

Discrete signals

Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

January 18, 2017

Discrete signals

Inner products and energy

Discrete complex exponentials

- ▶ Discrete and finite time index n = 0, 1, ..., N 1 = [0, N 1].
- ▶ Discrete signal x is a function mapping [0, N-1] to a real value x(n)

$$x: [0, N-1] \rightarrow \mathbb{R}$$

- The values that the signal takes at time index n is x(n)
- Sometimes it will make sense to talk about complex signals

$$x:[0,N-1] \to \mathbb{C}$$

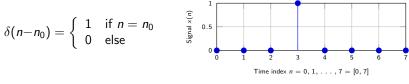
- The values $x(t) = x_R(t) + j x_I(t)$ are complex numbers
- ▶ Space of signals = space of *N*-dimensional vectors \mathbb{R}^N or \mathbb{C}^N

Deltas (impulses, spikes)

• The discrete delta function $\delta(n)$ is a spike at (initial) time n = 0

. .

• The shifted delta function $\delta(n - n_0)$ has a spike at time $n = n_0$



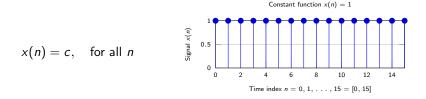
This is not a new definition, just a time shift

Delta function $x(n) = \delta(n)$

Shifted delta function $x(n) = \delta(n - 3)$

Constants and square pulses

• A constant function x(n) has the same value c for all n



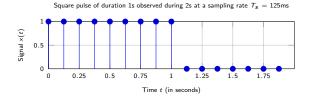
▶ A square pulse of width M, $\sqcap_M(n)$, equals one for the first M values

▶ Can consider shifted pulses $\sqcap_M (n - n_0)$, with $n_0 < N - M$

Square pulse $x(n) = \Box_6(n)$

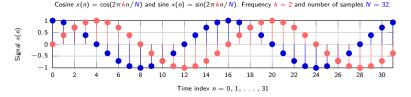
Units: Sampling time and signal duration

- ▶ Sampling time T_s ⇒ Time elapsed between indexes n and n+1
 - \Rightarrow Sampling frequency $f_s := 1/T_s$
- Time index *n* represents actual time $t = nT_s$



▶ Signal duration $T = NT_s \Rightarrow$ Time length of signal ⇒ The last sample is "held" during T_s time units

- ► For a signal of duration *N* define (assume *N* is even):
 - \Rightarrow Discrete cosine of discrete frequency $k \Rightarrow x(n) = \cos(2\pi k n/N)$
 - \Rightarrow Discrete sine of discrete frequency $k \Rightarrow x(n) = \sin(2\pi k n/N)$

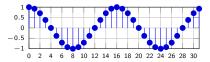


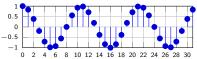
- Frequency k is discrete. I.e., k = 0, 1, 2, ...
 - \Rightarrow Have an integer number of complete oscillations

Cosines of different frequencies (1 of 2)

- Discrete frequency k = 0 is a constant
- Discrete frequency k = 1 is a complete oscillation
- Frequency k = 2 is two oscillations, for k = 3 three oscillations ...

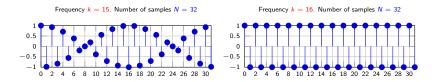
Frequency k = 2. Number of samples N = 32





Cosines of different frequencies (2 of 2)

- Frequency k represents k complete oscillations
- ► Although for large *k* the oscillations may be difficult to see

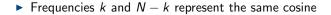


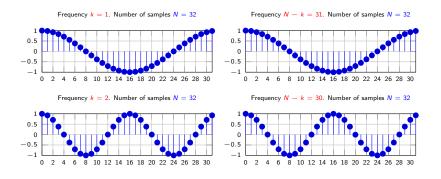
• Do note that we can't have more than N/2 oscillations

$$\Rightarrow$$
 Indeed $1 \rightarrow -1 \rightarrow 1, \rightarrow -1, \dots$

 \Rightarrow Frequency N/2 is the last one with physical meaning

▶ Larger frequencies replicate frequencies between k = 0 and k = N/2





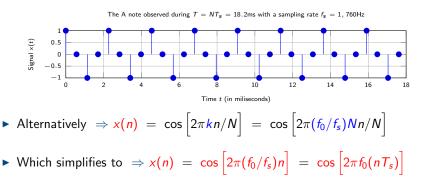
- Actually, if $k + l = \dot{N}$, cosines of frequencies k and l are equivalent
- ▶ Not true for sines, but almost. The signals have opposite signs

