
ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 1 of 20

LAB 01

In this lab we will do the following:

1. View and capture voltage produced by your phone (or computer)
2. Build an analog-to-digital converter using an “Arduino” microcontroller

Background:

In lecture, you learned that sound is a vibration of particles in the air. A microphone is a device
(transducer) that converts that vibration into voltage. If we sing a pure tone into a microphone
and plot the output of the microphone with time, we’d see a sinusoidal pattern as shown in the
figure below. We note the amplitude of the voltage is changing as time progresses. We recall
that this voltage is continuous with time.

In lecture, you also learned that in order to “digitize” this signal, we need to break it up into
discrete segments, that the process of digitization is taking a continuous signal and converting it
into a discrete signal that can then be manipulated by a digital computer. A device known as an
analog-to-digital converter (ADC or A2D) is the component needed to digitize our signal. An
A2D will have a sampling rate: meaning how the x-axis (time) will get partitioned. An A2D will
have a quantization value, meaning how the y-axis (voltage) will get partitioned. The A2D will
then take a “sample” or measurement of the voltage at regular intervals and produce a digital
representation of those samples.

In lab today, we’ll take in audio using a microphone and then build our own A2D using an
Arduino microcontroller to digitize a continuous audio signal!

Am
pl

itu
de

(V

ol
ta

ge
)

Time (seconds)

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 2 of 20

Lab – Prelab:

1. What is the relationship between Sampling Frequency and Delay between samples
(period)? [provide a symbolic equation] For context, read through Section 3 of the Lab.

2. Complete the following table (you will need these values for the later part of Section 3),

assume that the time in between each sample is the delay plus 18 microseconds needed
for the analogRead() function. Total Delay includes the 18 microseconds delay, while
Delay must Add does not include the 18 microseconds delay.

Frequency Total Delay between

Samples (in microseconds)
Delay must add to achieve
Total Delay between
Samples (in microseconds)

500Hz
1000Hz
5000Hz

50000Hz

3. Arduino IDE download and setup:

a. https://learn.adafruit.com/introducing-adafruit-itsybitsy-m4/setup (Complete
up until Blink)

i. You won’t be able to run Blink portion until after you get your Lab Kit.

ii. Once you do have a kit, it is a good initial test.

b. After you have successfully downloaded all of the necessary board packages,
make sure to switch the board type in the Arduino IDE to the “Adafruit ItsyBitsy
M4 (SAMD 151)” by navigating to Tools -> Board -> Adafruit ItsyBitsy M4

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 3 of 20

4. Read through Section 3. Use the Arduino Language reference guide
(https://www.arduino.cc/reference/en/) as necessary to understand the operation of
the code in Section 3.

5. Watch the video about breadboards
https://www.youtube.com/watch?v=fq6U5Y14oM4

or read about them: https://learn.sparkfun.com/tutorials/how-to-use-a-
breadboard/all#why-use-breadboards

6. Complete the canvas prelab 1 quiz with your answers to questions 1 and 2 above.

When lab starts, compare your answers with your assigned partner. If your answers differ,
discuss amongst yourselves and try to resolve your differences.

Early during the lab session, a TA will check you off on prelab. Go ahead and start working
on the lab. It will take some time for the TAs to get around to all the groups.

 If you have any troubles getting the Arduino and Adafruit tools setup on your laptop, you
can use these tools on the computers in Detkin.

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 4 of 20

Lab Procedure:

Lab – Section 1: Understanding Your Lab Kit

1. Obtain a breadboard (it’s a white board with holes in it in your lab kit).

a. A breadboard allows you to prototype by connecting
various electric components when inserted.

b. Each row is designated with a number (1-30).
c. The five holes in each row are electrically connected.
d. The long columns on the sides of the breadboard,

marked by a + or -, are the power rails of the board,
where each column is electrically connected.

e. Following is a view of the back of a different (larger) breadboard that may help
explain how the holes on the front are connected together.

For reference the front of the bread board is:

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 5 of 20

2. Next, grab the Adafruit Itsy-bitsy

a. This board will be our micro-controller for the semester!
b. We can connect various electrical components and your computer to the Itsy-

Bitsy:
i. This allows us to program our board and interface with our digital circuit.

ii. We will program this board using the Arduino Integrated Development
Environment (IDE) which you should have set up during the pre-lab.

c. Here is a picture of the top of the Itsy-Bitsy:

You should notice female wire connectors in addition to the micro USB
connector. The wire connectors will allow us to connect different components to

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 6 of 20

the board, and the micro USB connector will allow us to connect the board to
your computer.

d. Here is picture of the bottom of the Itsy-Bitsy:

You’ll notice labelled male pins. This will connect into our breadboard.

