
ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 1 of 21

LAB 09

Today!s Lab has the following objectives:
1. Start using Linux
2. Learn some of the basics of process management on the Linux Operating System
3. See process virtualization in action

Background:

OPERATING SYSTEMS

We learned in lecture that a single CPU can really only execute one task or instruction (like ADD or
SUBTRACT, etc) at a time. The Operating System is a program that runs on a CPU with the job of
managing the CPU!s time. It schedules programs that users would like run for time on the CPU,
essentially its main job is to keep the CPU busy. Another aspect of the OS is to protect access to the
hardware that surrounds the CPU (like input and output devices – keyboards, mice, etc.) so that
programs don!t have direct access to the hardware, but instead ask the OS for permission to access it.
This also lends itself to "virtualizing” the CPU and its hardware so that each program that runs on the
CPU believes it is the only program running on the CPU at any given time.

Before the personal computer existed, before Mac OS and Windows came into being, an operating
system named UNIX was written to manage large computers at AT&T Bell Laboratories in the 1970s that
became a model for modern operating systems (like Windows and Mac OSX). In the 1990!s an operating
system named Linux was invented modeled very heavily on the UNIX operating system. Today Linux and
its decedents (like the Android operating system) is the most widely used and distributed operating
system of all time. For that reason, it is the focus of today!s lab as we attempt to learn some basics
about Operating Systems.

The Linux operating system is organized like a NUT with many layers! Inside is something called the
"Kernel” and on the outside is something called the "Shell”, both of these are programs, and they have
different functions. The Kernel is the lowest level and is the part of the OS that deals directly with the
hardware: CPU, Memory, I/O Devices (keyboard, hard drive, etc). If an application would like to work
with the CPU, it goes through the Kernel, obtaining permission in a sense, to do so.

#

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 2 of 21

The "Shell” is an application that allows users to type in commands to work with the operating system.
While the user can!t interact directly with the Kernel, it can go through the shell to gain access to the
CPU. Today!s Linux Operating Systems typically include a GUI, which is also an application that allows
users to interact with the OS through graphical means. While a GUI has its uses, working with the Linux
shell can be a bit more powerful, and it is the level at which we will work today.

[Optional: For a fanciful description of using the shell rather than a GUI, you can see Neal Stephenson!s
"In the beginning was the command line…” essay
https://smorgasborg.artlung.com/C_R_Y_P_T_O_N_O_M_I_C_O_N.shtml]

The SHELL and a process

In the shell, we can start and stop programs, interact with the filesystem (to copy/delete/create files),
interact with the network, and I/O devices as well (through the kernel). The shell requires us to
remember basic commands to do all of these things as there is no GUI; everything must be typed into
the shell to get the OS to work with us.

Recall that ultimately, we want a CPU to run a program (a set of instructions to accomplish some task –
say encode or playback an MP3 file!). When a program is actually running on an operating system it is
typically referred to as a "process” (aka a running program). When we start or stop a process we are
asking the shell to perform a "job” for us, so processes are sometimes referred to as a "job” in Linux.
One of the main roles of the operating system is to give all of the "processes” a user wishes to run "at
the same time” access to the CPU and the hardware connected to the machine. This delicate balancing
act, often referred to as "scheduling”, is one of the most important jobs of an operating system, and
typically this scheduling task is handled in the kernel of the OS. So a user starts a "job” or process in the
shell, and then the kernel is responsible for letting it run on the CPU and letting all the other processes
share time on the CPU. We!ll investigate a bit of this in today!s lab so you get a feel for the main role of
the operating system.

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 3 of 21

Some Useful Resources

Here are some useful links that list and explain common Linux commands. Feel free to review the
websites to get more experience operating in the Linux environment.

1. https://maker.pro/education/basic-linux-commands-for-beginners
a. Provides more background and lists common commands.

2. https://www.pcsteps.com/5010-basic-linux-commands-terminal/
a. Provides useful tips and tricks for using Linux (i.e. Copy and paste). Breaks down

commands by tasks.

