
Selective Transfer Between
Learning Tasks Using Task-Based Boosting

Eric Eaton
Bryn Mawr College

Computer Science Department
Bryn Mawr, PA USA

eeaton@cs.brynmawr.edu

Marie desJardins
University of Maryland Baltimore County

Department of Computer Science and Electrical Engineering
Baltimore, MD USA
mariedj@umbc.edu

Abstract

The success of transfer learning on a target task is highly
dependent on the selected source data. Instance transfer
methods reuse data from the source tasks to augment the
training data for the target task. If poorly chosen, this
source data may inhibit learning, resulting in negative
transfer. The current most widely used algorithm for
instance transfer, TrAdaBoost, performs poorly when
given irrelevant source data.
We present a novel task-based boosting technique for
instance transfer that selectively chooses the source
knowledge to transfer to the target task. Our approach
performs boosting at both the instance level and the task
level, assigning higher weight to those source tasks that
show positive transferability to the target task, and ad-
justing the weights of individual instances within each
source task via AdaBoost. We show that this combina-
tion of task- and instance-level boosting significantly
improves transfer performance over existing instance
transfer algorithms when given a mix of relevant and
irrelevant source data, especially for small amounts of
data on the target task.

Introduction

Learning in some domains is an expensive process due to
the cost of obtaining labeled training instances. Knowledge
transfer can reduce the cost of learning a model for a new
target task by reusing information from previously learned
source tasks. Model transfer techniques (Raina et al. 2006;
Eaton et al. 2008) attempt to transfer parameter values or
model components to improve learning. While powerful,
model transfer can be computationally expensive.

In contrast, instance transfer techniques reuse data from
the source tasks to augment the target task’s training data.
Although the source and target tasks have different distribu-
tions, some of the source tasks’ data could have been drawn
from the target task’s distribution. Such data could then be
used as additional training data for the target task.

Consider the following scenario: an investment company
needs to predict whether clients are good credit risks for re-
covery housing projects in New Orleans, following the dev-
astation of hurricane Katrina in 2005. Since this is a new area

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for disaster recovery, there is extremely little data about the
region. However, there are data from other disaster recov-
ery projects, and a large body of data on credit risk for other
investment types. Surmising that the credit risks in New Or-
leans are related to these other existing data, the company
could determine which instances could be reused to learn
their model for New Orleans. The instance transfer tech-
nique we explore in this paper addresses this problem.

We propose a novel task-based boosting method to auto-
matically select individual data from the source tasks to aug-
ment the target task’s training data. Recently, boosting has
been applied in combination with the weighted majority al-
gorithm (Littlestone and Warmuth 1994) to instance transfer
in the TrAdaBoost algorithm (Dai et al. 2007). We propose
the TransferBoost algorithm as an improvement over TrAda-
Boost and its variants to use boosting for transfer, overcom-
ing several limitations inherent in TrAdaBoost’s design.

TransferBoost automatically determines the weight to as-
sign to each source instance in learning the target task’s
model, building on the AdaBoost algorithm (Freund and
Schapire 1997). TransferBoost iteratively constructs an en-
semble of classifiers, reweighting both the source and target
data via two types of boosting: individual and task-based.
It increases the weight of individual mispredicted instances
following AdaBoost. In parallel, it also performs task-based
boosting by reweighting all instances from each source task
based on their aggregate transfer to the target task. In effect,
TransferBoost increases the weight of source tasks that show
positive transfer to the target task, and then reweights the in-
stances within each task via AdaBoost. Following a theoret-
ical analysis of TransferBoost, we demonstrate its improved
performance against several transfer algorithms in two real-
world domains, showing its effectiveness in selecting source
instances that improve learning on the target tasks.

Comparison with Related Work

TrAdaBoost (Dai et al. 2007), the first application of boost-
ing to knowledge transfer, considers the target and source
data separately. For the target data, it employs standard
AdaBoost to increase the weight of mispredicted target in-
stances, using the AdaBoost reweighting factor βt computed
from the training error. For the source data, TrAdaBoost
uses the weighted majority algorithm (Littlestone and War-
muth 1994) to adjust the weights, repeatedly decreasing the

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

337

weight of mispredicted source instances by a constant factor
β, which is set following Littlestone and Warmuth. Since the
error of the weighted majority algorithm is only guaranteed
to converge to zero (0) after �K/2� iterations for K ensem-
ble members, TrAdaBoost discards the first �K/2� ensem-
ble members, basing the final classifier only on the �K/2�th
through Kth members.

