
Lifelong Learning for Disturbance Rejection on Mobile Robots

David Isele, José Marcio Luna, Eric Eaton,
Gabriel V. de la Cruz, James Irwin, Brandon Kallaher and Matthew E. Taylor

Abstract— No two robots are exactly the same—even for
a given model of robot, different units will require slightly
different controllers. Furthermore, because robots change and
degrade over time, a controller will need to change over time
to remain optimal. This paper leverages lifelong learning in
order to learn controllers for different robots. In particular,
we show that by learning a set of control policies over robots
with different (unknown) motion models, we can quickly adapt
to changes in the robot, or learn a controller for a new robot
with a unique set of disturbances. Furthermore, the approach
is completely model-free, allowing us to apply this method to
robots that have not, or cannot, be fully modeled.

I. INTRODUCTION

As robots become more common, there are an increasing
number of tasks they will be asked to perform. These tasks
may not be specified, or even envisioned, at design time. It
is therefore critical that robots be able to learn these task
autonomously. Reinforcement learning (RL) [1], [2] is one
popular method for such autonomous learning, but it may be
slow in practice, requiring numerous interactions with the
environment to achieve decent performance. Recent work in
transfer learning [3] can alleviate some of this burden by
using knowledge learned from previous tasks to accelerate
learning on a new target task. In this work, we take a lifelong
learning approach [4], in which the learner faces multiple
consecutive tasks and must learn each rapidly by building
upon its learned knowledge, while simultaneously maximiz-
ing performance across all known tasks. In particular, we
consider a set of similar robots that all have slightly different
motion models, but with varying disturbances. This setting
is motivated by the inherent differences between robots from
small variations in their physical or electrical components.

If the model of the robot was fully known, or could
be quickly learned, the dynamics of the system could be
stabilized with control theory approaches. However, in many
cases such a model is not known, is complicated enough or
is subject to unpredictable changes that indirect learning of

Research at Penn was partially supported by grants ONR N00014-11-1-
0139 and AFRL FA8750-14-1-0069. Research at WSU was supported in part
by grants AFRL FA8750-14-1-0070, NSF IIS-1149917, NSF IIS-1319412,
USDA 2014-67021-22174, and a Google Research Award.

D. Isele, J.M. Luna and E. Eaton are associated with
the Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104, USA
{isele,joseluna,eeaton}@seas.upenn.edu

G.V. de la Cruz, J. Irwin, B. Kallaher and M.E. Taylor are associated with
the School of Electrical Engineering and Computer Science, Washington
State University, Pullman, WA 99164, USA {gabriel.delacruz,
james.irwin, brandon.kallaher}@wsu.edu,
taylorm@eecs.wsu.edu

the model is infeasible. Instead, this paper directly learns
policies for the different robots through lifelong RL.

Our recent work on lifelong RL [5], [6] has shown that
this approach is able to accelerate learning of the control
policies for a variety of dynamical systems using policy
gradient [7], [8] (PG) methods. Lifelong RL succeeds even
when the different systems are encountered consecutively,
and it preserves and possibly improves the policies for the
earliest encountered tasks. This is in contrast to transfer
methods which typically only optimize performance on the
new target system. However, this work has been applied only
to benchmark problems with known dynamics to demonstrate
knowledge sharing, and not yet to more complex robotic
control problems. This paper significantly scales up the
complexity of experiments by applying lifelong learning
techniques to a set of Turtlebot 2 [9] and AR.Drone [10]
robots, each with their own control disturbances, in both the
high-fidelity Gazebo simulator and on real robotic platforms.
As such, this paper represents a milestone in validating
lifelong learning on physical robotic platforms.

II. RELATED WORK

Reinforcement learning (RL) is often used to learn con-
trollers in a model-free setting. Among RL algorithms, policy
gradient methods are popular in robotic applications [11],
[12] since they accommodate continuous state/action spaces
and can scale well to high dimensional problems. The goal of
lifelong learning is to learn a set of policies from consecutive
tasks. By leveraging similarities between the tasks, it should
be possible to learn the set of tasks much faster than if
each task was learned independently. Our previous work
showed that lifelong learning could successfully leverage
policy gradient methods [5], [6], but had been applied only
to simple dynamical systems and not more complex robotic
control problems. There have been some successful examples
of lifelong learning on robots, but they tend to focus on
skill refinement for a single robot [13], [14], [15] rather than
sharing information across multiple robots.