 #

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 4 of 21

Prelab:

Part 1: SSH into ENIAC

ENIAC is the name of the Linux server running in SEAS that all engineering students have access to. The S
drive that you are already familiar with is the home directory of your account on ENIAC. To remotely
access ENIAC from a personal computer, we will use SSH: Secure Socket Shell. You can read more about
SSH and its history here: http://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch01_01.htm

You will need to setup the Penn VPN before you can connect to ENIAC with the following directions. You
can only connect to ENIAC while on AirPennNet or the VPN. See: https://www.isc.upenn.edu/how-
to/university-vpn-getting-started-guide

SSH is often run from a unix-based command line. An SSH client is included by default on MacOS, Linux,
and Windows 10 (as of 2018). You can use the following instructions to log into the ENIAC. If you are
running an older version of Windows, there are instructions for how to install an SSH client below.

1.Open	a	terminal	window	(make	sure	to	use	PowerShell	on	Windows,	since	some	
commands	won!t	work	in	Command	Prompt)	
2.Type	the	following	command,	replacing	PENNKEY	with	your	PennKey	

ssh PENNKEY@eniac.seas.upenn.edu	
3.If	prompted,	type	$y#!(or	$yes#!on	Windows)	to	add	to	known	hosts.	When	prompted,	enter	
your	password.	
4.You	should	see	a	welcome	message:	

SEAS openSUSE Leap Linux 15.4

5.Type	exit	to	logout.	

exit

6.You	can	copy	data	back	and	forth	from	windows	using	scp.	

a.Open	a	console	window	on	your	laptop.	

The	scp command	takes	in	two	space-separated	arguments:	the	source	and	the	
destination.

Copy	from	eniac:	

scp PENNKEY@eniac.seas.upenn.edu:~ese1500/lab9/pi.c pi.c

b.Look	at	the	file	you	downloaded	(use	Ctrl/Cmd	+	C	to	exit):	

more pi.c

c.Copy	the	file	back	to	your	account	on	eniac:	

scp pi.c PENNKEY@eniac.seas.upenn.edu:

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 5 of 21

 Note: there is a colon at the end of the command. It is important. It is separating the
machine name (eniac.seas.upenn.edu) from the path, which is empty to denote the top level of your
personal home directory.

d.	ssh	back	into	eniac	and	verify	you	copied	the	file	into	your	personal	directory	on	
eniac:	

ls (you should see pi.c in your home directory)

more pi.c

Older versions of Windows

If your personal computer is running an older version of Windows, there are many SSH clients that are
easy to download and run. A popular one is called PuTTY:

1.Download	PuTTY	from	their	website:	
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html		

a.Under	"Package	files”	select	the	"MSI	($Windows	Installer!)”	appropriate	for	your	OS	(most	
likely	64	bit).		

b.This	will	install	all	of	the	PuTTY	utilities,	but	if	you	just	want	what	you	need	for	this	lab,	
you	can	choose	just	putty.exe	and	pscp.exe	in	the	"Alternative	binary	files”	section.	
2.Open	the	putty.exe	file	once	the	download	is	complete.	
3.Enter	the	hostname	in	the	form	PENNKEY@eniac.seas.upenn.edu,	replacing	it	with	your	
actual	PennKey.	
4.Select	"Open.”	If	prompted,	select	$Yes#!on	the	popup,	and	then	enter	your	password.	
5.You	should	see	the	welcome	message:	
6.Now	you	have	remote	access	to	the	ENIAC	computer.	
7.Type	exit	to	logout:	

	 	 exit	

8.To	copy	files	with	scp,	you	can	follow	the	steps	in	the	previous	section	(step	6),	but	use	the	
pscp	command	instead	of	scp.	

	

For this lab we will be working on both eniac and speclab, which is another server at Penn that provides
us a greater ability to run long programs than eniac. In order to ssh into speclab, first ssh into eniac as
you did in this part. Then, type ssh PENNKEY@speclab.seas.upenn.edu into the eniac session. This will
forward your ssh session through eniac to a speclab machine.

VERY IMPORTANT NOTE: speclab is not a single machine, rather it is an alias for a group of machines all
running in similar configurations. When you ssh into speclab this will send you to a specific speclab
machine, for example spec10. For a number of parts in this lab you will have to have two ssh terminals
accessing the same machine at the same time. To do this, open a new terminal window (or use putty)

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 6 of 21

on your local machine and ssh into eniac again. From there, note down the specific speclab machine
your first window is accessing and in the second window type ssh PENNKEY@spec##.seas.upenn.edu
filling in ## with the number corresponding to the machine your first ssh session is accessing. Many
parts of the lab WILL NOT WORK if you do not access the same machine in both ssh windows.

