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Abstract—The success of transfer to improve learning on a
target task is highly dependent on the selected source data.
Instance-based transfer methods reuse data from the source
tasks to augment the training data for the target task. If
poorly chosen, this source data may inhibit learning, resulting
in negative transfer. The current best performing algorithm
for instance-based transfer, TrAdaBoost, performs poorly when
given irrelevant source data.

We present a novel set-based boosting technique for instance-
based transfer. The proposed algorithm, TransferBoost, boosts
both individual instances and collective sets of instances from
each source task. In effect, TransferBoost boosts each source
task, assigning higher weight to those source tasks which show
positive transferability to the target task, and then adjusts
the weights of the instances within each source task via
AdaBoost. The results demonstrate that TransferBoost signif-
icantly improves transfer performance over existing instance-
based algorithms when given a mix of relevant and irrelevant
source data.
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I. INTRODUCTION

Learning in some domains is an expensive process due to

the cost of obtaining labeled training instances. Knowledge

transfer can reduce the cost of learning a model for a

new target task by reusing information from previously

learned source tasks. Model-based transfer techniques [1],

[2] attempt to transfer parameter values or portions of source

models to improve learning. While powerful, model-based

transfer can be computationally expensive.

In contrast, instance-based transfer techniques reuse data

from the source tasks to augment the target task’s training

data. Although the source and target tasks have different

distributions, some of the source tasks’ data could have been

drawn from the target task’s distribution. Such data could

then be used as additional training data to improve learning

on the target task.

Consider the following scenario: an investment company

requires a model for predicting whether clients are good

credit risks for recovery housing projects in New Orleans,

following the devastation of hurricane Katrina in 2005. Since

* This work was conducted in its entirety while the first author was at the
University of Maryland Baltimore County.

this is a new area for disaster recovery, there is extremely

little data about the region. However, there are data from

other areas that successfully recovered from disaster, and

a large body of data on credit risk for other investment

types, including mortgages, credit cards, and business loans.

Surmising that the credit risks in New Orleans are somehow

related to these other existing data, the investment company

could determine which instances from these other data sets

could be reused to learn their model for New Orleans. The

instance-based transfer technique we explore in this paper

addresses this problem.

We propose a novel set-based boosting technique to

automatically select individual data from the source tasks

to augment the target task’s training data. Over the past

two decades, boosting has become one of the foundational

mechanisms for machine learning and data mining, by

virtue of its ability to transform a weak learner into a

robust classifier. Recently, boosting has been applied in

combination with the weighted majority algorithm [3] to

instance-based transfer in the TrAdaBoost algorithm [4]. We

propose the TransferBoost algorithm as an improvement over

TrAdaBoost to use boosting for transfer, overcoming several

limitations inherent in TrAdaBoost’s design.

TransferBoost automatically determines the weight to

assign to each source instance in learning the target task’s

model, building on the AdaBoost algorithm [5]. Trans-

ferBoost iteratively constructs an ensemble of classifiers,

reweighting both the source and target data via two types of

boosting: individual and set-based. It increases the weight

of individual mispredicted instances following AdaBoost. In

parallel, it also performs set-based boosting by reweighting

all instances from each source task based on their aggregate

transfer to the target task. In effect, TransferBoost increases

the weight of those source tasks that show positive transfer

to the target task, and then reweights the instances within

each task via AdaBoost.

Following a theoretical analysis of TransferBoost, we

demonstrate its improved performance against several trans-

fer algorithms in two real-world domains. The variety of

transfer scenarios demonstrates TransferBoost’s effective-

ness in selecting source instances that improve performance

on the target tasks.
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II. COMPARISON WITH RELATED WORK

TrAdaBoost [4] was the first successful application of

boosting to knowledge transfer. TrAdaBoost considers the

target data and source data separately. For the target data, it

employs standard AdaBoost to increase the weight of mis-

predicted target instances, using the AdaBoost reweighting

factor βt computed from the training error on each iteration.

