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Definition of 2D DFT

I 2D signal x With N rows and M columns. Elements x(m, n)

I We will focus on signals with M = N. To simplify notation.

I Signal X is the 2D DFT of x if its elements X (k , l) are

X (k, l) :=
1

N

N−1∑
m=0

N−1∑
n=0

x(m, n)e−j2π(km+ln)/N

I As in 1D we write X = F(x).

I X may be complex even for real 2D signals x . Focus on magnitude.

I Argument k is horizontal frequency and l is the vertical frequency
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The 2D DFT and the (regular, 1D) DFT

I Separate terms in the exponent and regroup factors to write

X (k, l) :=
1√
N

N−1∑
m=0

[
1√
N

N−1∑
n=0

x(m, n)e−j2πln/N

]
e−j2πkm/N

I For fixed m, the term between parentheses is the DFT of x(m, ·)
I We then take the DFT of the resulting DFTs with respect to m

I The 2D DFT of x is the column-wise DFT of the row-wise DFTs

I Or the row-wise DFT of the column-wise DFTs. Just the same
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Discrete complex exponentials

I 2D Complex exponential of horizontal freq. k and vertical freq. l

eklN(m, n) =
1

N
e j2π(km+ln)/N =

1√
N
e j2π(km/N) 1√

N
e j2π(ln/N)

I Separate the exponential into two factors to write

eklN(m, n) =
1√
N
e j2π(km/N) 1√

N
e j2π(ln/N) = ekN(m)elN(n)

I 2D complex exponential is product of two 1D complex exponentials

Theorem
Complex exponentials with nonequivalent frequencies are orthogonal

〈eklN , ek̃ l̃N〉 = δ(k − k̃)δ(l − l̃)
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Definition of 2D iDFT

I Given a Fourier transform X , the inverse (i)DFT x = F−1(X ) is

x(m, n) :=
1

N

N−1∑
k=0

N−1∑
l=0

X (k , l)e j2π(km+ln)/N

I Sum is over horizontal and vertical frequencies dimensions

I Recall that 2D DFT has period N in vertical and horizontal freqs.

I Any summation over M ×N adjacent frequencies works as well. E.g.,

x(m, n) =
1

N

N/2∑
k=−N/2+1

N/2∑
l=−N/2+1

X (k , l)e j2π(km+ln)/N
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iDFT is, indeed, the inverse of the DFT

Theorem
The 2D inverse DFT x̃ = F−1(X ) of the 2D DFT X = F(x) of any
given signal x is the original signal x

x̃ ≡ F−1(X ) ≡ F−1(F(x)) ≡ x

I Every 2D signal can be written as a sum of 2D complex exponentials

x(m, n) :=
1

N

N−1∑
k=0

N−1∑
l=0

X (k , l)e j2π(km+ln)/N

I The coefficient for horizontal frequency k and vertical frequency f is

X (k, l) :=
1

N

N−1∑
m=0

N−1∑
n=0

x(m, n)e−j2π(km+ln)/N
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Border effects in image compression

I Patches are well approximated by a subset of 2D DFT coefficients

I Except for borders. And still a problem if we retain most coefficients

50 100 150 200

50

100

150

200

I Although didn’t mention, also a problem with (1D) DFTs ⇒ Why?
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The periodic extension of the iDFT

I First sample x(0) and last sample x(N − 1) can be very different

⇒ Most likely are. Unless signal has some structure, e.g., symmetry

I This is a problem for the periodic extension

⇒ The value x(0) = x̃(N) appears next to x(N − 1) = x̃(N − 1)

N − 1 t

x(n)

-N N 2N t

x̃(n)

I It’s tough to approximate a jump/discontinuity ⇒ High frequency

I Never mind. We’re more than Fourier people. We’re fearless transformers
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Inverse discrete cosine transform

I Say that we have a transform X so that we can write signal x̃ as

x̃(n) :=
1√
N
X (0) +

√
2

N

N−1∑
k=1

X (k) cos

[
πk(2n + 1)

