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Let x : [0, N − 1] → C be a discrete signal of duration N and having
elements x(n) for n ∈ [0, N − 1]. The discrete Fourier transform (DFT)
of x is the signal X : Z → C where the elements X(k) for all k ∈ Z are
defined as

X(k) :=
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N =
1√
N

N−1

∑
n=0

x(n) exp(−j2πkn/N). (1)

The argument k of the signal X(k) is called the frequency of the DFT and
the value X(k), the frequency component of the given signal x. When
X is the DFT of x we write X = F (x). The DFT X = F (x) is also
referred to as the spectrum of x. Recall that for a complex exponential,
discrete frequency k is equivalent to (real) frequency fk = (k/N) fs, where
N is the total number of samples and fs the sampling frequency. When
interpreting DFTs, it is often easier to consider the real frequency values
instead of the corresponding discrete frequencies.

An alternative form of the DFT is to realize that the sum in (1) is
defining the inner product between x and the complex exponential ekN
with elements ekN(n) = (1/

√
N)ej2πkn/N . We can then write

X(k) := 〈x, ekN〉 =
N−1

∑
n=0

x(n)e∗kN(n) =
1√
N

N−1

∑
n=0

x(n)exp(−j2πkn/N). (2)

This latter expression emphasizes the fact that X(k) is a measure of how
much the signal x resembles an oscillation of frequency k.

Because complex exponentials of frequencies k and k + N are equiva-
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lent, it follows that DFT values X(k) and X(k + N) are equal, i.e.,

X(k + N) =
1√
N

N−1

∑
n=0

x(n)e−j2π(k+N)n/N

=
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N

= X(k) (3)

The relationship in (3) means that the DFT is periodic with period N
and while it is defined for all k ∈ Z, only N values are different. For
computational purposes we work with the canonical set of frequencies in
the interval k ∈ [0, N − 1]. For interpretation purposes we work with the
canonical set of frequencies k ∈ [−N/2, N/2]. This latter canonical set
contains N + 1 frequencies instead of N—frequencies N/2 and −N/2 are
equivalent in that X(N/2) = X(−N/2)—but it is used to have a set that
is symmetric around k = 0. Going from one canonical set to the other
is straightforward. The frequencies in the interval [0, N/2] are present in
both sets and to recover, e.g., the negative frequencies k ∈ [−N/2,−1]
from the positive frequencies [N/2, N − 1] we just use the fact that

X(−k) = X(N − k), for all k ∈ [1, N/2] (4)

We say that the operation in (4) is a “chop and shift.” To recover the DFT
values for the canonical set [−N/2, N/2] from the canonical set [0, N− 1]
we chop the frequencies in the interval [N/2, N − 1] and shift them to
the from of the set. For the purposes of this homework, when you are
asked to report a DFT, you should report the DFT for the canonical set
[−N/2, N/2].

1 Spectrum of pulses

In this first part of the lab we will consider pulses and waves of differ-
ent shapes to understand what information can be gleaned from spectral
analysis. A prerequisite for that is to have a function to compute DFTs.
In the following experiments, you should use the function cexp.m pro-
vided on the course website to generate complex exponentials. Type help
cexp in the console to see how this function works.
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Figure 1. Unit energy square pulse of length T0 = MTs and duration T = NTs.
The signal is constant for indexes n < M and null for other n. The height of the
pulse is set to 1/

√
M to have unit total energy.

1.1 Computation of the DFT
1.1 Computation of the DFT. Write a MATLAB function that takes as
input a signal x of duration N and associated sample frequency fs and re-
turns the values of the DFT X = F (x) for the canonical set k ∈ [−N/2, N/2]
as well as a vector of frequencies with the real frequencies associated with
each of the discrete frequencies k. Explain how to use the outcome of this
function to recover DFT values X(k) associated with frequencies in the
canonical set k ∈ [0, N − 1].

With N samples and a sampling frequency fs the total signal duration
is T = NTs, where Ts = 1/ fs is the sampling period. Given a length
T0 = MTs < T, we define the unit energy square pulse of time length T0,
or, equivalently, discrete length M, as

uM (n) =
1√
M

if 0 ≤ n < M,

uM (n) = 0 if n ≥ M. (5)

Intuitively, pulses of shorter length are faster signals than pulse of longer
length. We will see that this rate-of-change information is captured by
the DFT.

1.2 DFTs of square pulses
1.2 DFTs of square pulses. Use the code in Part 1.1 to compute the DFT
of square pulses of different lengths with duration T = 32s and sample
rate fs = 8Hz. You should observe that the DFT is more concentrated
for wider pulses. Make this evaluation more quantitative by computing
the DFT energy fraction corresponding to frequencies fk in the interval
[−1/T0, 1/T0]. Report your results for pulses of duration T0 = 0.5s, T0 =
1s, T0 = 4s, and T0 = 16s.
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Figure 2. Unit energy triangular pulse of length T0 = MTs and duration T =
NTs. The signal is smoother, i.e., changes more slowly, than the square pulse of
equivalent length.