One of TrAdaBoost’s weaknesses is this choice to discard
the first half of the ensemble. It is the classifiers from early
iterations that fit the majority of the data, with later classi-
fiers focusing on “harder” instances. Each additional classi-
fier added by AdaBoost has (on average) less influence on
the ensemble’s prediction than its predecessors (Reyzin and
Schapire 2006). While discarding the early classifiers does
ensure theoretical limits on the loss over the source data, dis-
carding the early committee members could degrade the en-
semble’s performance on the target task in practice. Indeed,
TrAdaBoost’s performance is often improved when the first
half of the ensemble is retained (personal communication
with Dai et al.) at the cost of these theoretical guarantees.

Also, in TrAdaBoost’s reweighting scheme, the differ-
ence between the weights of the source and target instances
only increases. There is no mechanism in place to recover
the weight of source instances in later boosting iterations
when they become beneficial. For example, particular source
instances may only be useful for constructing models for
the harder target instances. The weights of these source in-
stances have already decreased substantially from the early
iterations, and once they become useful, their weights may
be so tiny that they no longer have substantial influence.

Dai et al. (2007) note that TrAdaBoost sometimes yields a
final classifier that always predicts one label for all instances.
They note that this occurs from TrAdaBoost substantially
unbalancing the weights between the different classes, and
compensate for it by resampling the data at each step to bal-
ance the classes, thereby encouraging the base classifiers to
predict both classes. Additionally, other researchers have
noted that TrAdaBoost performs poorly when given irrel-
evant source data (Shi et al. 2008). Yao and Doretto (2010)
propose the MultiSourceTrAdaBoost algorithm to overcome
this limitation by considering each source task individually
in combination with the target and retaining only the single
best combination after each boosting round.

Beyond TrAdaBoost and MultiSourceTrAdaBoost, our
proposed algorithm is related to the instance transfer method
of Wu and Dietterich (2004), which uses auxiliary data in
SVMs to both constrain the learning and identify support
vectors. Ensembles have been used previously for transfer
by Gao et al. (2008), who developed a locally weighted en-
semble that weights each member classifier differently de-
pending on the data region. Like Gao et al.’s method, Trans-
ferBoost can utilize base algorithms not inherently designed
for transfer. Naı̈ve Bayes, the base classifier in the experi-
ments, has also been used before for transfer in a hierarchi-
cal method by Rosenstein et al. (2005).

The TransferBoost Algorithm
We define a task as a mapping from an instance space
X ⊂ R

d to a set of discrete labels Y . Intuitively, a task

is a particular label distribution over the data, in most cases
corresponding to one labeled data set. In the transfer sce-
narios, there is one target task with a limited amount of la-
beled training data T = {(xi, yi)}ni=1 that is insufficient to
learn the true mapping. Prior knowledge is available from
the set of source tasks S1, . . . , Sk with different mappings,
each with numerous labeled training instances. Let source
task Si = {(xj , yj)}|Si|

j=1. TransferBoost’s goal is to recover
the true mapping X → Y for the target task, using instances
from S1, . . . , Sk to augment the limited target task data T in
learning the model.

TransferBoost builds on AdaBoost to transfer source in-
stances when learning a target distribution. The algorithm
boosts each source task based on a notion of transferabil-
ity (Eaton et al. 2008) from the source task to the target task.
Transferability is the change in performance on the target
task between learning with and without transfer; we later
provide a formal definition in the Analysis section. Transfer-
ability can be positive or negative, depending on whether
transfer increases or decreases performance on the target
task. Intuitively, transfer algorithms should avoid negative
transfer. TransferBoost boosts each set of instances from the
same task, increasing the weights of all instances from a
source task if it shows positive transferability to the target
task. Similarly, it decreases the weights of all instances from
source tasks that show negative transferability to the target.