Part 2: Writing, compiling, and monitoring a small C program
• Learn the structure of a basic C program
• Learn about Linux processes and use a basic tool to monitor them called: ps
• For this section, you should run your code on eniac, not speclab

This section assumes you have read the background up above. If you haven!t please do now!

1. ssh into eniac (as you did in prelab).
2. Create a folder on the filesystem and change:

a. At the “prompt” type in the following commands to create a folder called
ese1500_lab9 and then a subfolder within it called ex1

mkdir ese1500_lab9

 cd ese1500_lab9
 mkdir ex1
 cd ex1
3. Use the “nano” editor to create a simple C program.

a. At the prompt, type in the following command to create a new file called ex1.c:
nano ex1.c

b. Type in the following C program to the editor:

#include <stdio.h>

int main () {

 char name[50] ;

 printf ("Please enter your name: ") ;
 scanf ("%s", name) ;
 printf ("Welcome to my program %s \n", name) ;
}

c. Once you have entered it all, press <ctrl> X,

i. Press “Y” to write to file.

ii. Press <enter> to keep the file name the same (ex1.c).

iii. Nano should quit and your file will now be saved to the filesystem.

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 7 of 21

4. Compile your new C-program as follows:

a. Type in the following command:

gcc ex1.c –o ex1

b. This invokes a “compiler” which converts your program written in the C-language into the
Assembly and machine code that the computer you are working on truly understands.
When it is complete, it will create a file called: “ex1” that you can run!

5. Run your C-program as follows:

a. Type in the following command:

./ex1

i. If you get an error saying “Permission Denied,” run the command:
chmod +x ex1

b. Congratulations, you’ve just run your first “process” on the Linux OS.

c. Submit your program as part of the lab.

6. Let’s examine our process in some greater detail:

a. Open up another terminal window (ssh into ENIAC again, as in Part I).

b. Position both terminal windows next to one another (so you can see what the other window
is doing).

c. In your original terminal window, run your program again (as in step 4).

i. BUT DON’T type in your name.

ii. Let the program “wait” for your input while we examine the process.

d. In the new terminal window, type in the following command:

ps -F –u PENNKEY

e. This command will output a listing similar to this:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

tfarmer 10089 0.0 0.0 16988 6640 pts/436 Ss 20:58 0:00 -bash

tfarmer 10432 0.0 0.0 16888 6388 pts/445 Ss 22:14 0:00 -bash

tfarmer 11372 0.0 0.0 4072 652 pts/460 S+ 22:15 0:00 ./ex1

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 8 of 21

If it doesn’t show the STAT column, use:
env PS_FORMAT=DefBSD ps -u PENNKEY
The “env PS_FORMAT=DefBSD” prefix tells the command you want a particular format for
the output.

f. This command “ps” shows you all the programs running on the machine you’re working on
that you have launched. Examine the “command” column and look in your list for “./ex1”
(that’s the process you have launched in the other shell window).

g. Look first at the number under the “PID” column. This number is called the process ID.
When a program becomes a process and is run by the OS, it is assigned a unique process ID.
Once the process ends, the number may be reused, but while it’s running, the number is
unique. Write down the process ID of your “ex1” process (in my example that’s 11372).

h. Next, examine the “STAT” field that is the state of your process at the time when you ran
the “ps” command. A process can have the following statuses on a Linux system:

D uninterruptible sleep (usually IO)
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped, either by a job control signal or because it is being traced
W paging (not valid since the 2.6.xx kernel)
X dead (should never be seen)
Z defunct ("zombie") process, terminated but not reaped by its parent

i. The above list may also be combined with the following:

< high-priority (not nice to other users)
N low-priority (nice to other users)
L has pages locked into memory (for real-time and custom IO)
s is a session leader
l is multi-threaded (using CLONE_THREAD, like NPTL pthreads do)
+ is in the foreground process group

j. In our example, your process will have the state: “S+” meaning that the process appears to
be sleeping (meaning that it’s not asking the CPU to compute anything on its behalf, instead
it’s waiting for the user to enter their name!). But it’s in what’s known as “interruptible”
sleep. As discussed in lecture, if the OS needed to perform another task, it could “suspend”
your “ex1” process and switch over to another one that needs some time on the CPU. The
“+” symbol next to the “S” indicates that the process is running in the shell in the
foreground, as opposed to the background (imagine a program like a defragmenter running
in the background).