For the source data, TrAdaBoost uses the weighted majority

algorithm [3] to adjust the weights, repeatedly decreasing

the weight of mispredicted source instances by a constant

factor β, set according to Littlestone and Warmuth. Since the

error of the weighted majority algorithm is only guaranteed

to converge to zero (0) after �K/2� iterations, TrAdaBoost

discards the first �K/2� ensemble members, basing the final

classifier only on the �K/2�th through Kth members.

One of TrAdaBoost’s weaknesses is this choice to discard

the first half of the ensemble. Intuitively, it is the classifiers

from early iterations that fit the majority of the data, with

later classifiers focusing on “harder” instances. Each addi-

tional classifier added by AdaBoost has (on average) less

influence on the ensemble’s prediction than its predeces-

sors [6]. While discarding the early classifiers does ensure

theoretical guarantees limiting the loss on the source data,

discarding the earliest committee members could degrade the

ensemble’s performance in practice. Indeed, TrAdaBoost’s

performance is often improved when the first half of the en-

semble is retained (personal communication with Dai et al.)

at the cost of theoretical guarantees on the error.

Also, in TrAdaBoost’s reweighting scheme, the difference

between the weights of the source and target instances

only increases. There is no mechanism in place to recover

the weight of source instances in later boosting iterations

when they become beneficial. For example, particular source

instances may only be useful for constructing models for

the harder target instances. The weights of these source

instances have already decreased substantially from the early

iterations, and once they become useful, their weights may

be so tiny that they no longer have substantial influence.

Dai et al. [4] note that TrAdaBoost sometimes yields a

final classifier that always predicts one label for all instances.

They note that this occurs from TrAdaBoost substantially

unbalancing the weights between the different classes of

training instances, and compensate for it by resampling the

data at each step to balance the classes, thereby encouraging

the base learning algorithm to predict both classes. While

seemingly effective in practice, the need for this adjustment

reduces the algorithm’s potential as a general-purpose trans-

fer algorithm. Additionally, other researchers have noted

that TrAdaBoost performs poorly when it is given irrelevant

source data [7].

Beyond TrAdaBoost, the method proposed in this paper

is related to the instance-based transfer method of Wu and

Dietterich [8], which uses auxiliary data in SVMs to both

constrain the learning and identify support vectors. Ensem-

bles have been used previously for transfer by Gao et al. [9],

who developed a locally weighted ensemble that weights

each member classifier differently depending on the data

region. Like Gao et al.’s method, TransferBoost can utilize

base algorithms not inherently designed for transfer. Naı̈ve

Bayes, the base classifier in the experiments, has also

been used before for transfer in a hierarchical method by

Rosenstein et al. [10].

III. THE TRANSFERBOOST ALGORITHM

TransferBoost is a novel set-based boosting method that

improves upon TrAdaBoost for instance-based transfer. The

TransferBoost algorithm learns an ensemble by boosting

both individual instances and each set of instances corre-

sponding to a source task.

We define a task as a mapping from an instance space

X ⊂ R
d to a set of labels Y ∈ N. Intuitively, a task

is a particular label distribution over the data, in most

cases corresponding to one labeled data set. In the transfer

scenarios, there is one target task with a limited amount of

labeled training data T = {(xi, yi)}n
i=1 that is insufficient

to learn the true mapping. Prior knowledge is available from

the set of source tasks S1, . . . , Sk with different mappings,

each with numerous labeled training instances. Let source

task Si = {(xj , yj)}|Si|
j=1. All source tasks and the target

task map from the same X to the same Y. TransferBoost’s

goal is to recover the true mapping X → Y for the target

task, using a portion of the labeled source data to augment

the limited target task data T in learning the model.

TransferBoost builds on AdaBoost to transfer source

instances when learning a target distribution. The algorithm

boosts each source task based on a notion of transferabil-
ity [2] from the source task to the target task. Transferability

is defined to be the change in performance on the target

task between learning with and without transfer. While

this imprecise definition suffices for now, Section III-C

provides a formal definition of transferability, when it is

used to compute the reweighting factors. Transferability

can be either positive or negative, depending on whether

transfer increases or decreases performance on the target

task. Intuitively, transfer algorithms should avoid negative

transfer. TransferBoost boosts each set of instances from

the same task, increasing the weights of all instances from a

source task if the source task shows positive transferability

to the target task. Similarly, it decreases the weights of all

instances from source tasks that show negative transferability

to the target task.

