Using Task Features for Zero-Shot Knowledge Transfer in Lifelong Learning

Summary
Knowledge transfer between tasks requires an accurate estimate of the inter-task relationships, which is inefficient in lifelong learning settings. We develop a lifelong reinforcement learning method that incorporates high-level task descriptors to model the inter-task relationships.

→ Improves the performance of the learned task policy
→ Accurately predicts the policy for a new task via zero-shot learning, given only the task description

Motivation
Lifelong learning accelerates training of each consecutive new task by building upon previously acquired knowledge via transfer

→ Relevant knowledge/tasks must be identified before transfer can occur
→ Requires interacting with the new task (i.e., sampling trajectories, learning, etc.) to characterize it

Background: Policy Gradient (PG) Methods
- Agent interacts with environment, taking consecutive actions
- PG methods support continuous state and action spaces
 - Have shown recent success in applications to robotic control

Background: Task Descriptors
- Policy for task
- Improves the performance of the learned task policy
- Requires interacting with the new task (i.e., sampling trajectories, learning, etc.) to characterize it

Alternative Idea: Can we use a high-level description of the task to identify relevant knowledge for transfer in lifelong learning?

Example task descriptor: physical specification of a quadrotor

Sharing Knowledge Between Multiple Tasks
- Policy for task: \(\pi_t : A \times X \to [0, 1] \)
- Factor the policy as \(\theta_t = L s_t \)

Multi-Task Learning (TaDeML)
- Fit via alternating optimization

Lifelong Learning (TaDeLL)
1. Merge \(L \) and \(D \) into single dictionary \(K \)
2. Estimate policy \(\alpha_t \) via single-task learning
3. Sparse code estimated policy and descriptor in \(K \)
4. Update \(L \) and \(D \)

Incorporating Task Descriptors into Lifelong Learning
Key Idea: Relate policy parameters and task descriptors via coupled dictionary learning

Algorithm 1
1. \(L = \text{RandomMatrix}_{A \times \mu} \)
2. while some task (2D or m(t)) is available do
 1. Compute \(\alpha^0 \) and \(\Theta_0 \) from \(\alpha^0 \)
 2. \(\Theta(t) = \text{sampleTrajectory}(Z(t)) \)
 3. \(\Theta(t) = \text{sampleTrajectory}(Z(t), \alpha(t)) \)
 4. end if

Experimental Results on Dynamical Systems
- Train on 40 different consecutive control tasks, transfer to new task
- Task descriptors improve policies from multi-task and lifelong learning

Acknowledgements and Notes
This research was supported by ONR grant N00014-11-1-0139 and AFRL grant FA8750-14-1-0069.
* Authors contributed equally