Simultaneously, TransferBoost uses regular AdaBoost on
individual source and target instances, adaptively increas-
ing the weight of mispredicted instances to force learning to
focus on these “harder” instances. Effectively, this adjusts
the distribution of instance weights within each source task.
Through this novel combination of task- and instance-based
boosting, TransferBoost automatically selects which source
instances appear to be drawn from the target distribution.

TransferBoost is given as Algorithm 1. On each itera-
tion t, the weights form a distribution over the training data,
which is the union of the source and target data. Transfer-
Boost trains a classifier with this distribution, yielding a hy-
pothesis model ht. It then chooses the reweighting factor
αi
t for each source task Si based on the transferability from

Si to T , and the AdaBoost reweighting factor βt for mis-
predicted instances. The Analysis section describes a greedy
approach for choosing the αi

t’s and βt. TransferBoost then
reweights each instance, increasing or decreasing its weight
by a factor of exp(αi

t) based on whether its source task Si

shows (respectively) positive or negative transfer to the tar-
get task, and increasing its weight by a factor of exp(βt) if
the instance is mispredicted by ht. The final ensemble classi-
fier is given by a weighted sum of the individual classifiers’
predictions, using the weights {βt}Kt=1, giving hypotheses
with lower error more weight in the final decision.

After several iterations, instances from source tasks that
show positive transfer will have higher weights, and source
tasks that show negative transfer will have lower weights.
Additionally, the weight distribution within each source task
and the target task will emphasize instances that are repeat-
edly mislabeled. In this manner, TransferBoost determines
the instances that are likely from the target distribution.

338

+
+

–

+

+

+

+

+

+ – t = 1
+

+

–

+
+

+

t = 2

–

+

–
–

–

+

–

+
+

+

t = 3

–

+ +

+
–

–

–

+

+ +

–

–

–

–

–

–

–

–
–

–

–
–

Figure 1: An illustration of TransferBoost’s first three boost-
ing iterations. The scenario shows two source tasks (circle
points of different colors) transferring to a target task (square
points). Each point is labeled with its class (+/–), and the size
of the point indicates its weight. The dashed line indicates
the learned model ht at each iteration. Note that the dark
(red) source task transfers perfectly to the target task, while
the light (blue) source task results in poor or negative trans-
fer. After each iteration, TransferBoost increases the weights
of the dark (red) source task since it shows strong transfer to
the target task, resulting in the learned function approaching
the target distribution given by the shaded regions.

Obtaining the source tasks

As described above, TransferBoost attempts to assign high
weights to source instances that are drawn from the same
distribution as the target task. If the target task is viewed
as a mixture of components, TransferBoost can be viewed
as considering each source task as a possible component of
this mixture. It can handle cases where most instances of
a source task are from the target distribution but a few in-
stances are not, by virtue of individually adjusting the distri-
bution of instance weights within each source task.

However, it may the case that a given source task itself
is a mixture of several components: one component shared
with the target task, and another component from a differ-
ent or conflicting distribution (Kaski and Peltonen 2007;
Daumé III and Marcu 2006). All source instances that were
drawn from the shared component could be used to aug-
ment the target training data. In such a case, the given source
task should be split into its respective components and each
component input to TransferBoost as a separate source task,
thereby allowing TransferBoost to estimate whether each
component is from the target distribution.

Various algorithms are available to break a source task
into its individual components, including Gaussian mixture
models, clustering algorithms, and latent Dirichlet alloca-
tion (Blei et al. 2003). To determine the individual compo-
nents, one of these models would be fit to the source task,
and then each instance would be assigned to the component
most likely to have generated it.

Analysis

For our theoretical analysis of TransferBoost, we begin by
bounding the algorithm’s training error on the target data.
This bound is analogous to Schapire and Singer’s (1998)
Theorem 1: that AdaBoost’s training error is upper-bounded
by

∏K
t=1 Zt. Indeed, TransferBoost with an empty set of

source tasks reduces to AdaBoost (and Theorem 1 reduces
to the standard AdaBoost bound).