Simultaneously, TransferBoost uses regular AdaBoost on

individual source and target instances, adaptively increasing

the weight of mispredicted instances to force learning to

focus on these “harder” instances. Effectively, this adjusts

the distribution of instance weights within each source task.

Through this combination of novel set-based and regular
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Algorithm 1 TransferBoost

Input: source tasks S1, . . . , Sk, where Si = {(xj , yj)}|Si|
j=1,

target training examples T = {(xi, yi)}n
i=1, and

the number of iterations K.

1: Merge the source and target training data

D = S1

⋃
. . .

⋃
Sk

⋃
T .

2: Initialize w1(xi) = 1/|D|, for (xi, yi) ∈ D. Let w1(D)
be the weight vector for all instances in D. (Optionally,

these initial weights could be specified by the user.)

3: for t = 1, . . . , K do
4: Train model ht : X → Y on D with weights wt(D).
5: for i = 1, . . . , k do
6: Choose αi

t ∈ R.

7: end for
8: Choose βt ∈ R.

9: Update the weights for all (xj , yj) ∈ D:

wt+1(xj) =

{
wt(xj) exp(−βtyjht(xj)+αi

t)
Zt

(xj , yj) ∈ Si
wt(xj) exp(−βtyjht(xj))

Zt
(xj , yj) ∈ T

where Zt normalizes wt+1(D) to be a distribution.

10: end for
Output: the hypothesis H(x) = sign

(∑K
t=1 βtht(x)

)

boosting, TransferBoost automatically selects which source

instances appear to be drawn from the target distribution.

TransferBoost is given as Algorithm 1. On each iteration t,
the weights form a probability distribution over the training

data, which is the union of the source and target data. Trans-

ferBoost trains a classifier with this distribution, yielding a

hypothesis model ht. It then chooses the reweighting factor

αi
t for each source task Si based on the transferability from

Si to T , and the AdaBoost reweighting factor βt for mispre-

dicted instances. Section III-C describes a greedy approach

for choosing the αt parameters and βt. TransferBoost then

reweights each instance, increasing or decreasing its weight

by a factor of exp(αi
t) based on whether its source task Si

shows (respectively) positive or negative transfer to the target

task, and increasing its weight by a factor of exp(βt) if the

instance is mispredicted by ht. The final ensemble classifier

is given by a weighted sum of the individual classifiers’

predictions, using the weights {βt}K
t=1, giving hypotheses

with lower error more weight in the final decision.

After several iterations, instances from source tasks that

show positive transfer to the target task will have higher

weights, and source tasks that show negative transfer will

have lower weights. Additionally, the distribution of in-

stances within each source task and the target task will

emphasize instances that are repeatedly mislabeled. In this

manner, TransferBoost determines the instances that likely

are from the target distribution.
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Figure 1. An illustration of TransferBoost depicting the first three boosting
iterations. The scenario shows two source tasks (circle points of different
colors) transferring to a target task (square points). Each point is labeled
with its class (+/–), and the size of the point indicates its weight. The
dashed line indicates the learned model ht at each iteration. Note that the
dark red source task transfers perfectly to the target task, while the light
blue source task results in poor or negative transfer. After each iteration,
TransferBoost increases the weights of the dark red source task since it
shows strong transfer to the target task, resulting in the learned function
approaching the target distribution given by the shaded regions.

A. Obtaining the source tasks

As described above, TransferBoost attempts to assign high

weights to source instances that are drawn from the same

distribution as the target task. If the target task is viewed

a mixture of components, TransferBoost can be viewed as

considering each source task as a possible component of this

mixture. It can handle cases where most instances of a source

task are from the target distribution but a few instances are

not, by virtue of individually adjusting the distribution of

instance weights within each source task.