2N

]
I No complex numbers involved. Signals and transforms assumed real

I Haven’t said how to find X so that x̃(n) = x(n) for n ∈ [0,N − 1]

I This is done with discrete cosine transform (DCT). We’ll see later

I Details are different but this is still x written as a sum of oscillations

⇒ Still expect low frequency components to be most significant

⇒ But have written cosine in a way that avoids border discontinuities
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The even extension of the iDCT

I Formalize argument to prove that the iDCT yields an even extension

x̃
[
N + (n − 1)

]
= x

[
N − n

]
I Or, to better visualize the symmetry

x̃
[
(N − 1/2) + (n − 1/2)

]
= x

[
(N − 1/2)− (n − 1/2)

]
I Signal x written as sum of oscillations without border effects

N − 1 t

x(n)

-N N 2N t

x̃(n)
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The discrete cosine transform (DCT)

I Still have to find out a way of computing the coefficients X (k)

I Given a real signal x , the DCT X = C(x) is the real signal with

X (0) :=
1√
N

N−1∑
n=0

x(n)cos

[
π0(2n + 1)

2N

]

X (k) :=

√
2

N

N−1∑
n=0

x(n) cos

[
πk(2n + 1)

2N

]
I Normalization constants are different for k = 0 and k ∈ [1,N − 1]

I No complex numbers involved. Signals and transforms are real
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DCT basis

I Define the elements of the DCT basis as the signals ckN with

c0N(n) :=
1√
N

ckN(n) :=

√
2

N
cos

[
πk(2n + 1)

2N

]
I Akin to the DFT basis defined by the N complex exponentials ekN

I With basis defined can write DCT of x as ⇒ X (k) = 〈x , ckN〉

I Inner product implies the usual interpretation

⇒ X(k) is how much x(n) resembles oscillation of frequency k
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iDCT is the inverse of the DCT

Theorem
The iDCT x̃ = C−1(X ) of the DCT X = C(x) of any given signal x is the
original signal x, i.e.,

x̃ ≡ C−1(X ) ≡ C−1(C(x)) ≡ x

I Equivalence means x̃(n) = x(n) for n ∈ [0,N − 1].

⇒ Otherwise, inverse transform x̃ is an even extension of original x

I To prove theorem, use DCT definition, iDCT definition, reverse
summation order, and invoke orthogonality of the DCT basis.

I Conservation of energy (Parseval’s) also holds ⇒ orthogonality
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The discrete Fourier transform, again

I It is time to write and understand the DFT in a more abstract way

I Write signal x and complex exponential ekN as vectors x and ekN

x =


x(0)
x(1)
...
x(N − 1)

 ekN =
1√
N


e j2πk0/N

e j2πk1/N

...
e j2πk(N−1)/N


I Use vectors to write the kth DFT component as (eH

kN = (e∗kN)T )

X (k) = eH
kNx = 〈x, ekN〉 =

1√
N

N−1∑
n=0

x(n)e−j2πkn/N

I kth DFT component X (k) is the product of x with exponential eH
kN
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DFT in matrix notation

I Write DFT X as a stacked vector and stack individual definitions

X =


X (0)
X (1)
...
X (N − 1)

 =


eH

0Nx
eH

1Nx
...
eH

(N−1)Nx

 =


eH

0N

eH
1N

...
eH

(N−1)N

 x

I Define the DFT matrix FH so that we can write X = FHx

FH =


eH

0N

eH
1N

...
eH

(N−1)N

 =
1√
N


1 1 · · · 1

1 e−j2π(1)(1)/N · · · e−j2π(1)(N−1)/N

...
...

. . .
...