Algorithm 1 TransferBoost 1

Input: source tasks S1, . . . , Sk, where Si = {(xj , yj)}|Si|
j=1,

target training examples T = {(xi, yi)}ni=1.
1: Merge the source and target training data

D = S1

⋃
. . .

⋃
Sk

⋃
T .

2: Initialize w1(xi) = 1/|D|, for (xi, yi) ∈ D. (Option-
ally, these initial weights could be specified by the user.)

3: for t = 1, . . . ,K do

4: Train model ht : X → Y on D with weights wt(D).
5: Choose αi

t ∈ R for i = 1, . . . , k.
6: Choose βt ∈ R.
7: Update the weights for all (xj , yj) ∈ D:

wt+1(xj) =

{
wt(xj) exp(−βtyjht(xj)+αi

t)
Zt

(xj , yj) ∈ Si
wt(xj) exp(−βtyjht(xj))

Zt
(xj , yj) ∈ T

where Zt normalizes wt+1(D) to be a distribution.
8: end for

Output: the hypothesis H(x) = sign
(∑K

t=1 βtht(x)
)

Theorem 1. The training error εT = 1
|T |

∣∣{j : H(xj) 	=yj}
∣∣

on the target task for TransferBoost is bounded by 1

εT ≤ |D|
|T |

K∏
t=1

Zt

(∑
j∈T

wK+1(xj)

)
.

There are several important consequences of Theorem 1.
The first is that εT can be minimized by greedily mini-
mizing Zt on each iteration, as in AdaBoost. The second
is that the sum of the weights assigned to the target data,∑

j∈T wK+1(xj), should also be minimized. Equivalently,
we could maximize the sum of the source data weights∑k

i=1

∑
j∈Si

wK+1(xj) =
(
1−∑

j∈T wK+1(xj)
)
.

Since TransferBoost’s resulting ensemble model is of the
same form as AdaBoost, its generalization error is similarly

upper-bounded by εT+O
(√

K
n dV C

)
, where dV C is the VC-

dimension of the base classifier (Schapire and Singer 1998).

Greedily choosing the α parameters and β

TransferBoost can greedily choose the αt parame-
ters based on transferability in order to maximize∑k

i=1

∑
j∈Si

wK+1(xj). With this greedy choice, the op-
timal βt that minimizes Zt can be computed analytically.

To bound the training error, the algorithm should assign
high weights to source instances from the same distribution
as the target task. These source instances will improve learn-
ing on the target, reducing both the training and the general-
ization errors. Conversely, the algorithm should assign low
weights to source instances that are not from the target dis-
tribution, since those instances will interfere with learning.

1An implementation of TransferBoost and the proof of The-
orem 1 may be found in a supplement available online at
http://cs.brynmawr.edu/∼eeaton/TransferBoost/.

339

TransferBoost uses the concept of transferability to greed-
ily compute αi

t on each iteration for source task Si. Follow-
ing the definition by Eaton et al. (2008), transferability is
the change in performance on a target task between learn-
ing with and without transfer. On each iteration t, Transfer-
Boost trains a classifier �ht without transfer on the target data
T with distribution w(T)

||w(T)||1 , where ||v||1 is the L1-norm of

vector v. Similarly, TransferBoost trains a classifier h̃i
t with

transfer on Si

⋃
T with distribution w(Si ∪T)

||w(Si ∪T)||1 .

The weighted error of classifier h on data set T is given
by

ε =
∑

(xi,yi)∈T
wt(xi)

||wt(T)||1 |h(xi)− yi| . (1)

Let �εt be the weighted error of �ht on T , and let ε̃it be the
weighted error of h̃i

t on T . The transferability from Si to T at
time t is given by the difference in the errors between learn-
ing with and without transfer, so TransferBoost can greedily
set αi

t = �εt − ε̃it. Note that exp(αi
t) ∈ (1, e] when Si shows

positive transfer, exp(αi
t) = 1 when there is no transfer, and

exp(αi
t) ∈ [1e , 1) when there is negative transfer.

