside the building (otherwise,
rescue workers would have assisted them already).

The agent’s initial knowledge is provided automatically
by the simulation server, offering the ability to keep the grid-
world map secret until simulation time. The simulator also
includes an option to disable the initial knowledge for a more
difficult challenge, so that agents would need to discover all
aspects of the building during the rescue operation.

Objects Within the Gridworld
While the agent knows the building’s layout at initialization
and can navigate roughly based on it, there may be objects
within the gridworld that complicate the navigation paths.
For example, a hallway may be blocked by unmovable de-
bris, effectively acting as another wall in the building. The
GSAR server supports a variety of user-customizable object
classes, including movable, immovable, and autonomous
objects. In the provided example gridworlds, the building
contains an assortment of standard office furniture, such
as tables, chairs, and bookshelves, some of which can be
moved by the agent. Since only one object can occupy
a gridworld cell, these objects also complicate navigation.
Moreover, since multiple rescue agents are present in the en-
vironment simultaneously, another agent may move an ob-
ject during the simulation, making the location of these ob-
jects slightly dynamic. Autonomous objects, such as victims
and rescue agents, have the capability to move themselves.

Victims
Like victims in the real world, the simulated victims each
behave differently. Victims are implemented as pseudo-
random-walking autonomous objects in the simulator, with
their probability of movement based on their current health
status. Less-injured victims may move around quite a bit.

Victims are characterized by a set of vital signs that
are initialized based on their simulated level of injury and
change over time. The vital signs include estimated Abbre-
viated Injury Scale (AIS) values (AAAM 1990) for major
areas of the body, Glasgow Coma Scale (GCS) values (Teas-
dale & Jennett 1974), systolic and diastolic blood pressures,
SpO2 level, respiratory and pulse rates, body temperature,
and estimated age. As a victim’s health status changes, their
vital signs fluctuate.



Figure 1: A screenshot from the display showing a GSAR simulation in progress with two rescue agents. The colored areas
depict each robot’s long-distance sensor range. Victims with varying degrees of injury are scattered about the gridworld; the
bar graphs next to each victim show summaries of each victim’s health status. The agents’ goal is to rescue living victims by
carrying them to one of the exits. The score bar beneath the display provides each agent’s status and their current score.

These vital signs are the observable variables of a prob-
abilistic model for the victim’s health status. The proba-
bility of a victim’s survival is predicted using the Trauma
Score - Injury Severity Score (TRISS) method (Boyd, Tol-
son, & Copes 1987), which is based on the Injury Severity
Score (Bakeret al. 1974) using the patient’s AIS values, and
the Revised Trauma Score (Championet al. 1989) using the
patient’s GCS levels, blood pressure, and respiratory rate.
O’Keefe and Jurkovich (2001) provide an overview of these
trauma scoring systems. Further details on the probabilistic
model may be found in the GSAR simulator source code.

Like actual disaster victims, the simulated victims may
“die” during the simulation as determined by the probabilis-
tic model, or they may be dead at the start of the simula-
tion. Rescue agents are not credited for rescuing dead vic-
tims from the building. Although slightly morbid, this no-
tion mirrors real-life rescue efforts and adds additional com-
plexity to the GSAR problem. The intelligent agent has ac-
cess to victim vital signs through its short-range sensors; this
data might be useful in triaging the victim and predicting
how long the victim will live to prioritize rescue efforts. The
GSAR distribution provides labeled vital sign data that stu-
dents can use for training machine learning models.

Simulator Architecture
The GSAR simulator is comprised of three primary compo-
nents: a simulation server, a visualization tool that displays

the gridworld during the simulation, and client libraries for
interacting with the server. The simulator is designed as a
client-server system to allow the instructor to control the
server running on one machine, and each student team to
have their own computer for running their intelligent agent.
Currently, the simulator includes both Java and Lisp versions
of the client library. All communication between the client
and the server is in XML across network sockets. The server
and display communicate via Java Remote Method Invoca-
tion (RMI). Figure 2 provides a graphical depiction of the
GSAR simulator architecture and the interactions between
the components.

The Rescue Agent
The intelligent agent controls a simulated robot with sophis-
ticated high-level sensors and effectors. In keeping with a
level of realism, the sensors cannot penetrate the walls, mak-
ing the environment partially observable to the agent.

Sensors
The rescue robot is equipped with several sensors that pro-
vide the intelligent agent with high-level perception:

Long-range object recognition and localization sensors:
The long-range sensors cover a rectangular area around the
agent, forming a nine-by-nine square with the agent in the
center. Any object within this range will be identified by



Simulation Server

Intelligent Agent Clients

Networked XML Communication

Visualization Display

Java RMI

Figure 2: The GSAR simulator architecture.

name and precise coordinate location. The long-range sen-
sors cannot penetrate walls, so the covered area may be re-
duced depending on the agent’s location and will not always
be a complete rectangle. These sensors are always active
and provide information to the agent following every action.

