

1

3

5

Lecture Topics

Part 1:
Where are we on course map?
Sampling/Quantization Review
Impact of Sampling Rates
Aliasing
Interlude: Visual Aliasing
Part 2:
Aliasing Math
Nyquist-Shannon Sampling Rate
References

2

4

6

7

9

EFFECT OF INCREASING SAMPLING RATE
Increasing how often we take samples also helps

Much like quantization...
1 bit was too few, 16 bits was more than enough Is there a sweet spot for the sampling rate?

Focus for this week.

8

Based on onides $0200-2023$
 KEY Question

What sampling rate should we use?

Based on slides © 2009-2023
DEFINITION OF GOOD SAMPLING
Definition of proper sampling:
Let's say you've sampled an analog signal...

If you can exactly reconstruct the analog signal from the samples You have done the sampling properly!
Essentially: if you can reverse the process.
You've capture enough information about the signal

Can we formalize this a bit more?
Yes, next few slides will try....

SAMPLING = WHAT IS THE MINIMUM?

Sampling at frequency doesn't work.

14

16
200 HZSAMPLE

19

21

23

20

22

24

25

27

Part 2

> ALIASING MATH NYQUIST-SHANNON SAMPLING

ALIASING IN MOVIES

Called visual aliasing

See it all the time on TV/Film
Wheels tend to move backwards on moving cars... why? What is it?

Primer: Movies are just pictures (frames) flying by quickly Movies "sample" real life at roughly 24 frames per second
What did we just see?
When changes occur faster than $1 / 2 f_{\mathrm{s}}$, may get aliasing. Film Example:

If light to dark transitions occur faster than $1 / 2 f_{s}$ aka: 12 frame $/ \mathrm{sec}$ Aliasing will occur.

31

33

35

MATHEMATICAL MANIPULATION

500 Hz cosine: $\cos (2 \pi \cdot 500 \cdot t)$
Sampled at $\mathbf{6 0 0 H z}$
Now $: \cos \left(2 \pi \cdot I-2 \pi \cdot\left(\frac{1}{6}\right) \cdot I\right)$
I is an integer.
$\cos (x+2 \pi)=\cos (x)$
Apply: $\cos \left(-2 \pi \cdot\left(\frac{1}{6}\right) \cdot \boldsymbol{I}\right)$
$\cos (-x)=\cos (x)$
Apply: $\cos \left(2 \pi \cdot\left(\frac{1}{6}\right) \cdot I\right)$

34

36

37

39

Baxdonilice $92000-203$
S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997. http://en.wikipedia.org/wiki/Nyquist frequency http://en.wikipedia.org/wiki/Nyquist rate http://en.wikipedia.org/wiki/Oversampling http://en.wikipedia.org/wiki/Sampling rate http://en.wikipedia.org/wiki/Hearing range http://electronics.howstuffworks.com/telephone6.htm B. Olshausen, "Aliasing", PSC 129 - Sensory Processes Course Notes, UC Davis

43

