

Lecture \#11 - Psychoacoustic Model/Compression/MP3
ESE 1500 -
Based on slides © 2009-2023 DeHon, Koditschek
DIGITAL AUDIO BASICS Additional Material © 2014 Farmer

1

3

5

2

4

Observe

If we kept the CD Audio encoding format
Could hold one song on the 1998 MpMan (maybe 2 on the 64MB version)

For solid-state audio to be viable
Needed more compact encoding for music

7

9

LECTURE TOPICS

Teaser
Where are we?
Preclass
How do we take advantage of psychoacoustics in MP3 Achieve this 6-12x reduction from CD Audio Review Tricks
Formulate Optimization
Adaptation (Monday 3/13)
Next Lab
References

8

10

13

ESE150 Spring 2022
Prectass 1

44,300 samples/s

16b
26ms window
a) How many bits? $128 \mathrm{~Kb} / \mathrm{s}$ stereo $\rightarrow 64 \mathrm{~Kb} / \mathrm{s}$ per audio channel
b) How many bits per 26 ms window?
c) ratio?

14

PRECLASS 2

16b amplitude
1704b budget
Quantize frequency
How many quantized frequencies?

Conclude: cannot keep all frequencies and hit budget

15

Prectass 4

576 frequencies

1704b budget
(frequency,amplitude) pairs to represent
24 human critical bands
How many bits per band? (evenly divided)
Quantization required to keep 5 frequencies per band?

Conclude: can tradeoff frequencies and amplitude quantization

Prectass 3

576 frequencies

- 16b amplitude

1704b budget
(frequency,amplitude) pairs to represent
How many frequencies can we keep?

Conclude: cannot keep all frequencies and hit budget

16

19

ESE150 Spring 2023
THE MPEG-1 STANDARR ISO (International Standards Organization) Looking for ways to reduce transmission requirements for digital video and audio (low bandwidth transmission of digital media) 1988 - establishes a sub-committee of ISO: Moving Picture Experts Group (MPEG) Goal: Develop common standard for coding/compressing audio/video To reduce size of data to transmit without sacrificing quality Fraunhofer Institute and German University of Erlangen Lots of basic research in Digital Audio Broadcast, tapped to be MPEG Result: 1992: Finalized Standard called: MPEG-1 (Phase I) 3 Parts: Audio/Video/System Audio component: defined 3 layers: 1, 2, 3 Increasing levels of compression and complexity MPEG-1, layer 3 achieves 12:1 compression ratio! (for short MP3)
20

20

The MPEG-1 Standard

MPEG-1, (3) Layers for Audio Coding:

	Coding		Ratio
Required bitrate			
Complexity	PCM CD Quality	$1: 1$	1.4 Mbps
	Layer I	$4: 1$	384 kbps
	Layer II	$8: 1$	192 kbps
	Layer III (MP3)	$12: 1$	128 kbps

Why is PCM CD Quality 1.4 Mbps?
Recall: 1 sec. of music: $44,100 \times 16$ bits $=705,600$ bits Don't forget stereo (R/L): $2 \times 706,600=1,413,200$ (1.4 Mbs) Defines bandwidth requirements of network

Notice: 128 kbps was just about double modem speed in 1992 Enables transmission of audio (MP3) via modem!

21

Big Picture: Why Care

Networks / Internet bandwidth / Cell capacity

Allows us to reduce bandwidth needed for audio
Alternative is
Building out more wires and capacity
Fewer cell calls supported simultaneously in a region
Being efficient with bits
Reduces physical investment needed in wires

Same ideas enable video

Viable to store (many) hours of video on phone/tablet Of increasing resolution: HD, 4K....
Viable to stream video into homes
Zoom, Netflix, Disney+, AppleTV,

29

KNOBS WE GAN TURN
Amplitude quantization
Frequency quantization
Frequencies kept (per critical band)
Too soft
Masked
...and can perform lossless compression

31

33

30

ESE150 Spring 2022

PRECLASS 5

Bits if only have 1 non-masked, non-zero frequency in a critical band?

Conclude: given fixed band allocation, some bands won't use all their bits

35

SUGGEST

May want to do something smarter than Allocating fixed number of frequencies per band Allocating fixed quantization to a band

Like to adapt our encoding to the data
If more Huffman compressible, we get more frequencies If fewer frequencies suffice for one band,

Allow more frequencies for another
..or allocate less quantization

37
38
How fit in the resource constraints ($128 \mathrm{~Kb} / \mathrm{s}$) while maximizing goodness (sound quality)?
$128 \mathrm{~K} / \mathrm{s}$ * $0.026 \mathrm{~s}=3408$ bits per 26 ms frame 3408/2 $=1704 \mathrm{~b}$ per stereo channe
OPTIMIZATION PROBLEM 3408/2 = 1704b per stereo channel

Trying to hit fixed bit rate, what challenge does lossless compression impose?

Encounter many common frequencies, amplitudes?
Encounter many uncommon frequencies, amplitudes?
Hint: what did we see in Lab 3 for time samples?
rint: what did we see in tab 3 for time samples?

ESE150 Spring 2023
OPPORTUNITIES/CHALLENGES

Variable Frequencies and quantization per Band:

$$
\sum_{b \in \text { bands }} \text { frequencies }(b) \times \text { bit }(b)
$$

Huffman means different
bits/frequency $\sum_{\text {bands }} \sum_{f \in \text { freqs }} \operatorname{Bits}(f)$

41

OPTIMIZATION PROBLEM

How fit in the resource constraints (128Kb/s) while maximizing goodness (sound quality)?

Quantify bits used:
Cannot exceed $128 \mathrm{~Kb} / \mathrm{s}$

$$
\sum_{\text {bands }} \sum_{f \in \text { freqs }} \text { Bits }(f)
$$

= 3,408 b / 26ms frame

Quantify goodness: minimize

44
\square
46

47

48

ESE150 Spring 2023

EXAMPLE WEIGHT FUNCTION W(F)

$\mathbf{W}(\mathrm{f})=$ CBWeight*Mask
Mask $=0$ if MaxAmp-FreqAmp>3
1 otherwise
Assign more bits to a band for quantization

49
50

53

55

57

54

56

58

ESE150 Spring 2023
Big IDEAS
Can use pyschoacoustics to compress audio
Eliminate portions of signal that human's don't notice
Optimization
Identify Design Space (knobs)
Identify Costs and Constraints
Formulate quantitatively

59
60

COMING UP
Feedback including Lab
Lab 5 writeup today
Lab 6 start on today
On syllabus
Start of 2 week lab
Simplified version compression algorithm
Midterm Wednesday

61

References

Tutorials on Psychoacoustic Coding (in increasing order of abstraction and generality)
D. Pan, M. Inc, and I. L. Schaumburg. A tutorial on MPEG/audio compression. IEEE multimedia, 2(2):60-74, 1995.
Nikil Jayant, James Johnston, and Robert Safranek Signal compression based on
Nikil Jayant, James Johnston, and Robert Safranek. Signal compression based on
V. K. Goyal. Theoretical foundations of transform coding. IEEE Signal Processing Magazine, 18(5):9-21, 2001
Lightweight Overview of MP3
Rassol Raissi. The theory behind mp3. Technical report, MP3' Tech, December 2002
Scientific Basis of MP3 Coding Standard
J. D. Johnston. Transform coding of audio signals using perceptual noise criteria. IEEE Journal on selected areas in communications, 6(2):314-323, 1988.