k. Recall that we started our program in the shell. In Linux, all processes are “started” by
another process. We can see which “process” started “ex1” by running “ps” in the following
way:

ps -f -o pid,args --forest

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 9 of 21

(Note: “pid,args” should be the literal characters. This is not something you should be
substituting with numbers from your process id.)

l. This will output a “process hierarchy” or “tree” something like the following:

 PID COMMAND
35640 -bash
11372 _ ./ex1

(You will likely see a second bash shell. It!s a tree, so there can be many leaves if you have
many things running.)

m. This tells us that the “parent” process (the one that started my “ex1”) has the process ID:
35640, and it also tells me it was a “bash” shell that started it. Which makes sense, the shell
we’re running (bash) is itself a process. A “child” of that process is my program: ex1

n. When the Linux OS is given control over the CPU, there is a single user that runs all the
programs (like starting up the GUI, turning on the network, etc), called “root.” The user
“root” is the superuser of the system (the all powerful administrator). Root basically is the
operating system itself! If you type in command:
ps –fu root

You’ll see all the processes that “root” is running right now. In fact, you can see the
processes started by “all” the users on a Linux system by typing in ps -au

You can scroll back up and look for process “1” that’s the first process the OS runs when it
first comes on. You can learn a lot about Linux if you follow this path of how programs are
started!

o. Submit a screenshot of your program running (when you used ps) & EXPLAIN what your
showing, e.g. what process started your process, etc.

7. Sending a signal to a process:

a. When a shell starts a process on Linux, it needs, on occasion, to send a signal to it, in fact

that’s how the OS communicates with your process. The signal can be something like…”hey,
I’m going to interrupt you…” or “its time for you to end”. We can use a program to send a
signal to our process manually. This program is delightfully called: “kill.” Even though it is
called “kill,” it can send many different signals.
kill -l
You should see a list of all the different Linux signals, but we are interested in SIGKILL (#9).

b. Typing the following will send a signal to your process telling it to end immediately:

kill -9 35640

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 10 of 21

Here, you must replace the number 35640 with the process ID of your current instance of
“ex1”. If you can’t find the PID with “ps”, make sure “ex1” is still running (waiting on user to
input name).
After running kill, notice that in your other terminal (where the program was running) it now
indicates that the program was killed.
You can actually write your programs to receive and handle different signals from the OS,
sort of like putting a backdoor into your program! Maybe you can make your running
program give you status! Google “trap and signal” programming if you are interested

8. Submit the program from 5.c (after being run) and your ps screenshot and explanation from 6.o to

the canvas Prelab 9 assignment for your prelab checkoff.

Note: once typing at the Linux shell, you can use the man command (short for manual) to get more
information on any Linux command. For example: "man ps”. In this case it may prompt you for the
manual section. Choose 1.

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 11 of 21

Lab Procedure:

Lab – Section 1: Real time monitoring of a process and process priority
• Learn how to use a monitoring process called: htop
• Learn how to change the priority of a process using “nice”
• Learn how to run a program in the foreground and background of the shell
• For this section, you should run your code on a Linux machine in Detkin (or speclab).

1. Use the linux machine at your lab station; use the kvm at your station to select the Linux machine

rather than the Windows machine. (Alternately, if you are not able to do this in Detkin or Ketterer,
ssh into speclab as explained in the prelab).

2. Create a new program with an infinite loop:

a. Change to the directory where you were working in prelab
cd ~/ese1500_lab9

b. Create a new folder for this program:
mkdir ex2 (this creates a folder named: ex2 under ese150_lab9)
cd ex2

c. Create a new C-program in the nano editor, by typing:
nano ex2.c

d. In the editor, type or copy/paste the following code:
#include <stdio.h>

int main () {

 int i = 0 ;
 printf ("Starting Example #2 Program...\n") ;

 while (1) {
 i=i+1 ;
 }

}

e. The program above will loop “forever” adding 1 to a variable i for all eternity %
f. Save the program, compile it (using commands similar to those from the previous section),

and run it as follows:
./ex2

3. Monitor the process in the other terminal window (as you did in the last section):
a. Look at the process by issuing the command:

ps u

 With more options, you can control which columns ps includes.
 e.g. ps -o user,pid,%cpu,%mem,stat

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 12 of 21

b. It should return a list of your processes, but something like this:
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
tfarmer 6750 100 0.0 4068 652 pts/445 R+ 00:40 0:02 ./ex2

c. Look for your “ex2” process: the one shown above has process # 6750
d. Examine the “STAT” column and notice this process is by no means sleeping! It is in a

running state. In fact, if you look at the “%CPU” column, you will see it is at 100%!
i. Your ex2 process is keeping the CPU busy 100% of the time, this isn’t actually good.