Short-range medical diagnostic sensors: The short-
range sensors must be activated by the agent to provide in-
formation on the victim in the specified adjacent cell. The
senseaction (described below) activates the short-range sen-
sors and returns their results; therefore, the use of this sen-
sor constitutes an action by the rescue robot. This sensor
characterizes the victim’s vital signs as a feature vector of
real-valued data, as described in the section “Victims.” The
simulator distribution contains labeled training data that stu-
dents can use to learn a model to triage the victims and pre-
dict how long they will survive. The exact specification of
the feature vector is available in this data.

Self-feedback sensors: The self-feedback sensors provide
information on the robot itself. This information includes
the agent’s current location, the current simulation time, the
name of any object it is carrying, and the status of the last
action the agent attempted to execute, such as whether the
action succeeded. These sensors are always active and pro-
vide information to the agent following every action.

Effectors and actions
The simulated robot is equipped with omni-directional
wheels, allowing immediate movement in any of the cardi-
nal directions, and a lift capable of carrying an object. These
effectors enable the agent to perform the following actions:

Move: The move action provides for navigation between
adjacent cells along the cardinal directions. The action may
fail if it attempts to violate the rules of the gridworld, such
as trying to move through a wall or to an occupied cell.

Pickup: The pickup action allows the robot to pick up an
object (such as a victim) in an adjacent cell and carry it along
through the gridworld. The robot is not able to pick up all
objects, and it can carry only one object at a time.

Dropoff: The dropoff action is the opposite of the pickup
action: it drops the object the robot is carrying into the spec-
ified adjacent cell, which must be empty.

Sense: The sense action activates the short-range medical
diagnostic sensors on an object in the specified adjacent cell,
and returns the feature vector description of the object.

No-Op: Additionally, the agent can choose not to perform
an action in a particular timestep by executing a No-Op. In-
valid actions default to a No-Op.

Implementing the Intelligent Agent
The GSAR client API facilitates the creation of an intelli-
gent agent to control a virtual rescue robot. The client li-
brary provides a number of data structures and utility func-
tions for students to use in their implementation, facilitating
the use of the agent’s initial knowledge and the robot’s sen-
sors and effectors. The library also automatically handles all
of the networked communication. The basic interface to the
simulator is exceptionally simple and requires the student to
provide definitions for very few functions (three in the cur-
rent simulator version, two of which are optional). Students
are also capable of creating their own avatars for their rescue
robots that will appear in the simulation display.

Client interfaces are provided for both Java and Lisp;
therefore, it would be easiest for students to implement their
intelligent agent using one of these languages. All net-
worked communication uses XML over network sockets, so
it would be straightforward to translate the client library to
other languages.3

One of the best aspects of the GSAR domain is the ease of
getting started. It is very easy (requiring less than 30 minutes
of implementation time, in the experience of the undergrad-
uates in the course) to implement a simple solution in the
form of a random-walking agent. Such an agent would move
randomly until it found a victim to pick up, then move ran-
domly until it found an exit, drop the victim off at the exit,
and then return to searching for another victim. Although
the random-walking agent does not use any AI techniques
and does not perform very well, it demonstrates the ease
with which students can begin developing a rescue agent.

Additionally, the simulator provides a manual client that
students can use to manually explore the domain and test the
robot’s sensors and actions. Students can also use the man-
ual client and the provided simple rescue agents to test the
behavior of their intelligent agent with other GSAR agents.

The Simulation
The severity of injuries among the victims is controlled
by the disaster-severity parameter of the simulation. The
disaster-severity ranges from 0 for a very slight disaster
which may result in minor injuries to 10 for a severe dis-
aster that results in a huge number of injuries and casualties.

At the start of the simulation, the server provides each
agent with their initial knowledge about the gridworld. All

3Please consider contributing any translations of the client li-
braries into other languages to the GSAR project.



agents are then given a specified amount of clock-time to
process this information before the simulation begins.

The simulation runs for a specified number of timesteps
and then totals the score for each agent. All agents operate
in parallel, processing their current perceptions and return-
ing an action each timestep. After initialization, at each sim-
ulation timestep, the agent will be presented with its current
perception of the world. This perception will include data
from the long-range sensors, self-feedback, and the short-
range sensors, if they were activated the previous timestep.

Once the agent is presented with the perception, it will
have a limited time (e.g. 10 real-world seconds; this is a
variable parameter for the simulation) in which to respond
with an action. The simulation proceeds as soon as all agents
have responded with their actions for the current timestep to
make the simulation as fast as possible. If an agent does not
respond with an action within the limited time, that agent’s
action for the current timestep will default to a No-Op.