1 e−j2π(N−1)(1)/N · · · e−j2π(N−1)(N−1)/N


I The DFT of signal x is a matrix multiplication ⇒ X = FHx
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The Hermitian of the DFT matrix FH

I Let F =
(
FH
)H

be conjugate transpose of FH . We can write F as

F =


eT

0N

eT
1N

...
eT

(N−1)N

 ⇐ FH =
[

e∗
0N e∗

1N · · · e∗
(N−1)N

]

I We say that FH and F are Hermitians of each other (that’s why FH)

I The nth row of F is the nth complex exponential eT
nN

I The kth column of FH is the kth conjugate complex exponential e∗kN
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The product of F and its Hermitian FH

I The product between the DFT matrix F and its Hermitian FH is

[
e∗

0N · · · e∗
kN · · · e∗

(N−1)N

]


eT
0N

...
eT
kN

...
eT

(N−1)N





eT
0Ne∗

0N · · · eT
0Ne∗

kN · · · eT
0Ne∗

(N−1)N

...
. . .

...
. . .

...
eT
kNe∗

0N · · · eT
kNe∗

kN · · · eT
kNe∗

(N−1)N

...
. . .

...
. . .

...
eT

(N−1)Ne∗
0N · · · eT

(N−1)Ne∗
kN · · · eT

(N−1)Ne∗
(N−1)N


= FHF

I The (n, k) element of product matrix is the inner product eT
nNe∗kN

I Orthonormality of complex exponentials ⇒ eT
nNe∗kN = δ(n − k)

⇒ Only the diagonal elements survive in the matrix product
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The matrix F and its inverse

I The DFT matrix F and its Hermitian are inverses of each other

FHF =



1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1

 = I

I Matrices whose inverse is its Hermitian, are said Hermitian matrices

I Have proved the following fundamental theorem. Orthonormality

Theorem
The DFT matrix F is Hermitian ⇒ FHF = I = FFH
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The iDFT in matrix form

I We can retrace methodology to also write the iDFT in matrix form

I No new definitions are needed. Use vectors enN and X to write

x̃(n) = eT
nNX =

1√
N

N−1∑
k=0

X (k)e j2πkn/N

I Define stacked vector x̃ and stack definitions. Use expression for F

x̃ =


x̃(0)
x̃(1)
...
x̃(N − 1)

 =


eT

0NX
eT

1NX
...
eT

(N−1)NX

 =


eT

0N

eT
1N

...
eT

(N−1)N

X = FX

I The iDFT is, as the DFT, just a matrix product ⇒ x̃ = FX
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Inverse theorem, like a pro

I When we proved theorems we had monkey steps and one smart step

⇒ That was orthonormality ⇒ matrix F is Hermitian ⇒ FHF = I

Theorem
The iDFT is, indeed, the inverse of the DFT

Proof.

I Write x̃ = FX and X = FHx and exploit fact that F is Hermitian

x̃ = FX = FFHx = Ix = x

I Actually, this theorem would be true for any transform pair

X = THx ⇐⇒ x̃ = TX

I As long as the transform matrix T is Hermitian ⇒ THT = I
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Energy conservation (Parseval) theorem, like a pro

Theorem
The DFT preserves energy ⇒ ‖x‖2 = xHx = XHX = ‖X‖2

Proof.

I Use iDFT to write x = FX and exploit fact that F is Hermitian

‖x‖2 = xHx = (FX)H FX = XHFHFX = XHX = ‖X‖2

I This theorem would also be true for any transform pair

X = THx ⇐⇒ x̃ = TX

I As long as the transform matrix T is Hermitian ⇒ THT = I
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Designing transformations adapted to signals

I A basic information processing theory can be built for any T

I Then, why do we specifically choose the DFT? Or the DCT?

⇒ Oscillations represent different rates of change

⇒ Different rates of change represent different aspects of a signal

I Not a panacea, though. E.g., FH is independent of the signal

I If we know something about signal, should use it to build better T

I A way of “knowing something” is a stochastic model of the signal

I PCA: Principal component analysis

⇒ Use the eigenvectors of the covariance matrix to build T
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Eigenvectors and eigenvalues of covariance matrix

I Consider a vector with N elements ⇒ v = [v(0), v(1), . . . , v(N − 1)]

