
Sampling

Alejandro Ribeiro

February 17, 2020

Signals exist in continuous time but it is not unusual for us to process
them in discrete time. When we work in discrete time we say that we are
doing discrete signal processing, something that is convenient due to the
relative ease and lower cost of using computers to manipulate signals.
When we use discrete time representations of continuous time signals we
need to implement processes to move back and forth between continuous
and discrete time. The process of obtaining a discrete time signal from
a continuous time signal is called sampling. The process of recovering
a continuous time signal from its discrete time samples is called signal
reconstruction or interpolation.

Mathematically, the sampling process has an elementary description.
Given a sampling time Ts and a continuous time signal x with values x(t),
the sampled signal xs is one that take values

xs(n) = x(nTs), n ∈ Z. (1)

As per (1), the sampled signal retains values at regular intervals spaced by
Ts and discards the remaining values of x(t)—see Figure 1. The process
by which this is done in, say, a sound card, is a problem of circuit design.
For our purposes, let us just say that (1) is a reasonable model for the
transformation of a continuous time signal into a discrete time signal.

A relevant question, perhaps the most relevant question, is what in-
formation is lost when discarding all the values of x(t) except for those
at times nTs. To answer this question, we compare the spectral repre-
sentations of xs and x. In fact, since xs is a discrete time signal and x is
a continuous time signal it is convenient to introduce a continuous time
representation of the sampled signal as we describe in the following sec-
tion.
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Figure 1. Sampling with sampling time Ts. Sampling the continuous time signal
x to create the discrete time signal xs entails retaining the values xs(n) = x(nTs).
A relevant question is in what respect the sampled signal xs(n) differs from the
original signal x(t).
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Figure 2. A Dirac train with spacing Ts (left). The Fourier transform of the Dirac
train is another Dirac train with spacing fs = 1/Ts .

1 Dirac train representation of sampled signals

A Dirac train, or Dirac comb, with spacing Ts is a signal xc defined by a
succession of delta functions located at positions nTs (Figure 2):

xc(t) = Ts

∞

∑
n=−∞

δ(t− nTs). (2)

A Dirac train is, in a sense, a trick to write down a discrete time signal
in continuous time. The train is formally defined to be a continuous time
signal but it becomes “relevant” only at the (discrete) set of times nTs. In
our forthcoming discussions of sampling, we use the Fourier transform
of the Dirac comb. This transform can be seen to be another Dirac comb,
but with spacing fs = 1/Ts. I.e., if we denote the Fourier transform of xc
as Xc = F (xc) we have that

Xc( f ) =
∞

∑
k=−∞

δ( f − k fs). (3)

That Xc( f ) does represent the values of the Fourier transform of xc is not
difficult to show by identifying xc with the discrete time constant signal
x(t) = 1, but we don’t show this derivation on these notes.
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Figure 3. Representation of sampled signal with a modulated Dirac train. The
representation is equivalent to the one in Figure 1 but makes comparisons with
the original signal x easier.

In the Dirac train representation of sampling we use the samples
xs(n) = x(nTs) to modulate the deltas of a Dirac train. Specifically, we
define the signal xδ as (Figure 3)

xδ(t) = Ts

∞

∑
n=−∞

x(nTs)δ(t− nTs). (4)

That (1) and (4) are equivalent representations of sampling follows from
the simple observation that when given the value xs(n) we can deter-
mine xδ(nTs) and vice versa. The representation in (1) is simpler, but the
representation in (4) allows comparisons with the original signal x.

Indeed, the sampling representation in (4) can be written as the prod-
uct between x(t) and the Dirac train in (2):

xδ(t) = x(t)×
[

Ts

∞

∑
n=−∞

δ(t− nTs)

]
. (5)

Note that the expressions in (4) and (5) are equivalent since in the mul-
tiplication of the function x(t) with the shifted delta function δ(t− nTs),
only the value x(nTs) is relevant. It is therefore equivalent to simply
multiply δ(t− nTs) by x(nTs).

Straightforward as it is, rewriting (4) as (5) allows us to rapidly char-
acterize the spectrum of the sampled signal xδ(t). Since we know that
multiplication in time is equivalent to convolution in frequency we have
that the Fourier transform Xδ = F (xδ) can be written in terms of the
Fourier transforms X = F (x) of x and the Dirac train as

Xδ = X ∗ F
[

Ts

∞

∑
n=−∞

δ(t− nTs)

]
. (6)

The Fourier transform of the Dirac train xc(t) = Ts ∑∞
n=−∞ δ(t− nTs) we

have seen is given by the Dirac train in (3). Using this result in (6) and

3



-3 fs/2 - fs - fs /2 0 fs/2 fs 3 fs/2 2 fs 5 fs/2 f

Figure 4. Spectrum Xδ = F (xδ) of the sampled signal xδ. The spectrum of the
original signal (in blue) is copied and shifted to all the frequencies that are integer
multiples of fs (in green). The spectrum Xδ (in red) is the sum of all these shifted
copies.

the linearity of the convolution operation we further conclude that

Xδ =
∞

∑
k=−∞

X ∗ δ( f − k fs). (7)

A final simplification come from observing that the convolution of X with
the shifted delta function δ( f − k fs) is just a shifting of the spectrum of X
so that it is re-centered at f = fs. We can therefore write

Xδ( f ) =
∞

∑
k=−∞

X( f − k fs). (8)

The result in (8) is sufficiently important so as to deserve a summary in
the form of a Theorem that we formally state next.