Multiple rescue agents could choose to execute actions
that conflict. For example, two agents may try to move into
the same cell at the same time. In such a case, one agent’s
action, chosen randomly, will succeed and the other con-
flicting actions will fail. Actions from a non-agent (such as
a victim) never conflict with any action from an agent.

Each agent is credited with one point for each live victim
it delivers to a building exit. Dead victims are not worth any
points, nor are victims that rescue themselves by wandering
to an exit. During the simulation, the rescue agents’ current
scores are shown on the GSAR display’s scoreboard. At the
end of the simulation, each agent is automatically informed
of its score, which may be useful for reinforcement learning
or other AI techniques which involve performance feedback.

Related Work
Urban search and rescue (USAR) simulators tend to focus
on either small-scale search and rescue in a building or
large-scale disaster coordination. The virtual robot branch
of RoboCup-Rescue uses the USARSim simulator (Wang,
Lewis, & Gennari 2003) for building-level search and res-
cue. USARSim provides a realistic simulation platform for
virtual robots and environments using the Unreal Tourna-
ment game engine. It includes virtual NIST USAR test are-
nas (Jacoff, Messina, & Evans 2002), a variety of other en-
vironments, and provides virtual versions of many common
robot platforms with a variety of sensors and effectors.

There are a number of projects focused on the large-
scale search and rescue problem, including the RoboCup-
Rescue Agents Simulator,4 the ALADDIN project5 for dis-
aster management, and the FireGrid project (Berryet al.
2005) for simulated fire emergencies. The RoboCup-Rescue
Agents Simulator is the most widely used comprehensive
large-scale USAR simulator, providing a multiagent plat-
form where agents control teams of police, fire, and medical
personnel in response to urban disasters, with complications
due to traffic and civilian response.

4http://www.robocuprescue.org/agentsim.html
5http://www.aladdinproject.org/

Extensions and Future Work
The current version of the GSAR simulator could sup-
port multiagent techniques, with the agents communicating
among themselves via network sockets. Teams of agents
could then coordinate rescue efforts. This networked com-
munication would need to be built into the agents’ imple-
mentations; currently there is no support for communication
via the simulator. However, there are future plans to include
support for basic message passing between agents, possibly
with uncertainty and limited transmission ranges. Includ-
ing this feature would open the GSAR simulator for use in
multiagent and team formation research. Also under consid-
eration are several other cosmetic changes to the simulator,
such as more support for custom objects, further configura-
tion options, and modifying the display to provide a three-
quarters overhead view of the gridworld.

Integration into the Curriculum
In Fall 2007, undergraduate students in the CMSC 471
(Artificial Intelligence) course at UMBC created intelligent
agents for the GSAR domain in teams of two or three peo-
ple as their semester project. Each group was required to
incorporate two AI topics into their project. The project was
assigned one-quarter of the way through the course, after we
had covered search and constraint satisfaction.

Most general AI courses cover a diverse set of topics. One
of the challenges of designing a semester-long project for
such a course is balancing the students’ desire to use topics
that will be covered later in the semester, with their ability to
learn about, apply and implement those techniques success-
fully. In class, we held a discussion on the various topics
we would be covering later, how those techniques might be
used in the GSAR project, and the challenges with selecting
topics near the end of the syllabus.

To help avoid complications from students choosing top-
ics without fully understanding them, the project assign-
ment placed a strong emphasis on design. Each group
was required to submit a project proposal after three weeks
that demonstrated their understanding of their chosen tech-
niques, and offered me a chance to give them early feedback
on their proposed solutions. Although groups were not re-
quired to meet with me individually, most groups were eager
to discuss their ideas before they designed their agents.

The final design was due three weeks after the proposal
(approximately two-thirds of the way through the semester),
leaving approximately one month for students to implement
their agents. As part of earlier homework assignments, they
had already implemented several algorithms in lisp, includ-
ing A* search, and many groups ended up reusing that code
in their agents. Our last major topic for the course was ma-
chine learning, so the victim triage component of the project
was designed to provide students with a straightforward op-
portunity to include machine learning in their project. In-
structors also have the option of allowing this component to
be designed last, as it can easily plug into the agent.

At the end of the semester, the class held a competition
between the teams’ rescue agents. As part of the project
description, aggressive behavior toward other rescue agents



was explicitly prohibited, since it violated the spirit of the
search and rescue problem. The competition was to be based
solely on the agents’ performance in rescuing live victims.

Several examples of successful project designs from the
CMSC 471 class are given below:

• The most popular design for an agent used some pattern
to search for victims (with a focus toward unexplored ar-
eas), a simple learned model (e.g. decision trees, SVMs)
from Weka (Witten & Frank 2000) to triage victims, and
informed search to determine the shortest path to an exit.
Several groups proposed different variations on this de-
sign, and it was very successful in one case.