However, it may the case that a given source task itself is a

mixture of several components: one component shared with

the target task, and another component from a different or

conflicting distribution [11], [12]. All source instances that

were drawn from the shared component could be used to

augment the target training data. In such a case, the given

source task should be split into its respective components

and each component input to TransferBoost as a separate

source task, thereby allowing TransferBoost to estimate

whether each component is from the target distribution.

Various algorithms are available to break a source task

into its individual components, including Gaussian mixture

models, clustering algorithms, and latent Dirichlet alloca-

tion [13]. To determine the individual components of the

source task, one of these models would be fit to the source

task, and then each instance of the source task would be

assigned to the component most likely to have generated it.

B. Analysis

For our theoretical analysis of TransferBoost, we begin

by bounding the algorithm’s training error on the target

data. This bound is analogous to Schapire and Singer’s [14]

Theorem 1: that AdaBoost’s training error is upper bounded

by
∏K

t=1 Zt. Indeed, TransferBoost with an empty set of

source tasks reduces to AdaBoost (and Theorem 1 reduces

to Schapire and Singer’s Theorem 1).

436424



Theorem 1. The training error on the target task for
TransferBoost is bounded by

1
|T |

∣∣{j : H(xj) 	= yj}
∣∣ ≤ |D|

|T |
K∏

t=1

Zt

(∑
j∈T

wK+1(xj)

)
.

We omit the proof of this theorem due to lack of space;

the interested reader may find it in Chapter 3 of the first

author’s dissertation [15].

There are several important consequences of Theorem 1.

The first is that the training error can be minimized by

greedily minimizing Zt on each iteration, the same as in

AdaBoost [14]. The second is that the weights assigned to

the target data
∑

j∈T wK+1(xj), which is in (0, 1], must

also be minimized. Equivalently, the source data weights∑k
i=1

∑
j∈Si

wK+1(xj) =
(
1−∑

j∈T wK+1(xj)
)

could be

maximized.

C. Greedily choosing the α parameters and β.

Each boosting iteration, TransferBoost can greedily

choose the αt parameters based on transferability in order to

maximize
∑k

i=1

∑
j∈Si

wK+1(xj). With this greedy choice

of the αt parameters, the optimal βt that minimizes Zt can

be computed analytically.

In order to bound the training error, the algorithm should

assign high weights to source instances from the same distri-

bution as the target task. These source instances will improve

learning on the target task, reducing both the training and

the generalization errors. Conversely, the algorithm should

assign low weights to source instances that are not from the

target distribution, since those instances will interfere with

learning the target task.

TransferBoost uses the concept of transferability to greed-

ily compute αi
t on each iteration for source task Si. Fol-

lowing the definition by Eaton, desJardins, and Lane [2],

transferability is the change in performance on a target task

between learning with and without transfer. On each iteration

t, TransferBoost trains a classifier �ht without transfer on

the target data T with distribution
w(T )

||w(T )||1 , where ||v||1
is the L1-norm of vector v. Similarly, TransferBoost trains

a classifier h̃i
t with transfer on Si

⋃
T with distribution

w(Si ∪ T )
||w(Si ∪ T )||1 .

The weighted error of classifier h on dataset T at time t
is given by

ε =
∑

(xi,yi)∈T

wt(xi)
||wt(T )||1 |h(xi) − yi| . (1)

Let �εt be the weighted error of �ht on T , and let ε̃i
t be the

weighted error of h̃i
t on T .

The transferability from Si to T at time t is given by the

difference in the errors between learning with and without

transfer, so TransferBoost can greedily set αi
t = �εt − ε̃i

t.

Note that exp(αi
t) ∈ (1, e] when Si shows positive transfer,

exp(αi
t) = 1 when there is no transfer, and exp(αi

t) ∈ [ 1e , 1)
when there is negative transfer.

