Main Contribution: an autonomous framework for learning inter-task mappings

Approach
Phase I: Learn cross-domain mapping via unsupervised manifold alignment
Main Contribution: an autonomous framework for learning inter-task mappings

Approach

Phase I: Learn cross-domain mapping via unsupervised manifold alignment

Phase II: Cross-domain transfer via learned inter-task mapping
Unsupervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via Manifold Alignment

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, Matthew Taylor

Main Contribution: an autonomous framework for learning inter-task mappings

Approach

Phase I: Learn cross-domain mapping via unsupervised manifold alignment

Phase II: Cross-domain transfer via learned inter-task mapping
Main Contribution: an autonomous framework for learning inter-task mappings

Phase I: Learn cross-domain mapping via unsupervised manifold alignment

Phase II: Cross-domain transfer via learned inter-task mapping
Unsupervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via Manifold Alignment

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, Matthew Taylor

Main Contribution: an autonomous framework for learning inter-task mappings

Approach

Phase I: Learn cross-domain mapping via unsupervised manifold alignment

Phase II: Cross-domain transfer via learned inter-task mapping
Unsupervised Cross-Domain Transfer in Policy Gradient Reinforcement Learning via Manifold Alignment

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, Matthew Taylor

Cart-Pole to 3-link Cart-Pole

Cart-Pole to Quad-Rotor

We demonstrate robust cross-domain transfer between highly dissimilar tasks, and show that transfer quality is correlated with manifold alignment quality.