3. Grab the USB to micro-USB cord provided in the lab kit
(If you don’t have a STANDARD USB Port on your working computer, please let a TA
know):

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 7 of 20

4. Next, grab the male headphone jack, a black wire (common convention used for ground)
and any other wire of your choosing:

a. We will use this headphone jack to sample audio that comes from your laptop,
phone, or MP3 player.

i. Using the same computer as you are using for Zoom as your MP3 player
may raise additional complications in audio routing; we recommend you
use a different audio source, such as your phone.

b. If your laptop/phone/MP3-player does not have a standard female headphone
jack, please let a TA know.

c. Below is a picture of the headphone jack and some wires.

d. Connect the black wire into the green socket on the headphone jack. This is the
socket that is neither Left (L) or Right (R). The symbol you see is often used for
ground. Ground is a reference point for any voltage reading. All readings are relative
to ground.

e. Next, connect the non-black wire into either the Left or Right socket. It shouldn’t
matter which one you choose. This wire will be considered as the audio input.

f. Finally, connect the headphone jack to your audio source. This could either be your
phone or MP3 player.

g. So far, you should have something similar to the following picture:

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 8 of 20

5. Next, grab 2x 10K Ohm, 1x 1K Ohm resistor and 1x 100nF capacitor:

a. The resistors are the blue objects in the plastic bag. You can determine the value
of the resistances by looking at the stamp near the bottom of the holding bands.
It is important that you do not lose track of which resistors are which, so that
you can reuse them in the future.

b. The 100nF (aka 0.1uF) capacitor is the red object in the plastic bin with a 104
label.

c. Here is a picture of the components:

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 9 of 20

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 10 of 20

Lab – Section 2: Setting Up our Circuit for Sampling:

• In this section of the lab you will combine components in the previous section
into one final circuit for audio sampling.

• You will effectively be able to sample any audio that is played from your device.
• You will implement the following circuit:

You’ll want to have your Itsy-Bitsy straddling both sides of the breadboard. The first step is to
connect the Audio ground to the Itsy-Bits ground (pin G). One way to do this is at the negative
ground rail on the breadboard:

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 11 of 20

The next step is to connect the resistors and the capacitors. Both the 1K Ohm and one of the
10K Ohm resistors will connect to the common ground above, but they will go to different ends
of the capacitor. It is best to have the capacitor away from any Itsy-Bitsy pins. The other 10K
Ohm resistor will connect into the same side of the capacitor as its identical twin. This resistor
can go to any other row on the breadboard.

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 12 of 20

Finally, connect the audio input wire into the same row of the capacitor as the 1kOhm resistor.
Connect the other side of the last 10K Ohm resistor to the USB pin of the Itsy-Bitsy, and connect
the other side of the capacitor to pin A0. The final product should look like this:

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 13 of 20

Take a picture of your breadboard circuit for submission!

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 14 of 20

Lab – Section 3: Sampling a pure tone using the Arduino
The Itsy-Bitsy is a microcontroller. This basically means it a little computer that has lots of input
and output and you can control by writing a simple program (we call them sketches on the
Arduino platform)

The goal of this section is to:

● Attach the output of the audio jack to the analog input of the Arduino.
● Modify a small Arduino sketch to sample the input from the audio jack.
● Output the samples taken over time to the Arduino’s terminal output window.
● Capture the output.
● Plot the output.

In this section of the lab, we will use the following code to sample the output of the function
generator with the Arduino:

#define ADC ADC0
#define MAX_RUNS 1
#define MAX_SAMPLES 10000
#define MAX_MICROSECONDS 20000
int incomingAudio[MAX_SAMPLES];
int startTime;
int run = 1;

unsigned long microseconds1;
unsigned long microseconds2;
unsigned long time_elapsed;

void setup() {
 // put your setup code here, to run once:

 Serial.begin(9600) ;
 while(!Serial); // wait for serial to be ready
 Serial.println("Hello World;");
 run=0;
 pinMode(A0,INPUT_PULLUP);

 ADC->CTRLA.reg &= 0b1111100011111111; // mask PRESCALER bits
 ADC->CTRLA.reg |= ADC_CTRLA_PRESCALER_DIV16; // divide
Clock by 16 (original was 64)
 // this PRESCALAR does appear to impact sample
rate...smaller divider ... faster sample
 ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 |// take 1 sample
 ADC_AVGCTRL_ADJRES(0x00ul);// adjusting
result by 0
 ADC->SAMPCTRL.reg = 0x00; // sampling Time Length = 0