With these greedy choices for the αt parameters, Trans-

ferBoost can analytically choose βt to minimize Zt on each

round of boosting. When the hypothesis is restricted such

that h ∈ [−1, 1],

Zt =
k∑

i=0

∑
j∈Si

wt(xj) exp
(−βtyjht(xj) + αi

t

)

=
k∑

i=0

eαi
t

∑
j∈Si

wt(xj)e−βtyjht(xj) ,

with the convention that S0 = T and α0
t = 0. Continuing to

follow the analysis of Schapire and Singer [14], Zt can be

upper-bounded by

k∑
i=0

eαi
t

∑
j∈Si

wt(xj)
(

1+yjht(xj)
2

e−βt +
1−yjht(xj)

2
eβt

)
.

Since the αi parameters are fixed, this expression can be

minimized by

βt =
1
2

ln
(1 +

∑
j∈D wt(xj)yjht(xj)

1 − ∑
j∈D wt(xj)yjht(xj)

)
, (2)

which is identical to the optimal βt for AdaBoost [14].

Substituting this βt into the upper-bound on Zt yields

Zt ≤
√√√√1 −

(∑
j∈D

wt(xj)yjht(xj)

)2

.

Now, TransferBoost’s training error can be bounded by:

1
|T |

∣∣∣{j : H(xj) 	= yj}
∣∣∣ ≤ (3)

|D|
|T |

K∏
t=1

√√√√1 −
(∑

j∈D

wt(xj)yjht(xj)

)2(∑
j∈T

wK+1(xj)

)
.

While this greedy choice of the αt parameters and βt

ensures a rapid runtime, TransferBoost could ensure a tighter

bound on the training error through numeric optimization to

minimize Zt on each iteration. This tighter bound will be

explored in future work.

IV. EXPERIMENTS

The experiments compare TransferBoost against three

algorithms: TrAdaBoost, AdaBoost(T) trained on only

the target data, and AdaBoost(S&T) trained on both

the source and target data. Naı̈ve Bayes is used as

the base classifier for all methods, and the number of

boosting iterations is set to 100. The implementation

of TransferBoost is available for download as an ex-

tension to the Weka machine learning toolkit [16] at

http://maple.cs.umbc.edu/∼ericeaton/TransferBoost/.
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Data Set AdaBoost(T) AdaBoost(S&T) TrAdaBoost TransferBoost
1% 10% 25% 1% 10% 25% 1% 10% 25% 1% 10% 25%

comp.sys.ibm.pc.hardware 52.8− 59.0− 66.4− 68.0 69.4 71.2 50.0− 61.4− 67.2− 66.8 68.6 71.9
comp.windows.x 51.2− 59.8− 66.4 59.0 59.3− 60.4− 50.0− 61.8 65.5 59.7 63.2 63.9
rec.sport.baseball 51.8− 60.2 66.4 59.9 59.7− 60.1− 50.0− 59.0− 67.0+ 60.2 62.2 64.3
sci.electronics 52.0− 51.0− 53.6− 57.7 58.1 58.4 50.0− 53.6− 55.2− 58.4 57.4 58.5
sci.med 49.2− 57.0 62.2 53.2 55.4− 54.8− 50.0− 55.6− 61.6 53.7 58.2 61.3
talk.politics.mideast 51.0 53.3− 56.3 51.1 52.2− 51.8− 50.2 54.7 57.0 51.6 57.1 58.9
talk.politics.misc 50.4 53.8+ 56.0 47.4− 47.3− 48.2− 49.9 55.0+ 55.6 49.7 49.9 54.1
letter-A 49.8− 69.6− 84.2 54.9− 58.9− 64.0− 50.0− 74.4 82.2 62.4 76.6 82.9
letter-B 49.8− 63.7 74.8+ 55.4− 54.9− 55.4− 50.0− 66.7 71.8 59.0 63.5 69.7
letter-C 50.9− 64.9− 82.9 74.4 74.8− 75.4− 50.0− 69.3− 79.3− 76.3 81.9 83.9
letter-D 49.5− 64.5 76.5+ 56.6 56.2− 59.4− 50.5− 66.6 72.9 55.7 64.7 72.1
letter-E 50.5− 64.1− 79.8+ 65.8− 65.2− 64.4− 50.3− 66.3− 77.2 68.4 71.7 76.1
letter-F 50.4+ 64.6+ 76.8+ 42.1− 46.8− 53.7− 50.4+ 64.0 73.6+ 46.7 61.6 67.0
letter-G 52.0− 68.1− 81.1 74.1 74.7− 74.9− 50.7− 68.4− 78.4− 75.1 78.9 82.9
letter-H 50.9− 55.4 61.0+ 51.7− 51.1− 51.3− 49.9− 58.9 60.4+ 54.4 57.3 57.0
letter-I 58.3− 73.8− 93.4+ 82.5 83.2− 83.3− 50.7− 77.0− 84.6− 83.2 88.2 89.8
letter-J 51.6− 61.4− 74.3− 66.7− 66.6− 68.0− 49.8− 66.1− 74.0− 69.3 73.1 77.0
letter-K 50.2− 60.8− 73.0− 73.5 74.8− 73.9− 49.9− 66.0− 70.4− 74.2 77.7 78.1
letter-L 54.4− 62.0− 80.4− 78.8 81.2− 81.6− 50.7− 72.8− 79.9− 78.1 86.0 88.0
letter-M 50.9− 70.1− 83.4+ 49.4− 55.7− 65.1− 50.6− 73.7 79.9 56.9 74.5 79.9