Theorem 1 Consider a signal x with Fourier transform X = F (x), a sampling
time Ts, and the corresponding sampled signal xδ as defined in (4). The spectrum
Xδ = F (xδ) of the sampled signal xδ is a sum of shifted versions of the original
spectrum

Xδ( f ) =
∞

∑
k=−∞

X( f − k fs).

The result in Theorem 1 is explained in terms of what we call spectrum
periodization. We start from the spectrum X of the continuous time signal
that we replicate and shift to each of the frequencies that are multiples of
the sampling frequency fs. The spectrum Xδ of the sampled signal is
given by the sum of all these shifted copies—see Figure 4.

The result of spectrum periodization provides a very clear answer to
the question of what information is lost when we sample a signal at
frequency fs. The answer is that whatever information is contained by

4



frequency components X( f ) outside of the set f ∈ [− fs/2, fs/2] is com-
pletely lost. Information contained at frequencies f close to the borders of
this set are not completely lost but rather distorted by their mixing with
the frequency components outside of the set f ∈ [− fs/2, fs/2]. We refer
to this distortion phenomenon as aliasing.

The result in Theorem 1 points out to a particularly interesting result
for the case of bandlimited signals that you are asked to analyze.

1.1 Sampling of bandlimited signals
1.1 Sampling of bandlimited signals. Suppose the signal X has band-
width W, i.e., that X( f ) = 0 for all f /∈ [−W/2, W/2]. In this case,
sampling entails no loss of information in that it is possible to recover
x(t) perfectly if only the samples xs(n) are given. Explain why this is
true and describe a method to recover the continuous time signal x from
the modulated Dirac train xδ.

1.2 Avoiding aliasing
1.2 Avoiding aliasing. When we sample a signal that is not bandlimited,
there is an unavoidable loss of the information contained in frequencies
larger than fs/2—-and the equivalent information contained in frequen-
cies smaller than − fs/2. However, it is possible to avoid aliasing through
judicious use of a low pass filter. Explain how this is done.

1.3 Reconstruction with arbitrary pulse trains
1.3 Reconstruction with arbitrary pulse trains. While it is mathemati-
cally possible to reconstruct x(t) from xδ(t), it is physically implausible
to generate a Dirac train because delta functions are not physical entities.
We can, however, approximate δ(t) by a narrow pulse p(t) and attempt
to reconstruct x(t) from the modulated train pulse

xp(t) =
∞

∑
n=−∞

x(nTs)p(t− nTs). (9)

As long as the pulse p(t − nTs) is sufficiently tall and narrow, xp(t) is
not too far from xδ(t) and the reconstruction method described in 1.1
should yield acceptable results with xp(t) used in lieu of xδ(t). Work in
the frequency domain to explain what distortion is introduced by the use
of xp(t) in lieu of xδ(t). In the course of this analysis you will realize
that there is a condition on p(t) that guarantees no distortion, i.e., perfect
reconstruction of x(t) without using a Dirac train. Derive this condition
and propose a particular pulse with this property. Do notice that the
pulse you are proposing is not that narrow after all.
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Figure 5. Subsampling (top). When subsampling a discrete time signal we retain
a subset of the values of the given discrete time signal. In the figure, the sampling
time of the given signal x is Ts and the sampling time of the subsampled signal
xs is τ = 3Ts. We therefore keep one out of every three values of x to form xs.

.

2 Subsampling

Most often, sampling is understood as a technique to generate a discrete
time signal from a continuous time signal. However, we can also use
sampling to generate a smaller number of samples from an already sam-
pled signal. Consider then a discrete time signal xd with sampling time
Ts and values xd(n). We want to generate a (sub)sampled signal xs with
sampling time τ and values xs(m) given by

xs(m) = xd

(
m

τ

Ts

)
. (10)

For the expression in (10) to make sense we need to have the subsampling
time τ to be an integer multiple of Ts. Under that assumption, (10) means
that we retain one value of xd(n) out of every τ/Ts values. E.g., of τ/Ts =
2, we keep every other sample of xd into xs. If τ/Ts = 3, we make
xs(0) = xd(0), xs(1) = xd(3), and, in general xs(m) = xd(3m), so that we
keep all the values in x that correspond to time indexes that are multiples
of 3—see Figure 5.

