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Until now, we considered (one-dimensional) discrete signals of the
form x : [0, N − 1] → C of duration N and with elements x(n) for n ∈
[0, N − 1]. We extend this definition to two dimensions by considering
the set of ordered pairs x : [0, M− 1]× [0, N − 1]→ C:

x = {x(m, n) : m ∈ [0, M− 1], n ∈ [0, N − 1]}. (1)

We can think of x as a set of values on the integer lattice in the two-
dimensional plane, i.e., as elements of a discrete spatial domain. We asso-
ciate these signals with the space of complex matrices CM×N . The inner
product for two signals x and y, both of size M× N, in two-dimensions is
a natural extension of the one-dimensional case and is defined as

〈x, y〉 :=
M−1

∑
m=0

N−1

∑
n=0

x(m, n)y∗(m, n). (2)

As before, we define the energy of a two-dimensional signal x as 〈x, x〉 =
‖x‖2. We say two signals are orthogonal in two-dimensions if 〈x, y〉 = 0
and x 6= y. If both vectors also have unit energy, i.e., ‖x‖ = ‖y‖ =
1, they are said to be orthonormal. The discrete two-dimensional im-
pulse δ(n, m) (Kronecker delta) is defined as

δ(m, n) =

{
1 if n = m
0 if n 6= m

(3)

The discrete complex exponential ekl,MN(m, n) in two-dimensions of fre-
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quencies k and l is the signal

ekl,MN(m, n) =
1√
MN

e−j2πkm/Me−j2πln/N

=
1√
MN

e−j2π(km/M+ln/N). (4)

It is a straightforward computation to check that ekl,MN is orthonormal
to epq,MN for k 6= p and l 6= q.

The two-dimensional discrete Fourier transform (2-D DFT) of x is the
signal X : Z2 → C whose the elements X(k, l) for all k, l ∈ Z are defined
as

X(k, l) :=
1√
MN

M−1

∑
m=0

N−1

∑
n=0

x(m, n)e−j2πkm/Me−j2πln/N (5)

The arguments k and l of the signal X(k, l) are called the vertical and hor-
izontal frequency of the DFT and the value X(k, l) is referred to as the fre-
quency component of x at (k, l). As in the one-dimensional case, when X
is the DFT of x we write X = F (x). Recall that for a complex exponential,
the discrete frequency k is equivalent to the (real) frequency fk = (k/N) fs,
where N is the total number of samples and fs is the sampling frequency.

Notice that as in the one-dimensional case, we can interpret the 2-D
DFT in (5) as a two-dimensional inner-product between x and the com-
plex exponential ekl,MN(m, n). Indeed, using the definition of the inner-
product in (2) we can then write

X(k, l) :=
1√
MN

M−1

∑
m=0

N−1

∑
n=0

x(m, n)e−j2πkm/Me−j2πln/N

=
M−1

∑
m=0

N−1

∑
n=0

x(m, n)
(

1√
MN

e−j2πkm/Me−j2πln/N
)

= 〈x, ekl,MN〉. (6)

Therefore, we can view X(k, l) as a measure of how much the signal x
resembles an oscillation of frequency k in the vertical direction and l in
the horizontal direction.

Because the complex exponential is (M, N)-periodic, the 2-D DFT val-
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ues X(k, l) and X(k + M, l + N) are equal, i.e.,

X(k + M, l + N) =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

x(m, n)e−j2π(k+M)m/Me−j2π(l+N)n/N

=
1√
MN

M−1

∑
m=0

N−1

∑
n=0

x(m, n)e−j2πkm/Me−j2πln/N

= X(k, l). (7)

The relationship in (7) means that the DFT is periodic in both directions
with periods N and M respectively. While it is defined for all k, l ∈ Z2,
only MN values are distinct. As in the one-dimensional case, we work
with the canonical set of frequencies k, l ∈ [0, M− 1]× [0, N− 1] for com-
putational purposes and the set k, l ∈ [−M/2, M/2] × [−N/2, N/2] for
interpretation purposes. Notice that this latter set contains (M + 1)(N +
1) frequencies instead of MN.

As before, we may shift the values of the 2-D DFT to convert from one
canonical set to another using periodicity:

X(−k,−l) = X(M− k, N − l) (8)

for all k, l ∈ [−M/2, M/2]× [−N/2, N/2]. The operation in (8) is a “chop
and shift,” from which we may recover the DFT values for the canoni-
cal set [−M/2, M/2]× [−N/2, N/2] from the canonical set [0, M− 1]×
[0, N − 1]. For the purposes of this homework, when you are asked to re-
port a DFT, you should report the DFT for the canonical set [−M/2, M/2]×
[−N/2, N/2].