I We say that v is an eigenvector of Σ if for some scalar λ ∈ R

Σv = λv

I We say that λ is the eigenvalue associated to v

w

Σw

v1

Σv1 = λ1v1 v2

Σv2 = λ2v2

I In general, non-eigenvectors w and Σw point in different directions

I But for eigenvectors v, the product vector Σv is collinear with v

I We use normalized eigenvectors with unit energy ⇒ ‖v‖2 = 1
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Ordering

Theorem
The eigenvalues of Σ are real and nonnegative ⇒ λ ∈ R and λ ≥ 0

I Order eigenvalues from largest to smallest ⇒ λ0 ≥ λ1 ≥ . . . ≥ λN−1

I Eigenvectors inherit order ⇒ v0, v1, . . . , vN−1

I The nth eigenvector of Σ is associated with its nth largest eigenvalue
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Eigenvectors are orthonormal

Theorem
Eigenvectors of Σ associated with different eigenvalues are orthogonal

I Define the matrix T = [v0, v1, . . . , vN−1]

I Since the eigenvectors vk are orthonormal, the product THT is

THT =

[
v0 · · · vk · · · vN−1

]


vH
0

...
vH
k

...
vH
N−1





vH
0 v0 · · · vH

1 vk · · · vH
0 vN−1

...
. . .

...
. . .

...
vH
k v0 · · · vH

k vk · · · vH
k vN−1

...
. . .

...
. . .

...
vH
N−1vN−1 · · · vH

N−1vk · · · vH
N−1vN−1


=



1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1



I The eigenvector matrix T is Hermitian ⇒ THT = I

Signal and Information Processing Signal and information processing in time 29



Principal component analysis transform

I Any Hermitian T can be used to define an info processing transform

I Define principal component analysis (PCA) transform ⇒ y = THx

I And the inverse (i)PCA transform ⇒ x̃ = Ty

I Since T is Hermitian, iPCA is, indeed, the inverse of the PCA

x̃ = Ty = T
(
THx

)
= TTHx = Ix = x

I Thus y is an equivalent representation of x ⇒ Back and forth

I And, also because T is Hermitian, Parseval’s theorem holds

‖x‖2 = xHx = (Ty)H Ty = yHTHTy = yHy = ‖y‖2

I Modifying elements yk means altering energy composition of signal
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Compression with the PCA

I Transform signal x into eigenvector domain with PCA y = THx

I Recover x from y through iPCA matrix multiplication x = Ty

I We compress by retaining K < N PCA coefficients to write

x̃(n) =
K−1∑
k=0

y(k)vk(n)

I Equivalently, we define the compressed PCA as

ỹ(k) = y(k) for k < K , ỹ(k) = 0 otherwise

I Reconstructed signal is obtained with iPCA ⇒ x̃ = Tỹ
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Expected reconstruction error

I PCA dimensionality reduction minimizes the expected error energy

I To see that this is true, define the error signal as ⇒ e := x− x̃

I The energy of the error signal is ⇒ ‖e‖2 = ‖x− x̃‖2

I The expected value of the energy of the error signal is

E
[
‖e‖2

]
= E

[
‖x− x̃‖2

]
I Keeping the first K PCA coefficients minimizes E

[
‖e‖2

]
⇒ Among all reconstructions that use, at most, K coefficients
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Dimensionality reduction expected error

Theorem
The expectation of the reconstruction error is the sum of the eigenvalues
corresponding to the eigenvectors of the coefficients that are discarded

E
[
‖e‖2

]
=

N−1∑
k=K

λk

I It follows that keeping the first K PCA coefficients is optimal

⇒ In the sense that it minimizes the Expected error energy

I Good on average. Across realizations of the stochastic signal X

I Need not be good for given realization (but we expect it to be good)
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Proof of expected error expression

Proof.