With these greedy choices for the αt parameters, Trans-
ferBoost can analytically choose βt to minimize Zt. When
the hypothesis is restricted such that h ∈ [−1, 1],

Zt =
∑k

i=0

∑
j∈Si

wt(xj) exp
(−βtyjht(xj) + αi

t

)
=

∑k
i=0 e

αi
t
∑

j∈Si
wt(xj)e

−βtyjht(xj) ,

with the convention that S0 = T and α0
t = 0. Following

Schapire and Singer (1998), Zt can be upper-bounded by
k∑

i=0

eα
i
t

∑
j∈Si

wt(xj)

(
1+yjht(xj)

2
e−βt +

1−yjht(xj)

2
eβt

)
.

Since the αi’s are fixed, this can be minimized by choosing

βt =
1

2
ln

(
1 +

∑
j∈D wt(xj)yjht(xj)

1−∑
j∈D wt(xj)yjht(xj)

)
, (2)

which is identical to the optimal βt for AdaBoost. Substitut-
ing this βt into the upper bound on Zt yields

Zt ≤
√

1− (∑
j∈D wt(xj)yjht(xj)

)2
.

Now, TransferBoost’s training error can be bounded by:

|D|
|T |

K∏
t=1

√√√√1−
(∑

j∈D

wt(xj)yjht(xj)

)2(∑
j∈T

wK+1(xj)

)
.

While this greedy choice of αt and βt ensures a rapid
runtime, TransferBoost could ensure a tighter bound on the
training error through numeric optimization to minimize Zt

on each iteration, which we will explore in future work.

Experiments

The experiments compare TransferBoost against four
algorithms: TrAdaBoost, MultiSourceTrAdaBoost, Ada-
Boost(T) trained on only the target data, and Ada-
Boost(S&T) trained on both the source and target data.

Table 1: Summary of tasks.
20 Newsgroups

Task #inst

comp.os.ms-windows.misc 100
comp.sys.ibm.pc.hardware 100
comp.sys.mac.hardware 98
comp.windows.x 100
rec.motorcycles 100
rec.sport.baseball 100
rec.sport.hockey 100
sci.electronics 100
sci.med 100
sci.space 100
talk.politics.mideast 94
talk.politics.misc 78
talk.religion.misc 64

Letters

Task #inst

A 86
B 74
C 70
D 70
E 88
F 84
G 70
H 70
I 60
J 72
K 74
L 68
M 92

Naı̈ve Bayes is used as the base classifier for all methods,
and the number of boosting iterations is set to 100.

We use tasks from two domains: letter and newsgroup
recognition. The Letters data set (Asuncion and Newman
2007) represents various fonts of each letter using 16 fea-
tures normalized to the range [0, 1]. For the 20 Newsgroups
data set (Rennie 2003), we represented each post as a binary
vector of the 100 most discriminating words determined by
Weka (Witten and Frank 2000). We use only 5% of the orig-
inal data sets to challenge the transfer methods.

For each domain, we generated a set of tasks (Table 1) to
distinguish one class from a set of negative classes, ensur-
ing that each task had unique negative examples and equal
class priors. For Letters, we use the letters A–M as the pos-
itive classes against the letters N–Z, yielding 13 tasks. For
example, the task of recognizing the letter C used 35 “C”s
as positive examples and 35 random letters N–Z as negative
examples. The Newsgroups tasks are constructed similarly,
using the first newsgroup in each category as negative exam-
ples for the tasks given by the 13 remaining2 newsgroups.

Each experiment uses one task as the target task; all other
tasks from the same domain serve as the source tasks. The
learning algorithms were trained on all data on the source
tasks and a subset of the target training data. The learning
curves for the algorithms were generated over 20 trials of
10-fold cross-validation on the target data. Although each
individual task contains few instances, TransferBoost acts
on all tasks from a domain in each experiment. Therefore,
TransferBoost acts on 1,234 instances in each Newsgroup
experiment and 978 instances in each Letter experiment.

Table 2 compares the predictive accuracy of the algo-
rithms when trained on 1%, 10%, and 25% of the target
training data. Statistical significance against TransferBoost
was assessed using a paired t-test with α = 0.05. For sev-
eral example tasks, Figure 2 shows their full learning curves.