• One of the more creative and successful solutions used an
algorithm based on binary space partitioning (de Berget
al. 2000) to subdivide the gridworld into logical rooms,
which were used as subgoals in combination with A*.

• Another group implemented a production system for
high-level control of their agent’s actions, using A* for
low-level path-finding.

• A successful design, although not one of the finalists, used
conditional state-space planning of actions in combina-
tion with victim triage using a decision tree.

• Another agent wandered randomly to explore, predicted
a victim’s time-to-live using linear regression, and used
q-learning to determine the shortest path to an exit.

One of the challenges that many teams faced was designing
a good heuristic function for using A* to find an exit. Man-
hattan distance is the most obvious heuristic for this domain,
but it is very suboptimal due to walls and other obstructions.

Evaluation and Conclusion
While this paper can describe the simulator and the GSAR
problem in detail, it cannot show you the true magic of a
group AI project in this domain. As an instructor, I en-
joyed the students’ enthusiasm toward the GSAR problem
in weeks before, and especially during the day of the com-
petition. Each team competed in simulations against several
other teams in two hours of cheers, smiles, laughter at the
nonsensical actions of their own agents, and praise for other
teams’ work. Students ardently described their agents to
each other, to me, and to several other professors and gradu-
ate students who visited the competition. Even students who
tended to remain quiet in class chatted excitedly, becoming
more engaged with the class than I had observed before.

Many of the students expressed their enjoyment of the
GSAR project and the chance to apply the AI techniques
they learned to a “real-world” problem. On end-of-course
surveys, students commented, “Greatproject...we had a
good time,” and, “the project was a really good idea.” Many
of them listed it as their favorite part of the course.

This is the measure of success of the GSAR project—that
it gets students excited about AI and proud of each other’s
accomplishments. It provides them a chance to apply a vari-
ety of AI techniques to a “real-world” problem in a simpli-
fied and manageable manner, promotes a bit of competition,
and is fun.

Acknowledgments
This work was supported by NSF ITR #0325329 and the
UMBC CSEE department. Thanks to Aaron Curtis, the
CMSC 471 teaching assistant, for additional coding on the
lisp client and the display, and development of the map-
editor. Thanks also to the students of the Fall 2007 CMSC
471 course for their feedback and suggestions on the project.

References
Association for the Advancement of Automotive Medicine.
1990.The Abbreviated Injury Scale. AAAM.
Baker, S. P.; O’Neill, B.; Haddon, Jr., W.; and Long, W. B.
1974. The injury severity score: a method for describing
patients with multiple injuries and evaluating emergency
care.Journal of Trauma14(3):187–196.
Berry, D.; Usmani, A.; Torero, J. L.; Tate, A.; McLaughlin,
S.; Potter, S.; Trew, A.; Baxter, R.; Bull, M.; and Atkinson,
M. 2005. FireGrid: Integrated emergency response and fire
safety engineering for the future built environment. InUK
e-Science Programme All Hands Meeting (AHM-2005).
Boyd, C.; Tolson, M. A.; and Copes, W. S. 1987. Evalu-
ating trauma care: The TRISS method.Journal of Trauma
27(4):370–378.
Champion, H. R.; Sacco, W. J.; Copes, W. S.; Gann, D. S.;
Gennarelli, T. A.; and Flanagan, M. E. 1989. A revision of
the trauma score.Journal of Trauma29(5):623–629.
de Berg, M.; van Kreveld, M.; Overmars, M.; and
Schwarzkopf, O. 2000. Computational Geometry.
Springer-Verlag, second edition.
Jacoff, A.; Messina, E.; and Evans, J. 2002. Performance
evaluation of autonomous mobile robots.Industrial Robot:
An International Journal29(3):259–267.
Kitano, H.; Tadokoro, S.; Noda, I.; Matsubara, H.; Taka-
hashi, T.; Shinjou, A.; and Shimada, S. 1999. RoboCup-
Rescue: Search and rescue for large scale disasters as a do-
main for multi-agent research. InProceedings of the IEEE
International Conference on Systems, Man and Cybernet-
ics, 739–743.
O’Keefe, G., and Jurkovich, G. J. 2001. Measurement
of injury severity and co-morbidity. InInjury Control: A
guide to research and program evaluation. Cambridge Uni-
versity Press. 32–46.
Teasdale, G., and Jennett, B. 1974. Assessment of coma
and impaired consciousness: a practical scale.The Lancet
2:81–84.
Wang, J.; Lewis, M.; and Gennari, J. S. 2003. Interactive
simulation of the NIST USAR arenas. InProceedings of
the IEEE International Conference on Systems, Man and
Cybernetics, 1350–1354.
Witten, I. H., and Frank, E. 2000.Data Mining: Practical
Machine Learning Tools with Java Implementations. San
Francisco, CA: Morgan Kaufmann.


