ESE112

Course Overview

Introduction

- Instructor:
 - Diana Palsetia
 - Email: palsetia@seas.upenn.edu

- Meeting Times:
 - Lecture - T: 11:00-1 in Moore 212
 - Lab - W: 4-6 and F 10-12 in Moore 101 (RCA Lab)

- Course Website:
 - http://www.seas.upenn.edu/~ese112/

Goals of Engineering Degree

- Able to apply knowledge of mathematics, and science to solve engineering problems
 - How to light bulb vs. how to light an entire city!

- Develop problem solving and critical thinking skills
 - Investigate solutions by applying and evaluating information gathered from, or generated by observation, experience, and reasoning

- Learn how to communicate your ideas to others in the field

ESE major overview

- Electrical and Systems Engineering (ESE)
 - BSE Programs
 - http://www.ese.upenn.edu/ugrad/bse.html

- Electrical Engineering
 - Technology behind
 - Power & Energy
 - Gadgets: LCD displays, computers, phones, robots
 - Communication Devices: Radio, cell phones, WiFi, satellites
 - Electrical engineers are concerned with
 - Electricity to transmit energy (power engineering)
 - Using electric signals to sense, store and transmit information (electronics engineering)

- System Science and Engineering (SSE)
 - Aspects of engineering pertaining to a system
System

- An arrangement of parts which interact with each other within the system's boundaries (form, structure, organization) to function as a whole

ESE112

Integrated introduction to selected fundamental concepts and principles in ESE
- Basic Circuit theory
- Computing
- Communication and Control theory

ESE (contd..)

SSE contd..
- Designing and developing a system requires integration of several scientific and technical fields
 - Math and Sciences
 - Computing (computer science)
 - Mechanical & Material Engineering
 - Many more...
- Computer Engineering
 - Design & building computers (embedded and general purpose) & networking systems
- Sample curriculum can be found at:

Objectives
- Get perspective for ESE
 - Unique set of labs that give you perspective to ESE
- Programming skills
 - A must have skill – just not for CS students
- Communicate technical content
- Work on exciting and hands on projects
 - E.g. Maze Navigating Bots, Sumo Bots
Boe-Bot Platform w/ Javelin Stamp

- Short for Board of Education robot used in educational classes

- Boe-Bot Consists of:
 - plug in microcontroller
 - 2 small servo motors
 - a bread board
 - a main circuit board
 - small aluminum chassis

- Javelin Stamp
 - Small, programmable, integrated microcontroller system with a built-in Java interpreter on the main circuit board.
 - Functions:
 - read sensor data
 - communicate with other devices
 - control servos and motors

Boe-Bot Platform w/ Javelin Stamp

- Exemplifies Core ESE Disciplines
 - EE – electrical devices
 - E.g. Sensors convert measurements of temperature, touch, light, acceleration, or magnetic field into electrical signals
 - CE – embedded computation
 - E.g. Javelin, which is a specialized computer used to read input devices (sensors) and to control output devices (motors, relays, servos, lights, sirens, etc.)
 - SSE – composition
 - Chassis, servos and electrical/electronic components.

Grading

- 75% - Lab assignment and Write-ups
 - Comprises of pre-lab write-up, in class activity and post-lab write-up
 - No makeup for lab assignments
 - Pre-lab write-ups are due at start of the lab period
 - Late pre-labs will not be accepted
 - Post-lab write-ups are submitted after completion of lab activity
 - Late write-ups will incur 10% penalty per day and will not be accepted beyond 5 days

- 25% - Final Exam
 - Covers all material
 - During university allotted time slot

Lab Logistics - Prelab

- Before lab period we will post lab with related background material

- Questions termed as “Pre-lab” are to be completed & turned in at the start of the lab
 - Work individually
 - Accept when working with the Boe-Bot setup
 - Answers should be typed using a word editor
Lab Logistics – Post Lab Write-up

- Questions termed as “Post-lab” are to be completed after the lab activity
 - Communicate the findings and accomplishments of your lab experiments
- Is to be done individually
- Must also must be typed
 - See guidelines on the website
- You may use course notes & lectures provided
 - Any external source must be properly cited
 - You are not allowed to use sources from past students
 - Please read Penn's Code of Academic Integrity from course site

Lab Logistics – Working in Lab

- Labs are to be done in groups of 2
- Collaborate within your group but you cannot discuss the lab with other groups
- For Boe-Bot labs, work with a partner permanently till the end of the semester – why?
 - Your team will be given a Boe-Bot to keep till the end of the semester
 - Your team will return all material at end of the semester

Lecture Logistics

- 2 hour lecture – meets once a week
 - Attendance is not mandatory but highly recommended!
- Topics
 - Basic Circuit Theory
 - Programming with Java
 - Boe-Bot material
 - Material specific to lab
- There are no textbooks for the course
 - Lab documents and lecture notes will posted on the course website

Movie Making

- Contribute towards developing feature for ESE112 showcasing Boe-Bot w/ Javelin platform
- Make footage of time spent working on certain lab activities and showing off the final result
- More details with specific lab activities