The results indicate that TransferBoost clearly outper-
forms TrAdaBoost and MultiSourceTrAdaBoost when given
little target training data. The strong performance of Trans-
ferBoost in scenarios with little training data is especially

2These negative examples are drawn from the following
newsgroups: alt.atheism, comp.graphics, misc.forsale, rec.autos,
sci.crypt, soc.religion.christian, and talk.politics.guns.

340

Target Task AdaBoost(T) AdaBoost(S&T) TrAdaBoost MultiSrcTrAdaBoost TransferBoost
1% 10% 25% 1% 10% 25% 1% 10% 25% 1% 10% 25% 1% 10% 25%

comp.sys.ibm.pc.hw 52.8− 59.0− 66.4− 68.0 69.4 71.2 50.0− 61.4− 67.2− 73.5+ 71.8+ 68.1− 66.8 68.6 71.9
comp.windows.x 51.2− 59.8− 66.4 59.0 59.3− 60.4− 50.0− 61.8 65.5 64.7+ 68.3+ 65.0 59.7 63.2 63.9
rec.sport.baseball 51.8− 60.2 66.4 59.9 59.7− 60.1− 50.0− 59.0− 67.0+ 46.7− 54.6− 64.3 60.2 62.2 64.3
sci.electronics 52.0− 51.0− 53.6− 57.7 58.1 58.4 50.0− 53.6− 55.2− 52.5− 54.9 52.9− 58.4 57.4 58.5

sci.med 49.2− 57.0 62.2 53.2 55.4− 54.8− 50.0− 55.6− 61.6 45.6− 51.7− 61.5 53.7 58.2 61.3
talk.politics.mideast 51.0 53.3− 56.3 51.1 52.2− 51.8− 50.2 54.7 57.0 49.4 52.1− 55.3− 51.6 57.1 58.9
talk.politics.misc 50.4 53.8+ 56.0 47.4− 47.3− 48.2− 49.9 55.0+ 55.6 41.2− 50.5 55.0 49.7 49.9 54.1
letter-A 49.8− 69.6− 84.2 54.9− 58.9− 64.0− 50.0− 74.4 82.2 43.2− 71.2− 80.9 62.4 76.6 82.9
letter-B 49.8− 63.7 74.8+ 55.4− 54.9− 55.4− 50.0− 66.7 71.8 53.8− 66.3 75.4+ 59.0 63.5 69.7
letter-C 50.9− 64.9− 82.9 74.4 74.8− 75.4− 50.0− 69.3− 79.3− 47.8− 65.4− 79.4− 76.3 81.9 83.9
letter-D 49.5− 64.5 76.5+ 56.6 56.2− 59.4− 50.5− 66.6 72.9 51.6− 65.5 75.8+ 55.7 64.7 72.1
letter-E 50.5− 64.1− 79.8+ 65.8− 65.2− 64.4− 50.3− 66.3− 77.2 51.4− 65.5− 76.7 68.4 71.7 76.1
letter-F 50.4+ 64.6+ 76.8+ 42.1− 46.8− 53.7− 50.4+ 64.0 73.6+ 50.4+ 65.1+ 73.9+ 46.7 61.6 67.0
letter-G 52.0− 68.1− 81.1 74.1 74.7− 74.9− 50.7− 68.4− 78.4− 53.9− 69.4− 82.6 75.1 78.9 82.9
letter-H 50.9− 55.4 61.0+ 51.7− 51.1− 51.3− 49.9− 58.9 60.4+ 50.6− 59.9 60.1 54.4 57.3 57.0
letter-I 58.3− 73.8− 93.4+ 82.5 83.2− 83.3− 50.7− 77.0− 84.6− 55.1− 78.2− 89.2 83.2 88.2 89.8
letter-J 51.6− 61.4− 74.3− 66.7− 66.6− 68.0− 49.8− 66.1− 74.0− 52.7− 69.0− 74.7 69.3 73.1 77.0
letter-K 50.2− 60.8− 73.0− 73.5 74.8− 73.9− 49.9− 66.0− 70.4− 51.7− 62.3− 71.0− 74.2 77.7 78.1
letter-L 54.4− 62.0− 80.4− 78.8 81.2− 81.6− 50.7− 72.8− 79.9− 55.2− 75.9− 83.1− 78.1 86.0 88.0
letter-M 50.9− 70.1− 83.4+ 49.4− 55.7− 65.1− 50.6− 73.7 79.9 59.8+ 78.1+ 81.8 56.9 74.5 79.9

Table 2: A comparison of the algorithms’ predictive accuracies at 1%, 10%, and 25% of the target training data, with the best
performance of each experiment in bold. Statistically significant differences against TransferBoost are marked by +/−, with +
indicating the performance was significantly better than TransferBoost, and − indicating that it was significantly worse.