Table I
A COMPARISON OF THE ALGORITHMS’ PERFORMANCES AT 1%, 10%, AND 25% OF THE TARGET TRAINING DATA, WITH THE BEST PERFORMANCE OF

EACH EXPERIMENT IN BOLD. STATISTICALLY SIGNIFICANT DIFFERENCES AGAINST TRANSFERBOOST ARE MARKED BY +/−, WITH + INDICATING

THE PERFORMANCE WAS SIGNIFICANTLY BETTER THAN TRANSFERBOOST, AND − INDICATING THAT IT WAS SIGNIFICANTLY WORSE.

We conducted the experiments using tasks from two

domains: letter and newsgroup recognition. The Letters data

set [17] represents various fonts of each letter using 16

features normalized to the range [0, 1]. For the 20 News-

groups data set [18], we represented each post as a binary

vector of the 100 most discriminating words determined by

Weka’s string-to-wordvector filter [16]. We use only 5% of

the original data sets in the experiments, since the originals

are very large.

For each domain, we generated a set of binary tasks

(Table II) to distinguish one class from a set of nega-

tive classes, ensuring that each task had unique negative

examples and equal class priors. With this construction,

each task will have unique data, enabling us to attribute

Table II
SUMMARY OF TASKS.

20 Newsgroups
Task #inst
comp.os.ms-windows.misc 100
comp.sys.ibm.pc.hardware 100
comp.sys.mac.hardware 98
comp.windows.x 100
rec.motorcycles 100
rec.sport.baseball 100
rec.sport.hockey 100
sci.electronics 100
sci.med 100
sci.space 100
talk.politics.mideast 94
talk.politics.misc 78
talk.religion.misc 64

Letters
Task #inst
A 86
B 74
C 70
D 70
E 88
F 84
G 70
H 70
I 60
J 72
K 74
L 68
M 92

performance improvements to transfer. For Letters, we use

the letters A–M as the positive classes against the letters N–

Z, yielding 13 tasks. For example, the task of recognizing the

letter C used 35 “C”s as positive examples and 35 random

letters N–Z as negative examples. The Newsgroups tasks

are constructed similarly to the Letters tasks, using the first

newsgroup in each major category as negative examples for

the tasks given by the 13 remaining newsgroups. These neg-

ative examples are drawn from the following newsgroups:

alt.atheism, comp.graphics, misc.forsale, rec.autos, sci.crypt,

soc.religion.christian, and talk.politics.guns.

Each experiment uses one task as the target task; all other

tasks from the same domain serve as the source tasks. The

learning algorithms were trained on all data on the source

tasks and a subset of the target training data. The learning

curves for the algorithms were generated over 20 trials of

10-fold cross-validation on the target data. Although each

individual task contains few instances, TransferBoost acts

on all tasks from a domain in each experiment. Therefore,

TransferBoost acts on 1,234 instances in each Newsgroup

experiment and 978 instances in each Letter experiment.