When mathematical models that describe the behavior of
physical systems can be constructed, they can be used to
analyze, predict and control a robot’s behavior. Well known
techniques for modeling physical systems include partial,
ordinary differential and difference equations [16], [17], and
Discrete Event Systems (DES) such as queuing networks
[18] and Petri networks [19]. Typical problems in controlling
such systems are regulation, trajectory tracking, disturbance
rejection, and robustness [16], [17], [20]. All of these prob-
lems are associated with the analysis of the stabilizability of



the system, as well as the design of controllers to stabilize
it.

Most similar to our setting is that of disturbance rejection,
where a controller is designed to complete a task while
compensating for a disturbance that modifies its nominal
dynamics. As long as there is an accurate model of the
robot, current methods can handle constant, time-varying,
and even stochastic disturbances [16], [20], [21]. However,
such methods are generally inapplicable when the robot
model is unknown, even if the disturbances are relatively
simple. Our work is motivated by control theory approaches,
but focuses on leveraging model-free RL techniques.

III. BACKGROUND

This section provides an overview of background material
to understand the techniques used in our experiments.

A. Reinforcement Learning

An RL agent must sequentially select actions to maximize
its expected return. Model-free RL approaches do not require
previous knowledge of the system dynamics and control
policies are learned directly through the interactions with
the system. RL problems are typically formalized as Markov
Decision Processes (MDPs) with the form 〈X ,A, P,R, γ〉
where X ⊂ Rdx is the set of states, A is the set of actions,
P : X × A × X → [0, 1] is the state transition probability
describing the systems dynamics, R : X × A → R is the
reward function, and γ ∈ [0, 1) is the reward discount factor.
At each time step h, the agent is in the state xh ∈ X and
must choose an action ah ∈ A so that it transitions to a new
state xh+1 with state transition probability P (xh+1|xh,ah),
yielding a reward rh according to R. The action is selected
according to a policy π : X ×A → [0, 1], which specifies a
probability distribution over actions given the current state.
The goal of an RL algorithm is to find an optimal policy π∗

that maximizes the expected reward.
PG methods are well suited for solving high dimensional

problems with continuous state and action spaces, such as
robotic control [12]. The goal of PG is to use gradient
steps to optimize the expected average return, given by
J (θ) =

∫
T pθ(τ)R(τ)dτ , where T is the set of all trajec-

tories, pθ(τ) =
∏H
h=0 p(xh+1|xh,ah)π(ah,xh) is the prob-

ability of trajectory τ , and R(τ) = 1
H

∑H
h=0 r(sh,ah, sh+1)

is the average per-step reward. Most PG methods (e.g.,
episodic REINFORCE [8], Natural Actor Critic [12], and
PoWER [11]) optimize the policy by maximizing a lower
bound on the return, comparing trajectories generated by
different candidate policies π. In this particular application,
the PG method we use in our experiments is finite differences
[1] (FD) which optimizes the return directly.

B. Finite Differences for Policy Search

The Finite Differences method [1], which has shown past
success in robotic control, optimizes the policy πθ directly by
computing small changes ∆θ in the policy parameters that
will increase the expected reward. This process estimates the

expected return for each policy parameter variation (θm +
∆θp) given the sampled trajectories via

∆Ĵp ≈ J (θm + ∆θp)− Jref , (1)

where the estimate is taken over n small perturbations in
the policy parameters {∆θp}np=1. The policy parameters
at time step m are given by θm, and Jref is a reference
return, which is usually taken as the return of unperturbed
parameters J (θ). The FD gradient method then updates the
policy parameters, following the gradient of the expected
return J with a step-size δ, as given by

θm+1 = θm + δ∇θJ . (2)

For efficiency, we can estimate the gradient ∇θJ using
linear regression as

∇θJ ≈
(
∆ΘT∆Θ

)−1
∆ΘT∆Ĵp , (3)

where ∆Ĵp contains all the stacked samples of ∆Ĵp and
∆Θ contains the stacked perturbations ∆θp. This approach
is sensitive to the type and magnitude of the perturbations, as
well as to the step size δ. Since the number of perturbations
needs to be as large as the number of parameters, this method
is considered to be noisy and inefficient for problems with
large sets of parameters [1], although we found it to work
well and reliably in our setting.