But your program has an infinite loop within it, so it is not possible for the CPU to
put it to sleep. Eventually, it will begin slowing the machine down considerably!

4. Monitor the process in “real time”
• “ps” shows you a snapshot of your process at the time when you run ps.
• Often, it is useful to see your process changing its status in real time.
• There is a utility known as “top” and another more improved version called “htop”.
a. In the terminal not running your “ex2”, type the following command:

htop

b. A graphical ‘looking’ window will appear showing all processes running on the machine,
sorted by how much CPU time they are using:

c. On top of the window, you’ll see a representation for each CPU (or core in your multicore

processor)
i. Notice, CPU #12 in the example above is pegged at 100%. This system hasn’t come

to a halt because it has 20 CPUs; my process (ex2) has been moved onto CPU 12.
d. You’ll notice your process (ex2) is likely at the top of the list (or maybe another ESE150

student’s ex2?) This list is ordered by CPU % usage. Processes using the most CPU time are
on the top of the list.

e. In the other window, where ex2 is running, press <ctrl> C

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 13 of 21

i. This sends a signal to your process to STOP, and it will end.
f. In the HTOP window, you’ll see your process fall off the list, and the CPU will get back to

normal!
g. Some other things to notice about HTOP:

i. On the top, you can see how many “tasks” or “processes” are running on all your
CPUs (2,681 in the example shown).

ii. You can also see the output of the CPU.
iii. You can even see how many processes are ACTUALLY running---only 2
iv. You can see how long the system has been turned on! (uptime).

h. The menu along the bottom of the screen lets you send signals to processes using
keystrokes (instead of using the command kill).

i. In the terminal not displaying htop, re-run ex2 as follows:
./ex2

i. Once ex2 reappears in the htop window, use the up and down arrow keys to
navigate to highlight it.

ii. Press the button that sends a kill signal (F9), and then press enter.
iii. You should see in the other terminal that ex2 has been terminated!

5. Changing the priority of a process:
• As discussed in lecture, the operating system can use several algorithms to schedule time

for processes on a CPU.
• One algorithm is simply “round robin,” giving each process that is running a little time on

the CPU and rotating through the list of processes that require time.
• Another is by assigning a “priority” to each process and then letting processes with the

highest priority run on the CPU before lower priority processes, or perhaps letting them run
longer on the CPU.

• In Linux you have some control over the priority of your process, this control is called a
processes “niceness”.

a. In one window, keep your “htop” utility running.
b. In the other terminal window, start your program ex2.
c. Your process should quickly reach 100% CPU time

i. But look also at the column labeled: “PRI” and “NI”
ii. PRI means priority. By default all programs you run from the shell get the priority of

“20” in Linux. This # can range from 0 to 39. A user cannot set this value directly,
the kernel assigns this to running processes. In the following steps, it will become
clearer which priority values mean more execution time: having a higher number or
a lower number for priority.

iii. NI indicates the “niceness” of a process. By default all programs get a niceness
of 0. They can range from 0 to 19. This is a value a user can set for any process they
own.

iv. The Priority of a process is calculated by adding 20 + NI
d. Next in the terminal where ex2 is running, press the buttons <ctrl> + Z.

i. Quickly look over to the “htop” window, notice your processes state is changing!
ii. It’s no longer taking up 100% of the CPU.