I Error signal signal is e := x− x̃. Define error PCA transform as f = THx

I Using Parseval’s (energy conservation) we can write the energy of e as

‖e‖2 = ‖f‖2 =
N−1∑
k=K

y 2(k)

I In the last equality we used that f = y− ỹ = [0, . . . , 0,y(K), . . . , y(N − 1)]

I Here, we are interested in the expected value of the error’s energy

I Take expectation on both sides of equality ⇒ E
[
‖e‖2

]
=

N−1∑
k=K

E
[
y 2(k)

]
I Used the fact that expectations are linear operators
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Proof of expected error expression

Proof.

I Compute expected value E
[
y 2(k)

]
of the squared PCA coefficient y(k)

I As per PCA transform definition y(k) = vHx, which implies

E
[
y 2(k)

]
= E

[
(vH

k x)2
]

= E
[
vH
k xxTvk

]
= vH

k E
[
xxT

]
vk

I Covariance matrix: Σ := E
[
xxT

]
. Eigenvector definition Σvk = λk . Thus

E
[
y 2(k)

]
= vH

k Σvk = vH
k λkvk = λk‖vk‖2

I Substitute into expression for E
[
‖e‖2

]
to write ⇒ E

[
‖e‖2

]
=

N−1∑
k=K

λk
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Discussions

I The PCA transform is defined for any signal (vector) x

⇒ But we expect to work well only when x is a realization of X

I Write the iPCA in expanded form and compare with the iDFT

x(n) =
N−1∑
k=0

y(k)vk(n) ⇔ x(n) =
N−1∑
k=0

X (k)ekN(n)

I The same except that they use different bases for the expansion

I Still, like developing a new sense.

I But not one that is generic. Rather, adapted to the random signal X
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Graphs and graph signals

I A graph (network) is a triplet (V, E ,W ). Vertices, edges, weights

I (In) Neighborhood ⇒ N (n) = {m ∈ V : (m, n) ∈ E}
I W : E → R is a map from the set of edges to scalar values, wnm

⇒ Represents the level of relationship from n to m

⇒ Unweighted ⇒ wnm ∈ {0, 1}. Undirected ⇒ wnm = wmn

⇒ Most often weights are strictly positive, W : E → R++

I Graph signals are mappings defined on vertices of graph x : V → R
⇒ Vector x ∈ RN where xn represents signal value at the nth vertex
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Adjacency matrices

I Given a graph G = (V, E ,W ) of N vertices,

I Its adjacency matrix A ∈ RN×N is defined as

Anm =

{
wnm, if(n,m) ∈ E
0, otherwise

I A matrix representation incorporating all information about G

⇒ For unweighted graphs, positive entries represent connected pairs

⇒ For weighted graphs, also denote proximities between pairs
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Laplacian of a graph

I Given a graph G with adjacency matrix A and degree matrix D

I We define the Laplacian matrix L ∈ RN×N as

L = D− A

I Equivalently, L can be defined elementwise as

Li j =


deg(i) if i = j

−wi j if (i , j) ∈ E
0 otherwise

I We assume undirected G ⇒ deg(i) is well-defined
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Laplacian as a measure of variability

I Given a graph G with Laplacian L and a signal x define signal y = Lx

yi = [Lx]i =
∑

j∈N (i)

wi j(xi − xj)

I Summand wi j(xi − xj) large ⇒ Weight wi j large. Values xi and xj different

I Signal component y i measures difference between xi and neighbor’s values

I We can also define the Laplacian quadratic form of x

xTLx =
1

2

∑
(i,j)∈E

wi j(xi − xj)
2

I Quantifies variation of signal x with respect to the graph’s structure
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Graph Fourier Transform (GFT)

Two dimensional (2D) discrete Fourier transform (DFT)

Discrete Cosine Transform

The discrete Fourier transform with Hermitian matrices

Principal Component Analysis (PCA) transform

Graph Signals

Graph Fourier Transform (GFT)
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Graph-shift operator

I Given an arbitrary graph G = (V, E ,W )