The process is capable of optimizing a policy for a
single RL task via repeatedly sampled trajectories i.e., n
trajectories for each m ∈ {1, . . . ,M} iteration. In order to
share information between different policies that are learned
consecutively, we incorporate the PG learning process using
FD into a lifelong learning setting, as described next.

IV. LIFELONG MACHINE LEARNING

In this section, we describe the framework we use to share
knowledge between multiple, consecutive tasks.

A. Problem Setting
In the lifelong learning setting [14], [22], the learner

optimizes policies for multiple tasks consecutively, rapidly
learning each new task policy by building upon its previously
learned knowledge. At each round t ∈ {1, . . . , Tmax}, the
learner observes a task Z(t), represented as an MDP with
the form 〈X (t),A(t), P (t), R(t), γ(t)〉, building on top of the
knowledge learned from previous tasks {Z(1), . . . ,Z(t−1)}.
The goal of the learner is to optimize policies for all
tasks {Z(1), . . . ,Z(Tmax )} without knowing a priori the total
number of tasks Tmax , their order, or their distribution.

In our application, we use a centralized lifelong learner
that is shared between multiple robots; each task corresponds
to an RL problem for an individual robot. The policy πθt for
task Z(t) is parameterized by θt ∈ Rd. To facilitate transfer
between the task policies, we assume there is a shared
basis L ∈ Rd×k that underlies all policy parameter vectors,
and that each θ(t) can be represented as a sparse linear
combination of the basis vectors, given by θ(t) = Ls(t), with
coefficients s(t) ∈ Rl. Research has shown this factorized
model to be effective for transfer in both multi-task [23],
[24] and lifelong learning [22] settings.



B. Lifelong Learning with Policy Gradients

In our previous work [5], we developed an efficient
algorithm for learning in this lifelong setting with policy
gradients, known as PG-ELLA. Here, we briefly review this
algorithm, which we apply to the multi-robot setting in our
experiments. For details, please see the original paper. The
one major difference is that we employ Finite-Difference
methods as the base learner in this paper; our previous work
used episodic REINFORCE [8] and natural actor critic [12].

The lifelong learner’s goal of optimizing the policies for
all known tasks after observing task s(T ) can be formulated
as the following multi-task objective:

argmin
L,S

1

T

∑
t

[
−J

(
θ(t)
)

+ λ
∥∥∥s(t)∥∥∥

1

]
+ µ‖L‖2F , (4)

where S =
[
s(1) · · · s(T )

]
is the matrix of all coefficients,

the L1 norm ‖ · ‖1 enforces sparsity of the coefficients, and
the Frobenious norm ‖ · ‖F regularizes the complexity of
L with regularization parameters µ, λ ∈ R. To solve (4)
efficiently, PG-ELLA 1.) replaces J (·) with an upper bound
as done in typical PG optimization, 2.) approximates the
first term with a second-order Taylor expansion around an
estimate α(t) of the single-task policy parameters for task
Z(t), and 3.) optimizes s(t) only when training on task Z(t).
These steps reduce the learning problem to a series of on-line
update equations that constitute PG-ELLA [5]:

s(t) ← arg min
s

∥∥∥α(t) −Ls(t)
∥∥∥2

Γ(t)
+ µ ‖s‖1 , (5)

A←A+
(
s(t)s(t)T

)
⊗ Γ(t) , (6)

b←b+ vec
(
s(t) ⊗

(
α(t)TΓ(t)

))
, and (7)

L←mat

((
1

T
A+ λIl×dθ,l×dθ

)−1
1

T
b

)
. (8)

where ‖v‖2A = v>Av, Γ(t) is the Hessian of the PG lower
bound on J (α(t)), ⊗ is the Kronecker product operator,
Im,n is the m×n identity matrix, and A and b are initialized
to be zero matrices. PG-ELLA is given as Algorithm 1.