50

55

60

65

70

0 10 20 30 40 50 60 70 80 90 100

P
re

di
ct

iv
e

A
cc

ur
ac

y

Percent of Training Set

 TransferBoost
 MultiSourceTrAdaBoost
 TrAdaBoost
 AdaBoost(T)
 AdaBoost(S&T)

(a) comp.windows.x

45

50

55

60

65

70

0 10 20 30 40 50 60 70 80 90 100

Percent of Training Set

 TransferBoost
 MultiSourceTrAdaBoost
 TrAdaBoost
 AdaBoost(T)
 AdaBoost(S&T)

(b) rec.sport.baseball

46

48

50

52

54

56

58

60

62

64

0 10 20 30 40 50 60 70 80 90 100

Percent of Training Set

 TransferBoost
 MultiSourceTrAdaBoost
 TrAdaBoost
 AdaBoost(T)
 AdaBoost(S&T)

(c) sci.electronics

45

50

55

60

65

70

75

80

85

90

0 10 20 30 40 50 60 70 80 90 100

P
re

di
ct

iv
e

A
cc

ur
ac

y

Percent of Training Set

 TransferBoost
 MultiSourceTrAdaBoost
 TrAdaBoost
 AdaBoost(T)
 AdaBoost(S&T)

(d) letter-C

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90 100

Percent of Training Set

 TransferBoost
 MultiSourceTrAdaBoost
 TrAdaBoost
 AdaBoost(T)
 AdaBoost(S&T)

(e) letter-L

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Percent of Training Set

 TransferBoost
 MultiSourceTrAdaBoost
 TrAdaBoost
 AdaBoost(T)
 AdaBoost(S&T)

(f) letter-M

Figure 2: Learning curves on example target tasks, with error bars denoting the standard error of the mean.

apparent in Figure 3. This improvement can be attributed to
the ability of TransferBoost to boost all instances of the rel-
evant source tasks, rather than just individual instances as
in TrAdaBoost and its variant. We also experimented with a
modified TrAdaBoost that used the full ensemble to correct
for the problem of using only the last

⌈
K
2

⌉
ensemble mem-

bers. Although the modification improved TrAdaBoost’s ac-
curacy overall, it had qualitatively similar performance to
the original algorithm in comparison with TransferBoost.

As the amount of target data increases, the performance
differences between the transfer algorithms become less ap-
parent, with TransferBoost still retaining a slight edge over

341

40

50

60

70

80

90

100

40 50 60 70 80 90 100

T
ra

ns
fe

rB
oo

st
 A

cc
ur

ac
y

(%
)

TrAdaBoost Accuracy (%)

 0

 20

 40

 60

 80

 100

#I
ns

ta
nc

es
 in

 T
ra

in
in

g
S

et

(a) TransferBoost vs TrAdaBoost

40

50

60

70

80

90

100

40 50 60 70 80 90 100

T
ra

ns
fe

rB
oo

st
 A

cc
ur

ac
y

(%
)

MultiSourceTrAdaBoost Accuracy (%)

 0

 20

 40

 60

 80

 100

#I
ns

ta
nc

es
 in

 T
ra

in
in

g
S

et

(b) TransferBoost vs MultiSourceTrAdaBoost

Figure 3: Comparison of TransferBoost’s performance with
TrAdaBoost and MultiSourceTrAdaBoost over all tasks.
Each circle depicts an average of 200 experiments on a sin-
gle task, with a given amount of target training data denoted
by the size and color of the circle.