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 14 of 21

iii. You’ll notice its status is now “T” – you have manually suspended your process.
iv. Now, type the command: bg
v. This will start your process back up and run it in the background. Notice that

because it is now running in the background, you can still type into the terminal.
e. Alter the “niceness” of your running program by typing:

renice –n 19 –p (fill in your processes number here)
Look carefully at htop, at the Priority field and the Nice field. Does it add up?

f. Start another instance of your process, but with a different priority using the NICE
command:

nice -18 ./ex2 & (the & starts your process in the background)
• Look carefully at the htop and compare the processes priority.
• Also look at the CPU’s status, notice the OS assigned your processes to two free

CPUs.
Start yet another instance of your process:
nice -16 ./ex2 &

Continue this process (lowering the niceness value each time) until you fill up all the
CPUs (or run out of niceness levels). With other ese150 students running on
speclab, you may not need to start many processes; at least start the 3 above.
What happens when all the CPUs are filled and two processes have the same
priority? Who wins? Which priority is better to have (gets more runtime)?
A high or low #?

• Take a screenshot of your HTOP command (press <print screen>)
• Save your screenshot for submission with the lab. You will also need to

submit an explanation of how this htop output reflects the different
niceness values.

• Try “re-nicing” a process to a lower priority (ie, higher niceness) using the
renice command (see step e).

g. Lastly, kill all of your “ex2” programs; there should be many of them running. You can do
this via the kill command (discussed in prelab), or by using the HTOP program to send them
a KILL signal.

h. Stop the htop program (you can simply use Ctrl+C or you can use the kill command in the
other terminal window).

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 15 of 21

Lab – Section 2: Monitoring Process Concurrency
• Observe how programs run concurrently on your computer.
• We will continue to run this part of the lab on a Detkin Linux machine (or speclab).

1. Create a directory pi under ese1500_lab9 and change to that directory.
 Type the following into the window that was running ex2:

cd .. (this brings you one folder up: ese1500_lab9)
mkdir pi (this creates a folder named: pi under ese1500_lab9)
cd pi (this changes to the new directory)

2. Copy over pi.c from ~ese1500/lab9: cp ~ese1500/lab9/pi.c .

a. The dot (.) at the end of the command is important. cp (copy) takes two arguments. The dot is
the second argument.
b. Dot (.) is a shorthand for the current working directory.
c. Giving a directory as the destination argument means it should keep the same file name as the
source (pi.c in this case).

3. Read through the pi.c code. [hint: you can bring it up in an editor like nano as you did on earlier
parts; or you can use a command like more pi.c to browse through it on a terminal; or you can
use scp to copy the file to your local machine where you can use your favorite text editor.]
The program iteratively estimates pi, periodically printing out its current estimate.
a. note what it prints at each reporting interval.
b. note the default label is set to the pid.
c. note options to control label, reporting interval, and iterations.

4. Compile the pi program: gcc –o pi pi.c
5. Restart htop in a separate window.
6. Run the program to see what it does: ./pi
7. Run the program twice in series: ./pi ; ./pi

The semicolon tells the shell that the first command has ended and what follows is another
command to be executed after the first command completes.

8. Capture a screen shot of the output from running the above command.
9. From htop and from the printed output, how do you know that the processes for the two executions

of pi run in series?
10. Run the program in background: ./pi &

The ampersand tells the shell to start the command and run it in background, immediately returning
to process another command. If you don’t try typing anything while it is running behavior will look
largely the same as when you ran pi without the ampersand.

11. Run two instances of pi simultaneously: ./pi & ./pi &
Here we see the real utility of the &; the second pi is started while the first pi is running.

12. Capture a screen shot of the output from running the above command while both pi processes are
running.
a. It may be necessary to quit htop to capture its output at specific point in time.

13. Based on both what you see on htop and what you see on the console output:
a. Explain how you can tell that the instances of pi are running simultaneously.
b. Are the processes running on the same or different processors? Explain how you can tell.#

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 16 of 21

Lab – Section 3: Monitoring the memory consumption of a process
• Learn how to use “ps” to see if there is a memory leak in a program.
• We will continue to run this part of the lab on a Detkin Linux machine (or speclab).

• Memory primer: When a program starts on an OS, it is given a small segment of the computer’s

RAM to work with. RAM is sometimes called “physical” memory as it is a physical chip inside the
system and is finite in quantity.

• Remember that the job of an OS is to “virtualize” the hardware, so that each process or program
thinks it is the only one running on the CPU and has access and use of all the memory available to
the CPU.

• If a program goes beyond the amount of physical memory the OS has given it, the OS can provide it
more memory, called “virtual memory” (as opposed to “physical” memory). Virtual memory is the
idea of using a small piece of the hard drive (not RAM, but the actual slow hard drive) to act as if it is
RAM! This type of memory is considerably slower, but your program won’t notice a difference…it
will just run slower.

