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The discrete Fourier transform (DFT) is a computational tool to work
with signals that are defined on a discrete time support and contain a
finite number of elements. Time in the world is neither discrete nor finite,
which motivates consideration of continuous time signals x : R → C.
These signals map a continuous time index t ∈ R to a complex value
x(t) ∈ C. The signal values x(t) can be, and often are, real.

Paralleling the development performed for discrete signals, we define
the Fourier transform of the continuous time signal x as the signal X :
R→ C for which the signal values X( f ) are given by the integral

X( f ) :=
∫ ∞

−∞
x(t)e−j2π f tdt. (1)

The definition in (1) is different in form to the definition of the DFT, but
it is conceptually analogous. Whatever intuition we have gained so far on
dealing with the DFT of discrete signals extends more or less unchanged
to the Fourier transform of continuous signals.

The statement above has a very deep meaning that will become clear
once we develop the theory of sampling. For the time being we can ob-
serve that the DFT can be considered as an approximation of the Fourier
transform in which we start with N samples of x to obtain N samples
of X. To see that this is true, consider N samples of x, separated by a
sampling time Ts, and extending between times t = 0 and t = NTs. The
Riemann approximation of the integral in (1) is then given by

X( f ) =
∫ ∞

−∞
x(t)e−j2π f tdt ≈ Ts

N−1

∑
n=0

x(nTs)e−j2π f nTs . (2)

The approximation above is true for all frequencies, but if we just consider
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Figure 1. The discrete Fourier transform provides a numerical approximation to
the Fourier transform.

the frequencies f = (k/N) fs for k ∈ [−N/2, N/2] we can rewrite (2) as

X
(

k
N

fs

)
≈ Ts

N−1

∑
n=0

x(nTs)e−j2π(k/N) fsnTs = Ts

N−1

∑
n=0

x(nTs)e−j2πkn/N ,

(3)
where we used the fact that fs = 1/Ts. Except for constants, the right-
most side of (3) is the definition of the DFT of the discrete signal x̃ with
components x̃(n) = x(nTs). Indeed, the DFT X̃ = F (x̃) of the discrete
signal x̃ has components

X̃(k) =
1√
N

N−1

∑
n=0

x̃(n)e−j2πkn/N =
1√
N

N−1

∑
n=0

x(nTs)e−j2πkn/N . (4)

Upon comparison of (3) and (4) we can conclude that the DFT X̃ of the
sampled signal x̃ and the Fourier transform X of the continuous signal x
are approximately related by the expression

X̃(k) ≈ 1
Ts
√

N
X
(

k
N

fs

)
. (5)

The relationship in (5) allows us to approximate the Fourier transform
of a signal with numerical operations, or, conversely, to conclude that a
property derived for Fourier transforms is approximately valid for DFTs
as well. The approximating relationship in (5) is represented schemati-
cally in Figure 1. In this lab we will use (5) to verify numerically some
formulas that we will derive analytically.
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1 Computation of Fourier transforms

We define a Gaussian pulse of standard deviation σ and average value µ
as the signal x with values x(t) given by the formula

x(t) = e−(t−µ)2/(2σ2). (6)

The standard deviation σ controls the width of the pulse. Large σ cor-
responds to wide pulses and small σ corresponds to narrow pulses. The
mean value µ controls the location of the pulse on the real line.

1.1 Fourier transform of a Gaussian pulse
1.1 Fourier transform of a Gaussian pulse. Derive an expression for
the Fourier transform of the Gaussian pulse when µ = 0. You will have
to make use of the fact that the integral∫ ∞

−∞
xσ(t) =

∫ ∞

−∞
e−t2/(2σ2)dt =

√
2πσ2. (7)

1.2 Numerical verification
1.2 Numerical verification. Verify numerically that your derivation in
Part 1.1 is correct. You will have to be careful with the selection of your
sampling time and sampling interval. Try the comparison for different
values of σ. Report for σ = 1, σ = 2, and σ = 4.

1.3 Fourier transform of a shifted Gaussian pulse
1.3 Fourier transform of a shifted Gaussian pulse. Derive an expres-
sion for the Fourier transform of the Gaussian pulse for generic µ. Verify
numerically. The solution to this part is very easy once you have solved
Part 1.1.