V. DISTURBANCE REJECTION FOR
ROBOTICS VIA LIFELONG LEARNING

This paper’s goal is to adapt PG-ELLA to learn policies
for robotic control, using both simulated and real Turtlebots,
as well as simulated AR.Drones. In our previous work, PG-
ELLA was only ever evaluated on the control of simple
dynamical systems with well-known models, such as inverted
pendulums.

Specifically, we focus on the well-known problem of
disturbance rejection in robotics. In disturbance rejection,
it is assumed that the nominal dynamics of the plant are
additively disturbed by a signal ω. The system dynamics
are given by ẋ = f(x) + ω, where f : Rdx × R → Rdx ,
and ω ∈ Rdx . The goal is to determine the control input that
minimizes the effect of the disturbance in the return function,
so that the plant can execute this task.

Algorithm 1 PG-ELLA (k, λ, µ) [5]

1: T ← 0
2: A← zerosk×d,k×d, b← zerosk×d,1
3: L← RandomMatrixd,k
4: while some task Z(t) is available do
5: if isNewTask(Z(t)) then
6: T ← T + 1
7:

(
T(t), R(t)

)
← getRandomTrajectories()

8: else
9:

(
T(t), R(t)

)
← getTrajectories

(
α(t)

)
10: A← A−

(
s(t)s(t)T

)
⊗ Γ(t)

11: b← b− vec
(
s(t)T ⊗

(
α(t)TΓ(t)

))
12: end if
13: Compute α(t) and Γ(t) from T(t) using PG
14: s(t) ← arg mins

∥∥α(t) −Ls(t)
∥∥2

Γ(t) + µ ‖s‖1
15: A← A +

(
s(t)s(t)T

)
⊗ Γ(t)

16: b← b + vec
(
s(t)T ⊗

(
α(t)TΓ(t)

))
17: L← mat

((
1
T A + λIk×d,k×d

)−1 1
T b
)

18: for t ∈ {1, . . . , T} do: θ(t) ← Ls(t)

19: end while

There are well-known optimal control [20], [21] tech-
niques to solve this problem, if there is an available mathe-
matical model. However, if such a model is not available, or
there is a partial knowledge of the model, formal solutions
are not effective. RL offers one alternative solution to this
problem, but in a single-task setting. It would require numer-
ous interactions with the environment to learn an effective
control policy to compensate for the disturbance. However,
in a lifelong learning setting, the learner could build upon its
existing knowledge in controlling other systems, each with
their own disturbances, to rapidly learn a control for a system
with a novel disturbance. We assume that the learner attempts
to optimize control policies for a set of robots, all of which
have the same nominal dynamics, given by ẋ = f(x). Each
robot is affected by a different disturbance function ω(t).
All ω(t) share the same structure but different parameters,
e.g., all the disturbances are constant but different, all are
sinusoidal with different phases or amplitudes, etc.

Lifelong machine learning takes advantage of the potential
for knowledge transfer among the different tasks, learning
how to compensate for the disturbance without requiring
a mathematical model describing the system dynamics. A
reward function is designed so that the lifelong learner
penalizes the effect of the disturbance over either a realistic
simulated robot or an actual one. In the next section, we
present our application of lifelong learning to this problem
of robotic control under disturbances.

VI. EXPERIMENTAL DESIGN

In our disturbance rejection scenario, we focused on
learning control policies for navigating vehicles to a goal
location as they experience disturbances in their actuators.
We cover two case studies using two different commercial
robotic platforms: the Turtlebot 2 [9] and the AR.Drone



quadrotor [10]. We emulate disturbances in their actuators,
namely, wheel servos and propellers, respectively. Each case
study involves multiple robots from a single platform, and
the disturbances are assumed to be different for each robot.
The main goal in both case studies is to build a knowledge
base from previously learned policies that allows each robot
to compensate for the disturbance and fulfill its goal, while
transferring this knowledge to new robots with different
disturbances. This section describes the validation procedure
of our lifelong machine learning approach. In order to obtain
the simulation and experimental results we use the Hydro
version of the Robotic Operating System (ROS) [25].

