

1

3

2

4

6

7

9

MUSICAL NOTATION = SHAPE = TIME

Whole Note	4 Counts	Whole Rest	4 Counts
Half Note	2 Counts	Half Rest	2 Counts
Quarter Note	1 Count	Quarter Rest !	1 Count
Eighth Note	1/2 Count	Eighth Rest	1/2 Count
$1 / 16^{\text {th }} \text { Note }$	1/4 Count	$\begin{gathered} 1 / 16^{\text {th }} \text { Rest } \\ y \end{gathered}$	1/4 Count

Source: https://www.pikpng.com/downpngs/hiJiwww_note-values-in-4-4-time-music-notes/

8

Frequency Representation

How much information is this musical staff communicating?
How many keys on piano? \rightarrow bits/note

10

12

13 ESE 1500 - Spring 2023 Based onsilides $92000-2023$

LECTURE TOPICS

Part 1

Teaser: frequency representation
Where are we on course map?
Frequency Domain
Part 2: Vector Background
Part 3: The Fourier Series
can represent any signal in frequency domain

References

14

16

18

19

21

TIME-ROMAIN \& FREQUENCY-DOMAIN
As an example...let's say we have a pure tone If period: $\mathrm{T}=1 / 2$ and Amplitude $=3$ Volts $s(t)=A \sin (2 \pi f t)=3 \sin (2 \pi 2 t)$

20

22

24

25

27

31

33

32

Part 3:
ThE FOURIER SERIES

34

39

38

40

FOURIER SERIES (REVIEW OF KEY POINTS)

The idea of the series:
Any PERIODIC wave can be represented as simple sum of sine and cosine waves

2 Caveats:

Linearity:

The series only holds while the system it is describing is linear because it relies on the superposition principle
-aka - adding up all the sine waves is superposition in action

Periodicity:

The series only holds if the waves it is describing are periodic Non-periodic waves are dealt with by the Fourier Transform We will examine that in Lecture 9 (next Monday)

43

45

BIG IDEAS

Can represent signals in frequency domain Different basis - basis vectors of sines and cosines
Often more convenient and efficient than time domain

Remember musical staff

$$
f(t)=\frac{a_{o}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos (n t)+b_{n} \sin (n t)\right]
$$

REFERENCES
 S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997.
 https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