While it is true that wider pulses change more slowly, all square pulses
have, at some point, a high rate of change when they jump from x(M−
1) = 1/

√
M to x(M) = 0. We can construct a pulse that changes more

slowly by smoothing out the transition. One possibility is to define a
triangular pulse by raising and decreasing its height linearly. Specifically,
consider an even pulse length M and define the triangular pulse as

∧M (n) = n if 0 ≤ n < M/2,

∧M (n) = (M− 1)− n if M/2 ≤ n < M,

∧M (n) = 0 if n ≥ M. (6)

Observe that, as defined in (6), the triangular pulse does not have unit
energy. In your comparisons below, you may want to scale the pulse
numerically to have unit energy. To do so, you just have to divide the
pulse by its norm, i.e., use ∧M(n)/‖ ∧M ‖ instead of ∧M(n).

1.3 DFTs of triangular pulses
1.3 DFTs of triangular pulses. Consider the same parameters of Part
1.2 and observe that, as in the case of square pulses, the DFT is more con-
centrated for wider pulses. Make this observation quantitative by looking
at the DFT energy fraction corresponding to frequencies fk in the inter-
val [−1/T0, 1/T0]. Report your results for pulses of duration T0 = 0.5s,
T0 = 1s, T0 = 4s, and T0 = 16s. Compare your results with the results
of Part 1.2. Is your observation consistent with the intuitive apprecia-
tion that the triangular pulse changes more slowly than the square pulse?
A qualitative explanation suffices for most people, but a good engineer
would provide a quantitative answer.
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1.4 Other pulses
1.4 Other pulses. We can define some other pulses with more concen-
trated spectra. These pulses are also called windows and there is an
extensive literature on windows with appealing spectral properties. Find
out about Kaiser windows, raised cosine, Gaussian, and Hamming win-
dows. Compare the spectra of one of these windows to the spectra of
square and triangular pulses.

2 Properties of the DFT

Our interest in the DFT is, mainly, as a computational tool for signal
processing and analysis. For that reason, we will rarely be working on
computing analytical expressions. There are, however, some DFT prop-
erties that are important to understand analytically. In this part of the
assignment we will work on proving three of these properties: conjugate
symmetry, energy conservation, and linearity.

2.1 Conjugate symmetry
2.1 Conjugate symmetry. Consider a real signal x, i.e., a signal with no
imaginary part, and let its DFT be X = F (x). Prove that the DFT X is
conjugate symmetric, i.e.,

X(−k) = X∗(k) (7)

2.2 Energy conservation (Parseval’s Theorem)
2.2 Energy conservation (Parseval’s Theorem). Let X = F (x) be the
DFT of signal x and restrict the DFT X to a set of N consecutive frequen-
cies. Prove that the energies of x and the restricted DFT are the same,

N−1

∑
n=0
|x(n)|2 = ‖x‖2 = ‖X‖2 =

N0+N−1

∑
k=N0

|X(k)|2. (8)

The constant N0 in (8) is arbitrary.

2.3 Linearity
2.3 Linearity. Prove that the DFT of a linear combination of signals is
the linear combination of the respective DFTs of the individual signals:

F (ax + by) = aF (x) + bF (y). (9)

In (9), both signals are of the same duration N—otherwise, the sum
wouldn’t be properly defined.

The properties above are very important in the spectral analysis of sig-
nals. We present below a fourth property that is not as important, but
nevertheless worth knowing.
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2.4 Conservation of inner products (Plancherel’s Theorem)
2.4 Conservation of inner products (Plancherel’s Theorem). Let X =
F (x) be the DFT of signal x and Y = F (y) be the DFT of signal y. Restrict
the DFTs X and Y to a set of N consecutive frequencies. Prove that the in-
ner products 〈x, y〉 between the signals and 〈X, Y〉 between the restricted
DFTs are the same,

N−1

∑
n=0

x(n)y∗(n) = 〈x, y〉 = 〈X, Y〉 =
N0+N−1

∑
k=N0

X(k)Y∗(k) (10)

The constant N0 in (10) is arbitrary. Observe that the result in Part 2.2 is
a particular case of Plancherel’s Theorem.

3 The spectra of musical tones

In the first lab assignment we studied how to generate pure musical tones.
To do so we simply noted that for sampling time Ts a cosine of frequency
f0 is generated according to the expression

x(n) = cos
[
2π( f0/ fs)n

]
= cos

[
2π f0(nTs)

]
, (11)

where the index n varies from 0 to N − 1, which is equivalent to observ-
ing the tone between times 0 and T = NTs. As already noted, the last
expression in (11) is intuitive. It’s saying that the continuous time co-
sine x(t) = cos(2π f0t) is being sampled every Ts seconds during a time
interval of length T = NTs seconds.