A. Case Study: Disturbance Rejection on Turtlebots

In this scenario, each Turtlebot faces a disturbance con-
sisting of a bias on its angular and linear velocity, forcing
the robots to compensate for the induced failure to navigate
successfully. Note that this type of disturbance in actuation is
common in physical robots and autonomous ground vehicles,
stemming from a variety of sources, such as calibration
issues, wear in the drive train, or interference from debris.
To simulate these disturbances, we induce a random and
constant disturbance to the control signal that is drawn
uniformly from [−0.1, 0.1] ⊂ R for each robot and measured
in m/s. These limits were selected to provide a large noise
that was within the bounds of the Turtlebot control system.

To simulate lifelong learning on numerous Turtlebots, each
with their own disturbances, we conducted simulations using
the high-fidelity Gazebo simulator [26], [25]. To show that
lifelong learning is similarly effective on real robots, we also
evaluated our approach on five real Turtlebots.

We assume little knowledge of the Turtlebot’s dynamics.
In our application, each robot’s state is defined as x =
(ρ, γ, ψ)T, with ρ, γ and ψ as illustrated in Fig. 1b. To extract
state features for learning, we use the following nonlinear
transformation of the position and heading angle:

φ(x) =


ρ cos(γ)

γ
cos(γ) sin(γ)

γ (γ + ψ)

1

 . (9)

Given the stochastic policy πθ(t) ∼ N (a(t),Σ) for the t-
th Turtlebot, the control action is then specified by a(t) =

θ(t)
T
φ(x) = (u,w)T where u and w are the linear and

angular velocities of the robots. This particular choice of
nonlinear transformation is inspired by a simplified kinematic
model for unicycle-like vehicles in polar coordinates [27]. In
this model, the state space is given by X ⊂ R3 and the action
space is described by A ⊂ R2. This simplified kinematics
model ignores contributions to the dynamics of the system
from the robot’s mass, damping and friction coefficients, as
well as inputs such as forces and torques.

1) Simulation Methodology: In these experiments, we use
FD [1] as the base learner in PG-ELLA for its simplicity and
good performance in simulation, despite its known stability
issues (which we did not experience). We generated 20 sim-
ulated Turtlebots, each with a different constant disturbance

and a unique goal, both selected uniformly. This number of
robots provided a large task diversity, while still being small
enough to simulate practically.

To evaluate the system performance, we use FD as our
PG method to train 19 robots initial policies for M = 100
iterations with n = 21 roll-outs per iteration and H = 70
time steps per roll-out. If the robot reached the goal in
less than 70 time steps, the experiment continues to run to
completion ensuring that a good policy reaches the goal and
stops. The 20th robot is initialized with the mean policy of
the observed tasks and trained for only M = 10 iterations.
Note that all systems in our experiment require more than 10
iterations to converge to a good controller, so subsequent pol-
icy improvement is essential for decent performance. These
policies are then used as the α(t) estimates for PG-ELLA.
The number of roll-outs and time steps were selected to allow
for successful learning while minimizing the runtime.

PG-ELLA trains the shared knowledge repository L and
sparse policy representations s(t) using the update equations
given by (5)–(8). For our experiments, we approximate the
Hessian with the identity matrix because it was found to work
well in practice and reduced the number of roll-outs. For
PG-ELLA’s parameters, we use k = 4 columns in the shared
basis, sparsity coefficient µ = 1 × 10−5, and regularization
coefficient λ = 1 × 10−3. The learning rate was set to δ =
1×10−6 and the policy’s standard deviation was σ = 0.001.