Table I compares the predictive accuracy of the algorithms

when trained on 1%, 10%, and 25% of the target training

data. Statistical significance against TransferBoost was as-

sessed using a paired t-test with α = 0.05. For several

example tasks, Figure 2 shows their full learning curves,

with statistical significance from TransferBoost noted as the

underlined portions below the plots.

These results show that TransferBoost performs the best

overall given little target data (1% and 10%), and then the
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Figure 2. Instance-based transfer learning curves on example target tasks, with significant differences from TransferBoost as measured by a paired t-test
with α = 0.05 marked below each plot.

best performance shifts to AdaBoost(T) trained on only the

target data. The results indicate that TransferBoost clearly

outperforms TrAdaBoost when given little training data.

This performance improvement can be attributed to the set-

based boosting ability of TransferBoost to boost all instances

of the relevant source tasks, rather than just individual

instances as in TrAdaBoost. We also experimented with a

modified TrAdaBoost that used the full ensemble to correct

for the problem of using only the last
⌈

K
2

⌉
members of the

ensemble (see Section II), but the results were not signifi-

cantly different from the original TrAdaBoost algorithm.
Theoretically, transfer will not improve learning when

given enough target data to learn a model with high per-

formance.1 This shift is indicated in the learning curves

by the best performance shifting from TransferBoost to

AdaBoost(T). The crossover in the learning curves indicates

the point at which there is enough target data such that

transfer is unnecessary. In some scenarios, none of the source

tasks appear to transfer well to the target task, resulting in

AdaBoost(T) having higher performance than all algorithms

utilizing the source data (TransferBoost, TrAdaBoost, and

AdaBoost(S&T)).
Experiments were also run using AdaBoost’s early termi-

nation mechanism in TransferBoost, stopping the algorithm

when �εt reached 0 or exceeded 0.5. Early termination

with TransferBoost does not yield optimal results as with

1It is for this reason that we restrict the size of each learning task.

AdaBoost, since the performance may still be improved by

reweighting the source data. Figure 3 shows the performance

loss of early termination over K = 100 boosting iterations

for each domain. This figure indicates a rough assessment of

the average performance improvement obtained by adjusting

the source data weights once �εt reaches 0 or exceeds 0.5.

These early termination results also explain the

poor performance on one of the newsgroup tasks:

comp.sys.ibm.pc.hardware (Figure 2(c)). Early termination

on this target task increases the performance of

TransferBoost an average of approximately two percentage

points, which would have ranked it above the other

methods. Therefore, TransferBoost’s poor performance

on this particular task was caused by using too many

boosting iterations. TransferBoost also performed below

other methods on several other tasks, but early termination

does not help explain these results. From these experiments

with early termination, it appears that TransferBoost may

be sensitive to the number of boosting iterations in some

situations. Exploration of this avenue is left to future work.

V. CONCLUSION AND FUTURE WORK

Set-based boosting is a novel approach to knowledge

transfer, and the experiments show it to be successful in

practice. It is especially useful when given little target data,

since it can identify source tasks that transfer well to the

target task.
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Figure 3. TransferBoost’s performance loss due to early termination on the Newsgroups (a) and Letters (b) domains. In each plot, the heavy black line
indicates the mean over all tasks, with the standard deviation given by the error bars.

The current TransferBoost algorithm uses transferability

to heuristically estimate the reweighting factor for each

source task. While the results show this method to be

effective, the α parameters and β could also be set via

numerical optimization, which is left to future work. Also,

the results with early termination indicate that correctly

choosing the number of boosting iterations may be important

to maximize TransferBoost’s potential. Guidelines for setting

the number of boosting iterations, and a study of its effect on

TransferBoost, is left to future work. Additionally, Transfer-

Boost’s set-based boosting may have applications in addition

to knowledge transfer as a standard boosting algorithm for

machine learning and data mining.
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