Finally, we define the 2-D inverse Discrete Fourier Transform (2-D
iDFT) F−1(X) as the two-dimensional signal x̃(m, n)

x̃(m, n) :=
1√
MN

M−1

∑
k=0

N−1

∑
l=0

X(k, l)ej2πkm/Mej2πln/N

=
1√
MN

M/2

∑
k=−M/2+1

N/2

∑
l=−N/2+1

X(k, l)ej2πkm/Mej2πln/N (9)

The expression in (9) means that any arbitrary signal x in two dimensions
may be represented as a sum of oscillations as in the one dimensional
case. Moreover, conjugacy means we can represent the sum (9) with only
half as many terms. This means that we can effectively represent 2-D
signals (e.g., images) using only particular DFT coefficients under some
conditions. This observation is the foundation of image de-noising and
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compression methods which are the focus of this and next week’s lab
assignments. For the subsequent questions, assume that M = N so that
signals are of dimension N2.

1 Two Dimensional Signal Processing

[Note: (1) When loading images, be sure they are loaded as type double
instead of type uint. Recall that Matlab elements can be recast to double
by using the function double().

(2) The most flexible Matlab function to plot images is imagesc().
In the case of black and white images, as we are working in this lab, it is
good practice to call the following three functions to show the image: Let
X be the image matrix, then call (i) colormap(gray), (ii) imagesc(X),
(iii) axis square.]

1.1 Inner products and orthogonality
1.1 Inner products and orthogonality. Write a function that takes as
input two-dimensional signals x and y and outputs their inner product.
Each signal is defined by an N × N matrix of complex numbers.

1.2 Discrete Complex Exponentials
1.2 Discrete Complex Exponentials. Write a function that takes as input
the frequencies k, l and the signal duration N and returns three matrices
of size N × N, the first containing the complex values of ekl,NN and the
later two containing its real and imaginary parts separately.

1.3 Unit Energy 2-D Square Pulse
1.3 Unit Energy 2-D Square Pulse. The two dimensional square pulse
is defined as

uL(m, n) =

{
1
L2 if 0 ≤ m, n < L
0 if m, n ≥ L

(10)

Write a function that takes as input the size N, the size of the square
pulse L and outputs a two-dimensional square pulse as a matrix of size
N×N as well as the total number of samples N2. Plot the two-dimensional
square pulse for N = 32 and L = 4.

1.4 Two-Dimensional Gaussian Signals
1.4 Two-Dimensional Gaussian Signals. An uncorrelated Gaussian
pulse centered at µ is defined as

Gσ(m, n) = e−[(m−µ)2+(n−µ)2]/(2σ2). (11)

Write a function that takes as input N, µ and σ, and outputs a two-
dimensional Gaussian pulse. Plot the two dimensional Gaussian for N =
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9, µ = 2 and σ = 1, for N = 65, µ = 21 and σ = 10 and for N = 255,
µ = 128 and σ = 42. Note what these signals look like when projected
onto a single dimension. (The use of function surf() might come in
handy).

1.5 DFT in two dimensions
1.5 DFT in two dimensions. Modify your function for the one dimen-
sional DFT from lab 2 so that it now computes the 2-D DFT. Recall that
this computation can be expressed in terms of an inner product (using
the function written for question 1.1) between the signal and a two-
dimensional discrete complex exponential (see 1.2). Compute the DFT
of a 2-D Gaussian pulse with µ = 0 and σ = 2. Plot your results on the
two-dimensional plane.

1.6 iDFT in Two Dimensions
1.6 iDFT in Two Dimensions. Write a function which takes as input
an N×N-dimensional signal and computes its 2-D iDFT as in (9). Exploit
conjugacy in your computation so that you only need to take in N2/2
DFT coefficients (recall that X(−k,−l) = X∗(k, l) and that X(k,−l) =
X∗(−k, l)). Compute the iDFT associated with the DFT of the Gaussian
pulse you computed in the previous question. Plot this signal and com-
pare it with the original Gaussian pulse.

2 Image Filtering and de-noising

We can de-noise corrupted images by using spatial information about
the signal. In the case of images, we know pixels that are close do not
change value too much. We can therefore get rid of noise by averaging
the value of nearby pixels. Recall that averaging is a form of low-pass
filtering. In this sense, we will de-noise 2-D signals the same way we
de-noised 1-D signals: by filtering. As before, filtering is represented as
a convolution with the filter impulse response. In the two-dimensional
case, the convolution of two signals x and y is defined as

[x ∗ y](m, n) : =
∞

∑
k=−∞

∞

∑
l=−∞

x(k, l)y(m− k, n− l)

=
M−1

∑
k=0

N−1

∑
l=0

x(k, l)y(m− k, n− l) (12)

In image processing, it is common to use Gaussian filters for de-
noising. In other words, we convolve the image with the Gaussian pulse Gσ
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from (11) to obtain
x̃de-noised = Gσ ∗ x. (13)

2.1 Spatial de-noising
2.1 Spatial de-noising. Implement the Gaussian filtering (13) without
using the 2-D DFT by directly convolving the images provided with a
Gaussian pulse. Use µ = (N − 1)/2 and σ = (N − 1)/6 in the function
from 1.4 so your pulse is centered and the filter has size N × N. Try your
implementation for N = 7, 13, 25 on sample images A and B. Do you
observe significant de-noising performance differences when varying σ?
Hint: look up the MATLAB functions conv2, imread.
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