2) Application to Physical Robots: To demonstrate our
method on a real Turtlebot, we learned four tasks using
conventional PG and then we evaluate the transfer to a fifth
task. We reduce the number of roll-outs to n = 11 and
the number of learning iterations to H = 30 to minimize
the experimentation time. In contrast to simulation, physical
robots have battery limitations, and the continuous generation
of random trajectories require a human presence to guarantee
correct execution of the experiments. All other parameters,
including the added noise, are kept the same as the simula-
tion. To get position information, a beacon which can easily
be segmented from camera data is used to mark the goal. The
Turtlebot is equipped with a Kinect whose depth information
provides the angle and distance. If the robot loses sight of the
goal, it enters a recovery mode which rotates it toward the
last known goal location, and a penalty is applied for each
time step spent in recovery mode. With the fewer number
of iterations, only one of the four Turtlebots used as source
tasks reached the goal. However, all four systems did exhibit
learning improvement. We showcase the performance of the
physical robots in a video submitted in parallel to IROS.

3) Turtlebot Results: Fig. 2 compares the reward for
policies learned by PG-ELLA on the 20th task against PG,
averaged over 20 trials. We begin measuring performance for
PG-ELLA at 10 iterations, since the initial seed policies for
PG-ELLA were learned using those first 10 iterations. We
then plot the learning curves as the polices are improved by
PG for an additional 90 learning iterations.

These results show that PG-ELLA is able to both success-
fully reconstruct and improve the control policies through
positive transfer with respect to PG. This is clearly shown



(a) Turtlebot

ψ

γ

ρ X

Y

w
u

}{G

}{P

Initial

Final

(b) State variables

Fig. 1: (a) The Turtlebot 2 model in
Gazebo, and (b) its state variables in the
simplified go-to-goal problem.

Iteration

0 20 40 60 80 100

R
e
w

a
r
d

-160

-140

-120

-100

-80

-60

PG-ELLA

PG

Fig. 2: Learning curves for PG and
PG-ELLA in the Turtlebot simula-
tion, averaged over 20 trials.

Iteration
0 20 40 60 80 100

C
h

a
n

g
e

 i
n

 R
e

w
a

rd

-5

0

5

10

15

Fig. 3: Change in reward as a mea-
sure of positive transfer achieved by
lifelong learning on Turtlebots.

Iteration

0 10 20 30

R
e
w

a
r
d

-350

-300

-250

-200

-150

-100

-50

PG-ELLA

PG

Fig. 4: Learning curves on the real Turtlebots. PG-ELLA (red
line) on a new Turtlebot performs better than PG on five other
systems (light blue line) and their mean (dark blue line).

by both the initial “jump-start” improvement at the 10th
iteration, and the consistently better learning performance
over the first 100 iterations. Fig. 3 depicts the change in
reward over the learning curve, showing positive transfer
between tasks. After only 10 iterations to initialize α(t), we
obtain improved initial performance and better reward on
PG-ELLA via transfer from the shared knowledge base.

Fig. 4 shows the results of learning on real Turtlebots with
the effect of disturbances, confirming the improvement from
PG-ELLA on physical systems. These results compare the
performance of PG-ELLA (red line) on a new Turtlebot to
the performance of PG on four systems (light blue lines)
and their mean (dark blue line). In particular, the PG policy
exhibiting the best performance is the robot that was not
affected by any disturbance, yet is still out-performed by
PG-ELLA. These results also show that PG is negatively
affected by the disturbances in many cases, while PG-ELLA
exhibits better and more consistent learning.

One possible explanation for this is that PG’s learning is
hindered on the real Turtlebots due to the noisy environment
of the physical robots, the intricacies of the empirical reward
function, and the presence of local optima in the objective
function. By sharing knowledge from other tasks, PG-ELLA
is able to compensate for these aspects, and exhibit more
rapid learning—this hypothesis agrees with our results on
the larger set of simulated Turtlebots.

B. Case Study: Disturbance Rejection on AR.Drones

Aerial vehicles are a compelling domain for testing our
approach. We use the AR.Drone quadrotor and, as in the
Turtlebot case study, we evaluated our approach using the
TUM AR.Drone Simulator [28] and Gazebo in order to
simulate lifelong learning over numerous quadrotors, each
with their own disturbance. For each quadrotor, our approach
learns a policy to land the AR.Drone on a marker, while
the quadrotor is affected by a disturbance in its propellers
that bias its motion. The disturbance is emulated by a bias
on the linear velocities in the x and y coordinates, namely
vx and vy , as may commonly be caused by wind or wear
on the rotors. To simulate these disturbances, we induced
a random and constant disturbance drawn uniformly from
[−0.15, 0.15] ⊂ R for each robot and measured in m/s.