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 15 of 20

 Serial.begin(9600) ;
 }

void loop() {
 // put your main code here, to run repeatedly:

 if(run<MAX_RUNS){
 microseconds1 = micros();
 int time_est=0;
 int i;
 for(i = 0; (i < MAX_SAMPLES) & (time_est<MAX_MICROSECONDS);
i++) {
 incomingAudio[i] = analogRead(A0); // read input from A0
 delayMicroseconds(2);
// change line above to change sampling rates; and below

 time_est+=(2+18); // first number (2) should
 // match delayMicrosecond() argument;
 // second is fixed time for analogRead()
 }
 microseconds2 = micros();
 time_elapsed = (microseconds2 - microseconds1);
 int samples = i;

 Serial.print(samples);
 Serial.print(" samples in microseconds: ");
 Serial.println(time_elapsed);
 for(int i = 0; i < samples; i++) {
 Serial.println(incomingAudio[i]);
 }
 run++;
 delay(4000);
 }

}

You can download an initial version of this C code from the syllabus.

An Arduino program is called a sketch and is based on C/C++. For the specifics of Arduino
programming, you can reference the Arduino Language Reference documentation online. The
language is split up into structures, values, and functions. Use this resource to understand the
code snippet shown above, both to familiarize yourself with the language and to understand
the purpose of the code. Note that the Arduino sketch is comprised of these two functions,
setup() and loop(). Effectively, the Arduino sketch behaves like this:

 main() {

 setup();

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 16 of 20

 while(true) { loop(); }

}

The Arduino sketches are making it easier by just letting you specify the contents of these two
functions. The setup() is the one-time code. Here, we use this section to set the speed at
which the Arduino communicates to the host computer over the serial port. The loop() code is
the body that is invoked repeatedly, and is usually the main heart of the program. We don’t
actually want the body code to infinitely repeat, so the run variable is used to ensure the
program only executes our logic once. Each time you reset the Arduino (or download new
code), it starts over and runs the implicit main routine, re-running setup() then repeatedly
executing the contents of loop().

You’ll notice that in order to sample the song data, we are conducting an analogRead() on pin
A0 and storing the result in an array. Subsequently, we delay by a certain parameter to the
delayMicroSeconds() function. It Is important to note that in reality, the analogRead() function
takes about 18 microseconds to complete. Therefore, the time in between samples (which
relates to the sample rate, how?) is whatever parameter is passed to the delay function plus
about 18 microseconds. (hence the 18 in the line time_est+=(2+18);) Note that the sketch
provided measures the time taken for the sample collection loop and prints the total time taken
for the set of samples. Use that printed result to calculate the actual sample rate.

1. Connect your Itsy-Bitsy into the USB on your computer using the USB to micro-USB
cable. If you cannot do so, please notify course staff.

2. Download the set of sample Tones from the link on the syllabus and install them on your
phone or other audio playback device.

3. You will complete steps 4—7 for all three of the tones that are given.
4. Pause the song, restart and connect the audio jack to your device without disrupting

your circuit.
5. Upload the provided sketch to the Itsy-Bitsy

a. Open the Arduino IDE
b. Adjust the settings:

i. Select Tool -> Serial -> #### (the port will differ depending on your OS
and specific machine, but it should be able to detect the Itsy-Bitsy at your
relevant port; it will be something like /dev/tty# on OS/X and Linux and
COM# on Windows)

ii. Select Tool -> Board -> ItsyBitsy
c. Paste the provided code into the IDE.

6. Click the upload button to upload the code to the Itsy-Bitsy. You will see a message
“Done Uploading” once the upload has finished. Once you see this, click to open the

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 17 of 20

Serial Monitor. If you are having trouble uploading even though your board is
connected, double press the reset button on the board in order to make the Itsy-Bitsy
discoverable by your computers.

If it complains about ADC0 not being declared or not having enough space, you
probably haven’t properly configured or selected the ItsyBitsy M4 board.
If it complains about g++ or other tools not being available, you probably haven’t
installed all the AdaFruit packages.

7. After a few seconds, a sequence of numbers will be printed into the Serial Monitor. Wait

until it is finished printing numbers, then select all, and copy and paste into Excel to save
the output. You will need to turn in this Excel sheet with the raw data.

a. Make sure you’re seeing numbers that range between 0 and 1023 (not all of
them, and maybe not all the way to 1023, but many different values in that
range); if you’re seeing all 0’s or only a couple of different values, things
probably aren’t connected correctly. A few common problems include:

i. Not connected – The jack isn’t plugged in, or the wire from the jack isn’t
connected to the correct Arduino pin, or some connection in between is
missing.

ii. Not getting audio from your audio source – if your phone or MP3 player
isn’t actually putting out any sound, you won’t see movement. This can
be problem if the “song” ends. If using a computer source, make sure the
audio port is actually getting output (use the included headphone).

iii. Not getting a strong enough signal from audio source – some students
report that they need to turn the volume all the way up to see the signal.