• In this section, we’ll see if we can write a program that will “exhaust” the amount of physical RAM
that a program gets to have access to, and see what happens when it does.

• When you write a program in C, you can ask the OS for more memory to store information, using a
function called: “malloc()” which stands for “memory allocator”. If the OS has the space, it will give
you the memory, if it does not, it will simply tell your program that there is no memory left.

• Normally a good programmer will return the memory that the memory allocator has provided to it
using a function called “free().” If a programmer forgets to do this, the program begins to run out of
memory, as there isn’t any more left! We call this a memory leak.

• In this section, we’ll also see how to monitor a process and see if it is “leaking” memory.

1. Create a new program that requests memory from the OS…in a way that is out of control:
a. Create a new folder ex3 under ese1500_lab9 and change to that directory.
b. Copy over the ex3.c program:

cp ~ese1500/lab9/ex3.c ex3.c
c. Review the ex3.c program:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define SIZE 100000

int main () {

 int *a, *b, *c ;
 int totalloc=0;

 printf ("Starting Example #3 Program...\n") ;

 while (1) {

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 17 of 21

 // request memory from the OS
 a = malloc (sizeof(int)*SIZE) ;
 b = malloc (sizeof(int)*SIZE) ;
 c = malloc (sizeof(int)*SIZE) ;

 totalloc+=3*sizeof(int)*SIZE;

 // store some values
 *a = 1000 ;
 *b = 2000 ;
 *c = 3000 ;

 printf(“still running with %d total bytes
allocated\n”,totalloc);
 //pause for one second before doing this again
 sleep (1) ;
 }
}

• This program asks the OS for the space to store 3 arrays of SIZE (100,000) integers each: a, b,
c

• Then it stores something in the spaces it received back from the OS.
• It prints out the total bytes allocated. (Usually programs with unintended leaks won’t be so

obvious in reporting their memory usage; we include this so you can see when the program
is still running and to give you something to correlate with the monitoring you are doing.)

• Lastly, it sleeps for one second and does it all over again.
• The mistake…it “forgets” to return the memory space to the OS and simply asks the OS for

more space to store a,b,c all over again. This is a terrible waste, but the OS doesn’t realize
that the program is “done” with the previous operation.

2. Save the program, and compile it using clang instead of gcc (keep all other arguments the same).
clang ex3.c -o ex3
Before you run it, make sure HTOP is running in another terminal window.

3. Start the program above by typing in:
./ex3

4. Carefully watch the process in htop. Look at two columns:
VIRT and RES. These represent how much virtual memory the program is using – i.e. how much
memory the program thinks it has. RES is a representation of the physical memory a process is
consuming, and it corresponds directly to the MEM% column. VIRT is probably more relevant to
understanding what’s happening here. If your program isn’t using parts of the memory it
allocated, the OS doesn’t need to keep it resident in physical memory. (this is called memory
virtualization.)
Note: you may need to scroll down the set of tasks in htop to find this one. Because it stalls on
i/o and sleep, it will typically end up toward the bottom of the task list.

5. Take a screenshot of the htop output showing the memory usage at 3 different times to show the
memory usage growth. Include these screenshots in your lab report.

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 18 of 21

Note: if HTOP appears to freeze/hang, you can press <ctrl> C in your ex3 program, and give HTOP a
higher priority! Or you can reduce the "100000” size for malloc by a factor of 10.
6. You can also examine the memory leak without htop, using:

ps -fu --sort pmem

	

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 19 of 21

Lab – Section 4: Observe Process Virtualization
• Use the skills and understanding you have developed in the previous sections of the lab to

observe processes interleaving on processor cores.

& When one task is swapped out and later back in, allowing another task to run while in
the middle of the first task, we can say the second task is interleaved with the first.

• You may perform this on a Detkin Linux machine, speclab, or on your own linux or mac
computer.

With multiple physical process cores, our modern machines can often run each of the active processes
on a physical core. Nonetheless, the machines are still capable of supporting more active processes
than physical processor cores.

Unix also allows us to connect the output of one running program (process) to the input of another
using the pipe construct (denoted with a vertical bar |). This is often a useful way to compose programs.
It is also a way to run several processes simultaneously.