We localize the quadrotor using its downward-facing cam-
era with the assumption that the landing pad marker is
visible. Each robot’s state is defined as x = (x, y, z)T, where
x and y are the Cartesian coordinates of the goal relative
to the center of the camera as the origin. The difference
between the quadrotor’s altitude and the landing altitude is
given as z, measured using the robot’s on-board sonar height
sensor. The state features for learning are the normalized
values of the robot’s state. The normal range of values for
x and y are ±2 and ±1.5, respectively. If the landing pad
marker is not visible, the (x, y) state is represented as xh = 4
and yh = 3, which is simply double the normal maximum
states. During the learning phase, at time-step h, when the
quadrotor is at zh = 0 (0.4 m in altitude) and the landing
pad marker is at xh = [−0.7, 0.7] and yh = [−0.8, 0.6], then
the landing action is triggered. There is an offset in y since
the downward-facing camera underneath the quadrotor is not
centered. The landing altitude of 0.4 m was set because,
based on the specifications, this is the lowest altitude possible
that the sonar sensor accurately measures, and therefore
considered a good altitude to land from.

Landing occurs regardless of the quadrotor’s orientation,
so the system send signals in the format of a ROS Twist
message. It is composed of directives to control the linear
velocity of the quadrotor in the x, y, and z directions. Valid
actions are in the range of ±1m/s for each axis of control.

Two safety features were added to ensure that the quadro-



(a) Z state (b) X ,Y state

Fig. 5: (a) The AR.Drone 2 model in
Gazebo, and (b) downward-facing camera
feed used for localization.

Iteration

0 20 40 60 80 100

R
e
w

a
r
d

-2000

-1500

-1000

-500

PG-ELLA

PG

Fig. 6: Learning curves for PG and
PG-ELLA in the AR.Drone simula-
tion, averaged over 20 trials.

Iteration
0 20 40 60 80 100

C
h

a
n

g
e

 i
n

 R
e

w
a

rd

-100

0

100

200

300

400

500

Fig. 7: Change in reward as a mea-
sure of positive transfer achieved by
lifelong learning on AR.Drones.

tor does not get damaged when the learned policy is applied
to a physical robot: 1) when the landing marker is out of
sight, the quadrotor is set to hover mode, and 2) with a
maximum height sensor range of 3.0m, when zh ≥ 2.4m,
the system overrides the action by −0.1m/s, forcing a
downward elevation. These safety features are not needed
for our simulation; this was done in anticipation of future
work involving a physical AR.Drone, to make the simulated
AR.Drone more similar to the real quadrotor.

1) Simulation Methodology: We generated 20 simulated
quadrotors, each with a different constant disturbance se-
lected uniformly. Using FD as our PG learner, we train 19
robot’s initial policies for M = 100 iterations with n = 15
roll-outs per iteration and H = 150 time steps per roll-out.
The 20th robot is initialized with the mean policy over the 19
observed policies and is trained for only M = 10 iterations.
However, out of the 19 robots with 100 learning iterations,
3 systems did not converge to a good controller.

We follow the same methodology as for the Turtlebot to
train PG-ELLA, setting k = 4, µ = 1 × 10−5, and λ =
1×10−6. The learning rate was δ = 1×10−6 and the policy’s
standard deviation was set to σ = 0 to make it deterministic.

2) AR.Drone Results: Since the 20th task for PG-ELLA
was reconstructed from a policy after 10 iterations, we start
comparing PG-ELLA with PG after those 10 iterations, then
continue learning for more 90 iterations using PG. Fig. 6
shows the learning curve for policies trained by PG-ELLA
(red line) against those learned by PG (blue line), averaged
over 20 tasks. The results show that PG-ELLA is also
effective in the quadrotor domain for both reconstructing
and improving the learned policies. Similar to the Turtlebots,
we see improved initial “jump-start” performance and more
rapid learning than PG. Fig. 7 depicts this gain in reward.