TrAdaBoost overall. For large amounts of data, the best al-
gorithm seems largely dependent on the task, with Trans-
ferBoost being best for some tasks and MultiSourceTrAda-
Boost being best for others. In some cases, TrAdaBoost and
its variant suffer from declining performance as the amount
of target data increases (e.g., Figure 2(a)); TransferBoost
does not seem to suffer from this problem, which is most
likely prevented by boosting at the task level.

Theoretically, transfer will not improve learning when
given enough target data to learn a model with high per-
formance.3 This shift is indicated in the learning curves by
the best performance shifting from TransferBoost to Ada-
Boost(T). The crossover indicates the point where there is
enough target data such that transfer is unnecessary. In some
scenarios, none of the source tasks appear to transfer well
to the target task, resulting in AdaBoost(T) having higher
performance than all algorithms utilizing the source data.

Conclusion and Future Work

Task-based boosting is a novel approach to knowledge trans-
fer, and the experiments show it to be successful in practice.

3For this reason, we restrict the size of each learning task.

It is especially useful when given little target data, since it
can identify source tasks that transfer well to the target task.

TransferBoost uses transferability to estimate the
reweighting factor for each source task Si. While the results
show this method to be effective, the α parameters and β
could also be set via numerical optimization, which is left
to future work. We have also seen indications that correctly
choosing the number of boosting iterations may be impor-
tant to maximize TransferBoost’s potential. Guidelines for
setting the number of boosting iterations, and a study of its
effect on TransferBoost, are left to future work.

Acknowledgments
This work was supported by ONR award #N00014-11-1-
0139 and NSF ITR-0325329. We thank Terran Lane, Tim
Oates, and Yun Peng for their feedback on this work,
Wenyuan Dai for discussions on TrAdaBoost, and the re-
viewers for their constructive comments.

References
Asuncion, A., and Newman, D. 2007. UCI repository. Available
at http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent Dirichlet
allocation. J. Machine Learning Research 3:993–1022.
Dai, W.; Yang, Q.; Xue, G.-R.; and Yu, Y. 2007. Boosting for
transfer learning. ICML, 193–200.
Daumé III, H., and Marcu, D. 2006. Domain adaptation for statis-
tical classifiers. J. Artificial Intelligence Research 26:101–126.
Eaton, E.; desJardins, M.; and Lane, T. 2008. Modeling transfer re-
lationships between learning tasks for improved inductive transfer.
ECML, 317–332.
Freund, Y., and Schapire, R. 1997. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. J. Computer
and System Sciences 55(1):119–139.
Gao, J.; Fan, W.; Jiang, J.; and Han, J. 2008. Knowledge transfer
via multiple model local structure mapping. SIGKDD, 283–291.
Kaski, S., and Peltonen, J. 2007. Learning from relevant tasks only.
ECML, 608–615.
Littlestone, N., and Warmuth, M. K. 1994. The weighted majority
algorithm. Information and Computation 108(2):212–261.
Raina, R.; Ng, A. Y.; and Koller, D. 2006. Constructing informative
priors using transfer learning. ICML, 713–720.
Rennie, J. 2003. 20 Newsgroups data set, sorted by date. Available
online at http://www.ai.mit.edu/∼jrennie/20Newsgroups/.
Reyzin, L., and Schapire, R. 2006. How boosting the margin can
also boost classifier complexity. ICML, 753–760.
Rosenstein, M.; Marx, Z.; Kaelbling, L.; and Dietterich, T. 2005.
To transfer or not to transfer. In NIPS Inductive Transfer Workshop.
Schapire, R., and Singer, Y. 1998. Improved boosting algorithms
using confidence-rated predictions. COLT, 80–91.
Shi, X.; Fan, W.; and Ren, J. 2008. Actively transfer domain knowl-
edge. ECML, 342–357.
Witten, I. H., and Frank, E. 2000. Data Mining: Practical Machine
Learning Tools with Java Implementations. Morgan Kaufmann.
Wu, P., and Dietterich, T. G. 2004. Improving SVM accuracy by
training on auxiliary data sources. ICML, 871–878.
Yao, Y., and Doretto, G. 2010. Boosting for transfer learning with
multiple sources. CVPR, 1855–1862.

342