I A graph-shift operator S ∈ RN×N of graph G ia a matrix satisfying

⇒ S i j = 0 for i 6= j and (i , j) 6∈ E

I S can take nonzero values in the edges of G or in its diagonal

I We have already seen some possible graph-shift operators

⇒ Adjacency A, Degree D and Laplacian L matrices

I We restrict our attention to normal shifts S = VΛVH

⇒ Columns of V = [v1v2 . . . vN ] correspond to the eigenvectors of S

⇒ Λ is a diagonal matrix containing the eigenvalues of S
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Graph Fourier Transform (GFT)

I Given a graph G and a graph signal x ∈ RN defined on G

⇒ Consider a normal graph-shift S = VΛVH

I The Graph Fourier Transform (GFT) of x is defined as

x̃(k) = 〈x, vk〉 =
N∑

n=1

x(n)v∗k(n)

I In matrix form, x̃ = VHx

I Given that the columns of V are the eigenvectors vi of S

⇒ x̃(k) = vH
k x is the inner product between vk and x

⇒ x̃(k) is how similar x is to vk

⇒ In particular, GFT ≡ DFT when VH = F, i.e. vk = ekN
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DFT and PCA as particular cases of GFT

0 1 2 3 · · · 23

I For the directed cycle graph, GFT ≡ DFT

⇒ if S = A or

⇒ if S = L for symmetrized graph

⇒ then VH = F

I For the covariance graph, GFT ≡ PCA

⇒ if S = A, then VH = PH

p1 p2

p3 p4

Σ12

Σ13

Σ34

Σ24
Σ14

Σ23

Σ11 Σ22

Σ33 Σ44
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Inverse graph Fourier transform

I Recall the graph Fourier transform x

⇒ of any signal x ∈ RN on the vertices of graph G

⇒ is the expansion of x of the eigenvectors of the Laplacian

x̃(k) = 〈x, vk〉 =
N∑

n=1

x(n)v∗k (n)

I In matrix form, x̃ = VHx

I The inverse graph Fourier transform is

x(n) =
N−1∑
k=0

x̃(k)vk(n)

I In matrix form, x = Vx̃
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Inverse theorem, like a pro

I Recap in proving theorems we have monkey steps and one smart step

⇒ That was orthonormality ⇒ VH is Hermitian ⇒ VVH = I

Theorem
The inverse graph Fourier transform (iGFT) is, indeed, the inverse of the
GFT.

Proof.

I Write x = Vx̃ and x̃ = VHx and exploit fact that V is Hermitian

x = Vx̃ = VVHx = Ix = x

I This is the last inverse theorem we will see...
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Energy conservation (Parseval) theorem, like a pro

Theorem
The GFT preserves energy ⇒ ‖x‖2 = xHx = x̃H x̃ = ‖x̃‖2

Proof.

I Use GFT to write x̃ = VHx and the fact that V is Hermitian

‖x̃‖2 = x̃H x̃ =
(

VHx
)H

VHx = xHVVHx = xHx = ‖x‖2
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Courses to consider

I If you want to explore more about transforms and filters

⇒ ESE210: Introduction to Dynamic Systems

⇒ ESE303: Stochastic Systems Analysis and Simulation

⇒ ESE325: Fourier Analysis and Applications ...

⇒ ESE531: Digital Signal Processing
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More courses to consider

I Once you have information you may want to something with it

I Controlling the state of a system

⇒ ESE406: Control of Systems

⇒ ESE500: Linear Systems Theory

I Making decisions that are good in some sense (optimal)

⇒ ESE204: Decision Models

⇒ ESE304: Optimization of Systems

⇒ ESE504: Introduction to Optimization Theory

⇒ ESE605: Modern Convex Optimization
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Even more courses to consider

I At some point, you want to use what you’ve learned to do something

⇒ ESE290: Introduction to ESE Research Methodology

⇒ ESE350: Embedded Systems/Microcontroller Laboratory
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Research

I Most professors use about 5% of their time on teaching

I The other 95% of their time they use on research

I It is a pity to come to Penn and not spend a summer doing research

I Most of us are happy to have help

I Even if we are not, our doctoral students are desperate for help
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Thanks

I It has been my pleasure.

I If you need my help at some point in the next 29 years, let me know

I I will be retired after that
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