2 Modulation and demodulation

An important property of Fourier transforms is that shifting a signal in
the time domain is equivalent to multiplying by a complex exponential
in the frequency domain. More specifically consider a given signal x and
shift τ and define shifted signal xτ as

xτ = x(t− τ) (8)

The Fourier transform of x is denoted as X = F (x) and the Fourier trans-
form of xτ is denoted as Xτ = F (xτ). We then have that the following
theorem holds true.
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Figure 2. Modulation of a bandlimited signal. The bandlimited spectrum of
signal x is re-centered at frequency g when the signal is multiplied by a complex
exponential of frequency g.

Theorem 1 A time shift of τ units in the time domain is equivalent to mul-
tiplication by a complex exponential of frequency −τ in the frequency domain

xτ = x(t− τ) ⇐⇒ Xτ( f ) = e−j2π f τX( f ) (9)

These result has important applications, the most popular of which
is its use in signal detection. This application utilizes the fact that the
moduli of X and Xτ are the same, which allows the comparison of signals
without worrying about the selection of the time origin.

A property that we can call the dual of the result in Theorem 1 is that
multiplying a signal by a complex exponential results in a shift in the
frequency domain. Specifically, for given signal x and frequency g, we
define the modulated signal

xg(t) = ej2πgtx(t) (10)

We write the Fourier transform of x as X = F (x) and the Fourier trans-
form of xg as Xg = F (xg). We then have that the following theorem holds
true.

Theorem 2 A multiplication by a complex exponential of frequency g in the
time domain is equivalent to a shift of g units in the frequency domain

xg(t) = ej2πgtx(t) ⇐⇒ Xg( f ) = X( f − g) (11)
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Proof: Write down a proof of Theorem 2. That is, prove that if xg(t) =
ej2πgtx(t) we must have Xg( f ) = X( f − g). �

Despite looking less interesting than the claim in Theorem 1, the result
in Theorem 2 is at least of equal importance because of its application in
the modulation and demodulation of bandlimited signals. To explain this
statement better, we begin with the definition of a bandlimited signal that
we formally introduce next.

Definition 1 The signal x with Fourier transform X = F (x) is said ban-
dlimited with bandwidth W if we have X( f ) = 0 for all frequencies f /∈
[−W/2, W/2].

An illustration of the spectrum of a bandlimited signal is shown in
Figure 2, where we also show the result of multiplying x by a complex
exponential of frequency g. When we do that, the spectrum is re-centered
at the modulating frequency g. Signals that are literally bandlimited are
hard to find, but signals that are approximately bandlimited do exist. As
an example, we consider voice recordings.

2.1 Voice as a bandlimited signal
2.1 Voice as a bandlimited signal. Record 3 seconds of your voice
at a sampling rate of 40kHz. Feel free to use the provided function
record sound() to do this (be sure to read the instructions by doing
help record sound). Take the DFT of your voice and observe that
coefficients with frequencies f > 4kHz are close to null. Set these co-
efficients to zero to create a bandlimited signal. Play your voice back
and observe that the removed frequencies don’t affect the quality of your
voice.

2.2 Voice modulation
2.2 Voice modulation. Take the bandlimited signal you created in Part 2.1
and modulate it with center frequency g1 = 5kHz.

2.3 Modulation with a cosine
2.3 Modulation with a cosine. The problem with modulating with a
complex exponential as we did in Part 2.2 is that complex exponentials
are signals with imaginary parts that, therefore, can’t be generated in a
real system. In a real system we have to modulate using a cosine or a
sine. Redefine then the modulated signal as

xg(t) = cos(2πgt)x(t), (12)

and let Xg = F (xg) be the respective Fourier transform. Write down an
expression for Xg in terms of X (it might be useful to recall how to write
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the cos(x) function as a combination of complex exponentials). Take the
bandlimited signal you created in Part 2.1 and modulate it with a cosine
with frequency g1 = 5kHz. Verify that expression you derived is correct.

2.4 The voice of you partner
2.4 The voice of you partner. Record the voice of your lab partner and
repeat Part 2.1. Repeat Part 2.3 but use a cosine with frequency g2 =
15kHz. Sum up the respective modulated signals to create the mixed
signal z.

2.5 Recover individual voices
2.5 Recover individual voices. Explain how to recover your voice and
the voice of your partner from the mixed signal z. Implement the recovery
and play back the individual voice pieces.

3 Time management

This lab is designed to be a respite from the more intensive Lab 3. Part 1
should take 2 hours and Part 2 between 4 and 5. To solve Part 1 you need
to make use of a technique called “completing squares.” If you have never
done that, ask one of your teaching assistants right away. To solve Part
2 do remember to make use of our help. There’s no reason to struggle
when you can receive help.
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