
Principal Components Analysis

Santiago Paternain, Aryan Mokhtari and Alejandro Ribeiro

April 6, 2020

At this point we have already seen how the Discrete Fourier Transform
and the Discrete Cosine Transform can be written in terms of a matrix
product. The main idea is to multiply the signal by a specific unitary
matrix. Let us remind ourselves of the definition of unitary matrix.

Definition 1 (Unitary matrix) Let M ∈ CN×N be a matrix with complex en-
tries. Denote by M∗ the conjugate of M, i.e., for each entry i, j we have that
(M∗)ij = M∗ij. Then, we say M is unitary if

(M∗)T M = MHM = I, (1)

where I is the N× N identity matrix and (·)T denotes the transpose of a matrix.
Note that we have defined the superscript symbol H to denote conjugate and
transposition (this operation is called the Hermitian operation).

For the Discrete Fourier transform we can define the following matrix

F =


eH

0N
eH

1N
...

eH
(N−1)N

 =
1√
N


1 1 · · · 1
1 e−j2π(1)(1)/N · · · e−j2π(1)(N−1)/N

...
...

. . .
...

1 e−j2π(N−1)(1)/N · · · e−j2π(N−1)(N−1)/N

 .

(2)
Then, if we consider a signal x(n) for n = 0, . . . , N − 1 as a vector

x =


x(0)
x(1)

...
x(N − 1)

 , (3)

1



we can write the DFT as the product between F and the vector x i.e

Fx =
1√
N


1 1 · · · 1
1 e−j2π(1)(1)/N · · · e−j2π(1)(N−1)/N

...
...

. . .
...

1 e−j2π(N−1)(1)/N · · · e−j2π(N−1)(N−1)/N




x(0)
x(1)

...
x(N − 1)



=
1√
N


∑N−1

n=1 x(n)e−2π j 0
N n

∑N−1
n=1 x(n)e−2π j 1

N n

... ∑N−1
n=1 x(n)e−2π j N−1

N n

 =


X(0)
X(1)

...
X(N − 1)

 .

(4)

In PCA decomposition we define a new unitary matrix based on the
eigenvectors of the covariance matrix of a dataset. Before defining the
covariance matrix we need to define the sample mean signal.

Definition 2 (Sample mean) Let x1, x2, ...xM be M different signals in a dataset.
Then, the sample mean of the dataset is

x̄ =
1
M

M

∑
m=1

xm. (5)

We next define the sample covariance matrix

Definition 3 (Sample covariance matrix) Let x1, x2, ...xM be M different sig-
nals in a dataset. Then, the sample covariance matrix of the dataset is

Σ =
1
M

M

∑
m=1

(xm − x̄)(xm − x̄)H . (6)

Now that we know how to get the sample covariance matrix, we can
define a unitary matrix that is “adapted” to our signals. Let v1, v2, · · · , vN
be the eigenvectors of the sample covariance matrix of the dataset. Then,
as in the discrete Fourier transform, define the unitary matrix

P = [v1, v2, · · · , vN ] . (7)

The PCA decomposition can be written as a product between P and the
centered signal, i.e., the signal minus its sample mean. Explicitly,

XPCA = PH (x− x̄) . (8)

2



Just as with the DFT and the DCT, we can also define the inverse op-
eration to PCA decomposition, which gives us a signal based on XPCA.
Because P is unitary, its inverse is given by PH . Hence, the inverse trans-
formation is given by

x = PXPCA + x̄. (9)

You can prove this is the case by plugging in (8) into (9).
In this Lab we are going to be taking PCA decomposition of faces, so

that we need to deal with two-dimensional signals. A way of doing this
is to vectorize the matrices representing the images. Let Z be a N by N
matrix. Let zk be the k-th column of the matrix, then we can represent the
matrix Z as a concatenation of column vectors

Z = [z1, z2, · · · , zN ] . (10)

The one dimensional representation of the signal Z can be obtained by
stacking its columns as in

z =


z1
z2
...

zN

 (11)

With this idea we can treat two dimensional signals as if they were one
dimensional and use our original definition of the PCA. In what follows,
we are going to use PCA decomposition for image compression. We can
compress an image by keeping the eigenvectors associated with the larger
eigenvalues of the covariance matrix. Next week, we will use a similar
idea to build a face recognition system.

Since we haven’t yet covered the concept of covariance matrix we are
providing the sample covariance matrix, computed using (6), and the
sample mean, computed using (2), of the data set (c.f. Figure 2b).

1 PCA: Decomposition

1.1 Decomposition in principal components
1.1 Decomposition in principal components. Build a function that,
given a covariance matrix and the number of desired principal compo-
nents K, returns the K eigenvectors of the covariance matrix correspond-
ing to the K largest eigenvalues. Check that the matrix containing the
eigenvectors is unitary.

3



Figure 1: Dataset

4



(a) An example of the dataset (b) This is the mean face of the dataset

1.2 Decomposition of a face in the space of eigenfaces
1.2 Decomposition of a face in the space of eigenfaces. Build a func-
tion that takes as inputs an image containing a face, the mean face, and
the eigenfaces and returns the projection in the space of eigenfaces. Note
that eigenfaces are the eigenvectors represented as images.

2 Reconstruction

2.1 Reconstruction of a face using K principal components
2.1 Reconstruction of a face using K principal components. Build a
function that takes as inputs the mean face, K eigenfaces, and the K co-
efficients representing the projection onto those eigenfaces and outputs a
reconstructed face. Test this function for any of the faces of the data set
for 5, 25, and 50 principal components.

2.2 Reconstruction error
2.2 Reconstruction error. For any given number K of principal compo-
nents (eigenfaces), we can compute the reconstruction error as ‖X− X̂K‖,
where X is the original image and X̂K is the image reconstructed using K
eigenfaces. Compute this error ranging the number of eigenfaces used
from K = 0 to the maximum number of eigenfaces (size of the image).
How many principal components are needed to obtain a 60% reduction
in the reconstruction error (as compared to K = 0)?

5


	PCA: Decomposition
	Decomposition in principal components
	Decomposition of a face in the space of eigenfaces

	Reconstruction
	Reconstruction of a face using K principal components
	Reconstruction error


