Introduction to ESE112 Lab

Lab Overview

Staff

- Instructor:
 - Diana Palsetia
 • Email: palsetia@seas.upenn.edu

- Lab Co-ordinator:
 - Sansern Somboonsong
 • Email: sansern@seas.upenn.edu

Lab Logistics – Grading

- Grading (Lab is 0.5 cu)
 - Pre-lab exercise: 20%
 - Lab Report Write-ups: 60%
 - Quizzes: 20%
 • Announced a week in advanced

- Missing Labs
 - Due to the nature of the course, making up missed labs is not possible.
 - Unexcused absences will result in a 15% penalty for that lab

Lab Logistics - Prelab

- Before lab period we will post lab with related background material
 - http://www.seas.upenn.edu/~ese112/
 - There is no textbook for this course

- Questions termed as “Pre-lab” are to be completed & turned in at the start of the lab
 - Work individually
 - Preferably typed
Lab Logistics - Lab Report

- Post-lab Write-ups
 - A technical report to communicate the findings of your lab experiments
 - Is to be done *individually*
 - The report must be typed
 - See report writing guidelines document (coming soon!)
 - You may use course notes & lectures provided and any external source (properly cited) with exception of past years lab/students

Lab Logistics - Working in Lab

- Labs are to be done in groups of 2 or 3
 - You are encouraged to collaborate within your group and use any resources available to you
 - However, you may not discuss the lab with other groups

Lab Logistics - Working in Lab (contd..)

- Throughout the semester you may choose your *own* groups
 - HOWEVER, you may not work with the same person *twice* throughout the semester
 - Post-lab experience will ask what your and your group-mates contributions to the lab
 - In extreme cases your grade will be adjusted based on your effort
 - If you feel for any reason you cannot reasonably work with one or more of your group-mates, see the instructor immediately

Lab Goals

- Introduce you to Electrical and Systems Engineering (ESE)
 - Expose you to topics you will see in future courses
- Develop problem solving and critical thinking skills
 - Investigate solutions by applying and evaluating information gathered from, or generated by observation, experience, and reasoning
- Adapt to different thinking and working styles when working in a team
ESE

- Electrical Engineering
 - Technology behind
 - Power & Energy
 - Gadgets: LCD displays, computers, phones, robots
 - Communication Devices: Radio, cell phones, satellites

- System Science and Engineering (SSE)
 - Aspects of engineering pertaining to a system

ESE (contd..)

System

- An arrangement (pattern, design) of parts which interact with each other within the system’s boundaries (form, structure, organization) to function as a whole

Ben Franklin – Urban Challenge
http://www.benfranklinracingteam.org/

Rhex
http://kodlab.seas.upenn.edu/~edubot/wiki/index.php/Main_Page

ESE (contd..)

SSE

- Designing and developing a system requires integration of several scientific and technical fields
 - Math and Sciences (physics, chemistry)
 - Basis of Electrical Engineering
 - Computing (computer science)
 - Mechanical & Material Engineering
 - Biology/Bioengineering

Computer & Telecommunications Engineering (CTE)

- Computer Systems & Information Exchange (Internet)
 - Design & Building computers (embedded and general purpose) & networking systems

ESE (contd..)

Working on a Physical System

- In ESE112 we will use Edubot
 - hexapedal (six legs) robot
 - independently moves forward or backward
 - climbs over a variety of terrains

- Exemplifies Core ESE Disciplines
 - EE – electrical devices; electrical circuits
 - CE – embedded and distributed computation
 - SSE – composition, multiple hierarchies of subsystems

ESE112
Lab Content

- Electrical Engineering concepts in Robotic System
 - Robots use sensors to get information and actuators for navigation
 - Both components convert one type of energy to or from electrical energy
- Lab1: Intro to Concepts
 - Theory: Voltage, Current, Resistance, Electrical laws (Kirchhoff Laws)
 - Lab: Make changes Electro-mechanical Mouse system based on the theory

- Lab2: Build a Light Sensor
 - Theory: Electrical Components & Lab devices
 - Lab: Design and Implement sensor that turns off when it is dark

Lab Content (contd..)

- Math & Computing concepts in Robotic System
 - Idea is to built autonomous navigating robots
 - Robots are equipped processors that can command the robot sub-system
 - We can program the robot to evaluate its surrounding as it moves
- Lab3: Interact with robot hardware & software
 - Theory: Linux Platform
 - Lab: Downloading program on robot hardware
- Lab 4: Dance Lab
 - Theory: “Kinematics” and Leg movement
 - Lab: Write a Java program to choreograph the robot to a song
- Lab 5: Optimize walking gait of the robot
 - Theory: Derivative, min/max, gradient descent
 - Lab: Write a Java program to would maximize the walking speed

Lab Content (contd..)

- Concepts from Mechanical & Material Engineering and Biology
 - Lab 6: Tentative

Edubot Demo

- Lets take a walk with the Edubot