1. Copy over count.c, add1.c, and endpipe.c from ~ese1500/lab9:
cp ~ese1500/lab9/count.c .
[or use scp if you need to copy to your own linux or mac computer.]
(similar for the other 3)

2. Compile the three simple programs (using gcc) so you get executables count, add1, and endpipe
3. count.c outputs values form 0 to a provided command-line argument.

Try: ./count 10
Take a look at the code in count.c.

4. add1.c simply adds 1 to its inputs.
Try: ./count 10 | ./add1
This pipes the output of count to add1.
Take a look at the code in add1.c; in addition to adding 1, it prints out some progress code on
stderr (an output stream that is not being piped to the next program, so will typically show up
on your console).

5. endpipe.c prints out its value with some more formatting
Try: ./count 10 | ./add1 | ./endpipe
Take a look at the code in endpipe.c.

6. You can make the pipe longer by including more add1 routines:
Try: ./count 10 | ./add1 | ./add1 | ./endpipe

7. By generalizing this, you can create arbitrarily long pipelines with any number of add1’s in the
middle. In particular, this lets you start many processes running simultaneously. By looking at
the outputs showing which process is running when, you can see when each process performs
an operation.

8. Create a large chain with more processes (add1’s) than there are processors on your computer
(try for twice as many).

9. By monitoring the output, collect evidence that all the processes are running simultaneously,
even though there are more processes than processors. That is, you want to collect evidence
that shows that the processes are not just being assigned to a single processor and running from

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 20 of 21

start to finish, but rather multiple processes are sharing a single processor core and are being
swapped in and out of that core to allow the set of processes in the pipeline to make progress
simultaneously.

a. This may require a large count (maybe ./count 100000) to give processes more time to
run.

b. It may be useful to capture the output of the entire run which may be longer than the
scroll buffer on your window. Use script:

i.script watch_file
ii.This will give you back a terminal prompt.
iii.Run your command(s) here.
iv.When done, type: exit
v.Look at watch_file using more, nano, or your favorite editor or viewer.

c. For convenience, you may want to put your unix command line(s) in a file that you can
edit with an editor and then use the source command to have it run the unix
commands from the file. E.g. If you want to have 4 ./add1’s in your command to be
run, make a file called script.sh, and paste the following command into it:

 ./count 10 | ./add1 | ./add1 | ./add1 | ./add1 | ./endpipe
Then, save the script file, and run it in the terminal using the following command:
source script.sh

10. Run your experiment and capture evidence of process interleaving. (part of your design task is
to identify how you will be able to collect such evidence.)

11. Include your evidence in your lab report and explain how it demonstrates interleaving of
processes.

Exit Checkoff: explain your experiment and your collected evidence to your TA and explain how this
demonstrates process interleaving on the processor cores.#

ESE 1500 – Lab 09: Operating System Basics

ESE1500 – Lab 09 Page 21 of 21

Postlab
1. Remotely log in to eniac as in prelab:

a. Run ps –aux to determine the number processes currently in the system.
i. Scan the full output just to get a sense of what’s running.
ii. Use ps –aux | wc to actually get a count.

wc is the word count command; with no arguments the first number it reports is
the number of lines; since ps lists one process per line, this gives you the count.

b. Run nproc to determine the number of processors on eniac.
c. Estimate the average number of processes per processor on eniac.
d. Run ps –aur to determine the number of processes actually running at an instance in

time (again you will probably want to use the |wc trick to get the count).
e. Use who (and |wc) to determine the number of users currently logged in to eniac.
f. Estimate the number of users per processor.

2. Assume you have a 1 GHz processor (1 billion cycles per second). Assume an mp3 encoder
needs 1,000 cycles per sample, and you want to sample data at 44KHz. What fraction of
the processor’s compute capacity does the mp3 encoding task require?

HOW TO TURN IN THE LAB

• Submit a PDF document to the designated canvas assignment containing:
o Screenshots, code, and descriptions/explanations where asked

' Bolded and italicized
o Answers to questions asked in the lab

' Section 1: 5f, Section 2: 9 and 13, Section 4: 11

o Describe your experiment for Section 4 (i.e. step 1), include the evidence collected,
describe how the evidence demonstrates process are sharing processors.

o Include Prelab and Postlab

o Make sure all items are clearly labeled, screenshots are easy to read, and sections are
clearly outlined.