As in the case of sampling, we want to understand what information,
if any, is lost when we subsample xd into xs. And again as in the case of
sampling, the difficulty in answering this question is that the support of
the signals xd and xs are different. In (1), the continuous time signal x is
a function of the continuous time parameter t and the sampled signal xs
is a function of the discrete time parameter n. In (10), the original signal
xd is defined for times nTs, whereas the subsampled signal is defined for
times mτ.

We can overcome this problem by introducing the analogous of the
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Figure 6. Delta train representation of subsampling. The difference with the
subsampled signal in Figure 5 is that here we pad with zeros so that the support
of this signal is the same support of the original signal.

.

modulated Dirac train in (4). To do so, consider a train of discrete time
delta functions centered at discrete time indexes mτ/Ts and define the
delta train representation of the subsampled signal as

xδ(n) =
∞

∑
m=−∞

xd

(
m

τ

Ts

)
δ

(
n−m

τ

Ts

)
. (11)

A schematic representation of (11) is shown in Figure 6. The difference
between xδ and xs is that xδ is padded with zeros so that its support is
the same support of the original signal xd. Do notice that it is pointless to
utilize xδ for signal processing when we can use the equivalent signal xs.
However, the delta train representation xδ is more convenient for analysis.
In particular, it is ready to repeat the steps in (5)–(8) to conclude that a
result equivalent to the periodization statement of Theorem 1 holds.

2.1 Subsampling theorem
2.1 Subsampling theorem. Derive the equivalent of Theorem 1 relat-
ing the spectra of the discrete time signal xd and its subsampled version
xδ. To solve this part you need to compute the DTFT of the delta train
∑∞

m=−∞ δ(n − mτ/Ts). This DTFT is a Dirac train with spikes that are
spaced by the subsampling frequency ν = 1/τ. If you have problems
with this derivation, which you will most likely have, talk with one of
your teaching assistants. If you don’t want to talk with them, ponder
the fact that the train ∑∞

m=−∞ δ(n−mτ/Ts) is akin to a constant function
when we use the sampling time τ.

2.2 Subsampling function
2.2 Subsampling function. Create a function that takes as input a sig-
nal xd, a sampling time Ts, and a subsampling time τ to return the sub-
sampled signal xs and its delta train representation xδ. The latter signal
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would not be returned in practice, but we will use it here to perform
some analyses. Test your function with a Gaussian pulse of standard de-
viation σ = 100ms and mean µ = 1s. Set the original sample frequency
to fs = 40kHz, the subsampling frequency to fss = 4kHz and the total
observation period to T = 2s.

2.3 Spectrum periodization
2.3 Spectrum periodization. Take the DFT of the functions xd and xδ of
Part 2.2 and check that the periodization result of Part 2.1 holds. Keep all
parameters unchanged and vary the standard deviation of the Gaussian
pulse to observe cases with and without aliasing.

2.4 Prefiltering
2.4 Prefiltering. The function you wrote in Part 2.2 results in aliasing
when the spectrum of the signal xd has a bandwidth W that exceeds
ν. We can avoid aliasing by implementing a low pass filter to eliminate
frequencies above ν before subsampling. Modify the function of Part 2.2
to add this feature.

2.5 Spectrum periodization with prefiltering
2.5 Spectrum periodization with prefiltering . Repeat Part 2.3 using
the function in Part 2.4. For the cases without aliasing the result should
be the same. Observe and comment the differences for the cases in which
you had observed aliasing.

2.6 Reconstruction function
2.6 Reconstruction function. Create a function that takes as input a
subsampled signal xs, a sampling time Ts, and a subsampling time τ
to return the signal xd. Depending on context this process may also be
called interpolation—because we interpolate the values between subse-
quent samples in xs—or upsampling—because we increase the sampling
frequency from ν to fs. In implementing this function you can assume
that the signal xs is bandlimited and was generated without aliasing. Test
your function for a Gaussian pulse. Choose parameters of Part 2.3 that
did not result in aliasing. Choose parameters for which you observed
aliasing and check that, indeed, the reconstructed pulse is not a faithful
representation of the original pulse. For this latter experiment, test both
the subsampling function in Part 2.2 and the subsampling function in
Part 2.4.
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3 Time management

This lab returns to the mean and is more involved than Lab 4. Part 1
includes results that we will derive on class, so it shouldn’t be too onerous
to finish. The teaching assistants will work on these problems during
Tuesday’s meeting. It should be an additional hour or so to wrap it up.

Part 2.1 is an odd man as it is asking that you do a somewhat involved
derivation. Work on it during Wednesday and, if you can’t solve it before
the end of the day, go talk with one of your teaching assistants. A 2 hour
investment should do.

We will work on the remaining parts on the Thursday session. Com-
pleting the rest should take about 5 hours, 1 hour for each of the parts.
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