iv. Circuit misconfigured – If one of the resistors or the capacitor is not
connected properly on either end, that could result in an output that did
not move. Not connecting to pin A0 is also a possibility.

b. Make sure to save the file somewhere (like the shared google drive noted below)
you will be able to recover it!

c. Plotting DATA:

1. In this section, you’ll use a spreadsheet (e.g., Excel, Numbers, Google
Docs spreadsheet (docs.google.com)) to re-construct your original signal from
the samples you collected through its quantization level. Here you are taking the
digital samples and reproducing a visual approximation of the original

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 18 of 20

continuous waveform that you sampled. Use Excel’s plotting capability to
produce a plot like the below plot for each column/tone of your data:

a. In Excel, use Insert->Chart
b. The x-axis should just be the row # (aka the sample #).
c. The y-axis should be the quantization level: 0->1024 (since you

are using the Itsy-Bitsy’s 10-bit quantization data).
d. Use a line plot.
e. Zoom into your plots to show 3 cycles of waveform.

i. You can achieve this by limiting determining how many
data points you choose.

f. Give each of the 3 plots a title and label the axes with the
appropriate units.

g. You will need to turn these 3 graphs in.

2. Now we are going to make 3 new plots where we reconstruct our original

signal from the samples you collected through its voltage.
a. First use your knowledge of the sample rates, and the time

between each sample that they imply, to create 3 new columns that
contain the time in seconds of each of the samples.

b. Next use your knowledge of the voltage range of the Itsy-Bitsy
(0v-3.3v) and the quantization levels to create 3 new columns that
contain the voltage of each of the samples. Make sure to take note of the
sample rates.

i. Hint: We saw numbers that ranged from 0 to 1023; how
can we use this to quantize the voltage?

c. Use these new columns to create 3 new plots.
d. The x-axis should now be: TIME.
e. The y-axis should now be: VOLTAGE
f. Zoom into your plots to show 3 cycles of waveform.
g. Give the plot a title and label the axes with the appropriate units.

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 19 of 20

3. How close does each plot look to a sine wave? Explain the difference
between the plots based on what we’ve covered so far in the course. [1
paragraph]

8. Modify the sketch to sample at 500Hz. You will need to change the argument to the
delayMicroseconds function and the value used in update time_est. What is the
relationship between sampling frequency and delay (Prelab 1)?

9. Repeat steps 6-7 (page 16) for the 300 Hz wave with the modified code sampling at
500Hz and save the sketch and output. You will need to turn in the modified sketch
and data.

a. Close the Serial Monitor between runs to clear it.
b. To rerun the sampling code, press the reset button on your Itsy-Bitsy.

10. Modify the sketch to sample at 5000Hz, run on the 300Hz wave, and save the sketch
and output. You will need to turn in the modified chart and data.

11. Before leaving lab, show your data sets (all 3 waves at the default sampling, 300 Hz
at 500Hz and 5000Hz sampling and plots 7c1 and 7c2) to a TA and answer a few
questions.
This is the Lab Exit Check-off.

12. Share your data: before leaving lab, make sure both partners have access to the
data collected and sketches saved. One way to do this is to setup a shared Google
Drive.

ESE 1500 – Lab 01: Sampling and Quantizing Audio Signals

ESE 1500 – Lab 1 Page 20 of 20

PostLab
1. Assuming that no changes are made to the above code, (delay of 2 microseconds, p14+15),
what is the sample rate?

2. For the 300Hz and 500Hz audio waves sampled at the original frequency of 50000Hz, were
you able to match the data you collected to the claimed frequency in the file name? Describe
how.

3. Plot the 500 Hz and 5000 Hz sampled versions of the 300 Hz wave (if you didn’t already plot
them in lab). Hint: think about how low sampling rate may increase the noise for the connect-
the-dots reconstruction.

a. Describe how these plots relate to the plot from the original (unmodified code) sample
rate. Do they look different? How?
b. What frequencies do the reconstructed sine waves have? [Hint: they may not all appear
to have the same frequency as the original, high-sample rate versions.]

HOW TO TURN IN ANSWER TO THE LAB:
● Answer the prelab questions, assemble the data requested, and answer the questions in

the lab.
● Upload a word document or PDF containing your informal lab report including

o Partner’s name
o Prelab answers
o Wave Plots (highlighted)
o Arduino sketches (Section 3) (highlighted)
o Answer to question in Section 3 (7c3, highlighted)
o Answers to postlab, including plots
o Make sure all graphs and answers are clearly labelled.

● Separately upload your original sample rate data set samples (5 data sets – Section3,
7—10, highlighted)

o Don’t forget to save your data!
● Each lab writeup is individual.
● You can see the grading rubric we are using for the lab on Canvas. Review that to make

sure there will be no surprises when your lab is graded.
● Due by Monday 3pm.