Musical tones have specific frequencies. In particular, the middle A
note corresponds to a frequency of 440Hz and the 49th key of a piano.
The other 88 basic notes generated by a piano have frequencies that follow
the formula

fi = 2(i−49)/12 ∗ 440. (12)

We have already used this knowledge to play a song using pure musical
tones. In this lab assignment, we will compute the DFT of the song we
played and interpret the result. For this section only, you should use the
function dft.m provided on the course website. Type help dft in the
console to see how this function works.

3.1 DFT of an A note
3.1 DFT of an A note. Generate an A note of duration T = 2 seconds
sampled at a frequency fs = 44, 100 Hertz. Compute the DFT of this sig-
nal and verify that: (a) The DFT is conjugate symmetric and (b) Parseval’s
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Theorem holds. We know that the DFT of a discrete cosine is given by
a couple of delta functions. The DFT of this A note, however, is close
to that but not exactly. Explain why and find a frequency or frequency
range that contains at least 90% of the DFT energy. What can you change
to make the spectrum exactly equal to a pair of deltas?

3.2 DFT of a musical piece
3.2 DFT of a musical piece. Concatenate tones to interpret a musical
piece with as many notes as Happy Birthday. Compute the DFT of this
piece and identify the different musical tones in your piece.

3.3 Energy of different tones of a musical piece
3.3 Energy of different tones of a musical piece. For each of the tones
identified in Part 3.2, compute the total energy that the musical piece
contains on the tone. Cross check that this energy is, indeed, the energy
that you know should be there because of the number of times you played
the note.

The rich sound of actual musical instruments comes from the fact that
they don’t play pure tones, but multiple harmonics. A generic model for
a musical instrument is to say that when a note is played it generates not
only a tone at the corresponding frequency, but a set of tones at frequen-
cies that are multiples of the base tone. To construct a model say that we
are playing a note that corresponds to base frequency f0. The instrument
generates a signal that is given by a sum of multiple harmonics,

x(n) =
H

∑
h=1

αh cos
[
2πh f0(nTs)

]
. (13)

In (13), H is the total number of harmonics generated by the instrument
and αh is the relative gain of the hth harmonic. The constants αh are
specific to an instrument. E.g., we can get a sound reminiscent of an
oboe with H = 8 harmonics and gains αh given by the components of the
vector:

α = [1.386, 1.370, 0.360, 0.116, 0.106, 0.201, 0.037, 0.019]T . (14)

Likewise, we can get something not totally unlike a flute with H = 5
harmonics and gains

α = [0.260, 0.118, 0.085, 0.017, 0.014]T . (15)
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A very quacky trumpet can be simulated with H = 13 harmonics having
gains

α =[1.167, 1.178, 0.611, 0.591, 0.344, 0.139,

0.090, 0.057, 0.035, 0.029, 0.022, 0.020, 0.014]T , (16)

and an even more quacky clarinet with H = 19 harmonics with gains

α =[0.061, 0.628, 0.231, 1.161, 0.201, 0.328, 0.154, 0.072, 0.186, 0.133,

0.309, 0.071, 0.098, 0.114, 0.027, 0.057, 0.022, 0.042, 0.023]T . (17)

We can use this harmonic decompositions to play songs with more
realistic sounds.

3.4 DFT of an A note of different musical instruments
3.4 DFT of an A note of different musical instruments. Compute the
DFT of an A note played by each of the 4 musical instruments described
above. Determine the frequency range that contains 90% of the energy of
the signal.

3.5 DFT of your song on a musical instrument
3.5 DFT of your song on a musical instrument. Compute the DFT of
the song selected in Part 3.2 played on one of the musical instruments
described above. Identify the different musical tones in your piece. If you
have no favorite instrument, choose the flute.

4 Time management

The problems in Part 1 are not straightforward but not too difficult. The
goal is to finish that up during the Tuesday lab session. Try to get a head
start in solving the problems. You may not succeed, but thinking about
them will streamline the Tuesday session. This should require 2 more
hour outside of the lab session.

The problems in Part 2 will take another couple hours to complete.
You should wait until after class on Wednesday to solve them. We will
do parts 2.1, 2.2 and 2.3 in class. I am asking you to include them in your
report to make sure that you understood them. To solve Part 2.4 you have
to work on your own, but the solution is a simple generalization of Part
2.2. You should be able to wrap this up in 2 hours, about 30 minutes for
each of the questions.

Part 3 is the one that will take more time because you have to use your
problem solving skills. It should take about 6 hours to complete. I would
say something like 4 hours for the first three parts and 2 more hours to
wrap up the pieces that simulate the wind instruments.
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5 Report presentation

Please remember to label both the x- and y-axis, include a legend (if nec-
essary), and add a title to all your figures (check commands xlabel(),
ylabel(), legend(), and title()). A graph without units and la-
beled axes makes no sense and the titles help us with grading.

Please include your code along with the lab report and don’t forget to
put the both of your names on the first page. If you are working alone
(which you can do only occasionally), state it in the report.
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