VII. CONCLUSIONS

We showed that lifelong learning is effective for dis-
turbance rejection on Turtlebots and AR.Drones, in both
simulated 3D environments and on real robots, outperform-
ing single-task learning. This work is intended to lay the
foundation for fault-tolerant control on multi-agent systems
based on knowledge learned from previous experience.

REFERENCES

[1] J. Kober, J. A. D. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. of Robotics Research, July 2013.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 1998.

[3] M. E. Taylor and P. Stone, “Transfer learning for reinforcement
learning domains: A survey,” J. Mach. Learning Research, vol. 10,
pp. 1633–1685, 2009.

[4] S. Thrun, “Is learning the n-th thing any easier than learning the first?”
Advances in Neural Inform. Process. Syst., pp. 640–646, 1996.

[5] H. Bou Ammar, E. Eaton, and P. Ruvolo, “Online multi-task learning
for policy gradient methods,” Int. Conf. on Mach. Learning, 2014.

[6] H. Bou Ammar, E. Eaton, J. M. Luna and P. Ruvolo, “Autonomous
cross-domain knowledge transfer in lifelong policy gradient reinforce-
ment learning,” Int. Joint Conf. on Artificial Intell., 2015.

[7] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” Neural Inform. Process. Syst., vol. 99, pp. 1057–1063, 1999.

[8] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learning, vol. 8, no. 3-
4, pp. 229–256, 1992.

[9] “Turtlebot 2,” [Online]. Available: www.turtlebot.com, 2016.
[10] “Parrot AR.Drone 2,” [Online]. Available: ardrone2.parrot.com, 2016.
[11] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”

Advances in Neural Inform. Process. Syst., pp. 849–856, 2009.
[12] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing,

vol. 71, no. 7, pp. 1180–1190, 2008.
[13] A. Kleiner, M. Dietl and B. Nebel, “Towards a life-long learning soccer

agent,” in RoboCup 2002: Robot Soccer World Cup VI. Springer, 2002.
[14] S. Thrun and T. M. Mitchell, Lifelong robot learning. Springer, 1995.
[15] A. White, J. Modayil, and R. S. Sutton, “Scaling life-long off-policy

learning,” in IEEE Int. Conf. on Development and Learning and
Epigenetic Robotics (ICDL). IEEE, 2012, pp. 1–6.

[16] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[17] N. S. Nise, Control Systems Engineering, 7th ed. Wiley & Sons, 2010.
[18] B. Urgaonkar, G. Pacifi, P. Shenoy, M. Spreitzer, and A. Tantawi,

“Analytic modeling of multitier internet applications,” ACM Trans. on
the Web, vol. 1, no. 1, May 2007.

[19] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. New York: Springer, 2008.

[20] F. Lewis & V. Syrmos, Optimal Control, 3rd ed. Wiley & Sons, 2012.
[21] P. Dorato, C. Abdallah, and V. Cerone, Linear Quadratic Control.

Krieger, 2000.
[22] P. Ruvolo and E. Eaton, “ELLA: An efficient lifelong learning algo-

rithm,” Int. Conf. on Mach. Learning, vol. 28, pp. 507–515, 2013.
[23] A. Kumar and H. Daume III, “Learning task grouping and overlap in

multi-task learning,” Int. Conf. on Mach. Learning, 2012.
[24] B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, and M. Pontil,

“Multilinear multitask learning,” in Proc. of Int. Conf. on Mach.
Learning, 2013, pp. 1444–1452.

[25] “Ros.org,” [Online]. Available: http://www.ros.org/, 2016.
[26] “Gazebo,” [Online]. Available: http://gazebosim.org/, 2016.
[27] M. Aicardi, G. Casalino, A. Balestrino, and A. Bicchi, “Closed loop

smooth steering of unicycle-like vehicles,” in Proc. of IEEE Conf. on
Decision and Control, 1994, pp. 2455–2458.

[28] H. Huang and J. Sturm, “tum simulator - ros wiki,” [Online]. Avail-
able: http://wiki.ros.org/tum simulator, 2016.


