

Experimentation of the process of the

ESE1500 Compression, MP3s, Psychoacoustics, and Everything

N THE PROCESS
Sampling
Signal Processing
Frequency Domain
Compression
Human Hearing
Optimization
Sensing and Actuation
User Interfaces
Intellectual Property

4

Based on slides © 2013, 2019

Vibtualization of the World

- Can represent things as bits
- + Sound, pictures, movies
- + Location, situation, ...
- + shapes, circuits, drugs, DNA
- Cheap/powerful ways to automatically manipulate
 - + ...and reproduce

- AUDIO
- × Told detail story in terms of Audio
- × 1D signal
- × Sample in time
- × Quantize amplitude
- × Quantize fine enough
 - + Lose no information that humans can perceive

7

Images can be converted to/from bits
And compressed
Without loss of information
More information can be discarded without humans noticing -> fewer bits
Process this information with inexpensive machines
Store it for retrieval
Send it between machines
Even if not directly connected

10

8

- Sample fine enough
 - + Lose no information human can perceive
 - + 30 frames per second

20

on slides © 2013, 201 LIMITS? * What can't we capture and reproduce from bits?

22

Based on slides © 2013, 2019 **FINAL TOPICS** Pre Midterm Post midterm Data representation in bits × Combinational Logic Sounds waves * Finite-State Machines Sampling * Stored-Program Processors * Processing Requirements × Quantization × Nyquist × Process Virtualization * Lossy/lossless compression Networking * Sensing, Actuation, Control × Common case × User Interface × Frequency domain * Intellectual Property **Psychoacoustics** Perceptual coding

Based on alides @ 2013. 2019-2023 Dehon Additional Material @ 2014 Farmer

27

26

2014 Farmer UNDERSTANDING * Computer Engineering * Electrical Engineering * Computer Science * Systems Science and Engineering

sed on slides © 2013, 2019

28

DATA SCIENCE AND MACHINE LEARNING

- * How do we make sense of raw data?
- x Turn it into useful information?
- » Use it to control things?
- Automate the processing and adaptation (learning)
- Mathematics developed in + EE, Systems, Statistics, Operations Management, ...
- Implemented in
 Programming languages and algorithms CSCI, CMPE
- Implemented on and enabled by
- Computer hardware and systems designed and optimized by CMPEs
 Enables
- + Autonomous Vehicles, Robots, Assistance, Business, Science, Engineering,

EE Signal processing, control Electrical systems to process; electrical and optical to communicate CIS

- + Algorithms, software, strategy
- × MEAM
- + Capture, reproduce, control
- BE
- + Cellular behavior, synthetic Biology
- SSE
- + Resuable math and information processing

29

PROCESSING FOR MACHINE LEARNING

- × At core Linear Algebra
 - Dot Products
 - Matrix Operations
 - \times matrix-vector multiplication, matrix-matrix multiplication
- Same computation we have been using for Audio processing
 - Dot Products, Fourier Transforms
- × Learn more: ESE5390

			Based o	n slides © 2013, 2019
Торіс				
Analog Circuits		ESE2150	ESE2150	
Compress	CIS1210	CIS1210		
Nyquist, Fourier			ESE2240, ESE3250	ESE3250
Optimization	CIS3200	(many)		ESE2040
Digital Logic	CIS2400	CIS2400, ESE3700, ESE5320		
Processor	CIS4710	CIS4710		
OS	CIS3800	CIS3800		
Embedded, Actuation	ESE3500	ESE3500 ESE4210 CIS4410	ESE3500 ESE4210	ESE3500 ESE4210
IP		EAS5450	ESE5450	ESE5450
Networking	CIS5530	ESE4070 or CIS5530	ESE4070	ESE4070
UI				ESE5430
				32

32

NO BOUNDARIES: HW/SW

antiquated, and harmful

Hardware/software divide is artificial,

***** Computer engineers understand computation

Computational system design (co-design)
 Decide what goes in hardware, software
 With FPGAs, hardware is programmable, too
 Can describe both HW and SW in C

hardware and software are just tools and design options

HOLISTIC/UNIFIED ENGINEERING
Today's devices and products crosscutting
Fewer that fit in one silo
Harder to draw boundary

d on slides © 2013, 20[.]

on slides © 2013, 201

38

MOORE'S LAW ENABLED

- × MP3 players
- * Smart phones and tablets
- × Digital cameras
- * Digital video recorders and players
- × Realistic Games
- × Skype, Zoom
- × DNA sequencing
- × Autonomous Vehicles, Drones
- × Alexa, Siri
- × Ubiquitous Machine Learning, Data Analytics

40

PARTING THOUGHT

- * From 1st computer to PCs in 30 years Eniac 1946→ Apple 1976
- * From first PCs to iPhone next 30 years Apple 1976→iPhone 2007
- × What will next 30 years hold? Beginning of your career
- * What will you imagine, create, enable?

d on slides © 2013, 2 **CONTINUED SCALING** What will continued Moore's Law Scaling enable next? 41

REMEMBER

- * Lecture and Lab feedback form
- * This is last lecture
- × Last day of term + Lab 12 and DQ25 due today
- × Final Friday (5/5) 3pm Towne 305