- What is the discrete frequency k of a cosine of frequency f_0 ?
- Depends on sampling time T_s , frequency $f_s = \frac{1}{T_s}$, duration $T = NT_s$
- Period of discrete cosine of frequency k is T/k (k oscillations)
- ▶ Thus, regular frequency of said cosine is $\Rightarrow f_0 = \frac{k}{T} = \frac{k}{NT_c} = \frac{k}{N}f_s$
- A cosine of frequency f_0 has discrete frequency $k = (f_0/f_s)N$
- ▶ Only frequencies up to $N/2 \leftrightarrow f_s/2$ have physical meaning
- Sampling frequency $f_s \Rightarrow$ Cosines up to frequency $f_0 = f_s/2$

Use of units example

- Generate N = 32 samples of an A note with sampling frequency $f_s = 1,760$ Hz
- The frequency of an A note is $f_0 = 440$ Hz. This entails a discrete frequency

$$k = \frac{f_0}{f_s}N = \frac{440\text{Hz}}{1,760\text{Hz}}32 = 8$$



- The frequency k need not be integer but it's not a discrete cosine
 - \Rightarrow Sampled cosine $\Rightarrow x(n) = \cos(2\pi k n/N)$
 - \Rightarrow Sampled sine $\Rightarrow x(n) = \sin(2\pi k n/N)$
- Discrete sine and cosine have complete oscillations
- Sampled sine and cosine may have incomplete oscillations
- Discrete sine and cosine are used to define Fourier transforms (later)

Discrete signals

Inner products and energy

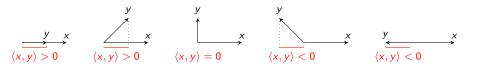
Discrete complex exponentials

► Given two signals x and y define the inner product of x and y as

$$\begin{aligned} \langle x, y \rangle &:= \sum_{n=0}^{N-1} x(n) y^*(n) \\ &= \sum_{n=0}^{N-1} x_R(n) y_R(n) + \sum_{n=0}^{N-1} x_I(n) y_I(n) + j \sum_{n=0}^{N-1} x_I(n) y_R(n) - j \sum_{n=0}^{N-1} x_R(n) y_I(n) \end{aligned}$$

- Inner product between vectors x and y, just with different notation
- Inner product is a linear operations $\Rightarrow \langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- Reversing order equals conjugation $\Rightarrow \langle y, x \rangle = \langle x, y \rangle^*$

- Signal inner product has same intuition as vector inner product
 ⇒ Inner product ⟨x, y⟩ is the projection of y on x
 ⇒ The value of ⟨x, y⟩ is how much of y falls in x direction
- E.g., if $\langle x, y \rangle = 0$ the signals are orthogonal. They are "unrelated"



▶ Following the algebra analogies, define the norm of signal *x* as

$$\|x\| := \left[\sum_{n=0}^{N-1} |x(n)|^2\right]^{1/2} = \left[\sum_{n=0}^{N-1} |x_R(n)|^2 + \sum_{n=0}^{N-1} |x_I(n)|^2\right]^{1/2}$$

More important, define the energy of the signal as the norm squared

$$||x||^{2} := \sum_{n=0}^{N-1} |x(n)|^{2} = \sum_{n=0}^{N-1} |x_{R}(n)|^{2} + \sum_{n=0}^{N-1} |x_{I}(n)|^{2}$$

• For complex numbers $x(n)x^*(n) = |x_R(n)|^2 + |x_I(n)|^2 = |x(n)|^2$

▶ Thus, we can write the energy as $\Rightarrow \|x\|^2 = \langle x, x \rangle$

> The largest an inner product can be is when the vectors are collinear

$$-\|x\| \|y\| \le \langle x, y \rangle \le \|x\| \|y\|$$

• Or in terms of energy $\Rightarrow \langle x, y \rangle^2 \le ||x||^2 ||y||^2$

▶ If you are the sort of person that prefers explicit expressions

$$\sum_{n=0}^{N-1} x(n) y^*(n) \le \left[\sum_{n=0}^{N-1} |x(n)|^2\right] \left[\sum_{n=0}^{N-1} |y(n)|^2\right]$$

The equalities hold if and only if x and y are collinear

▶ The unit energy square pulse is the signal $\sqcap_M(n)$ that takes values

$$\Box_{M}(n) = \frac{1}{\sqrt{M}} \quad \text{if } 0 \le n < M$$

$$\Box_{M}(n) = 0 \quad \text{if } M \le n$$

$$\prod_{M=1}^{|n|} \prod_{M=1}^{|n|} \prod_{M=1}^{|n$$

▶ To compute energy of the pulse we just evaluate the definition

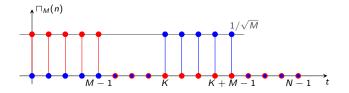
$$\| \prod_{M} \|^{2} := \sum_{n=0}^{N-1} | \prod_{M} (n) |^{2} = \sum_{n=0}^{M-1} \left| (1/\sqrt{M}) \right|^{2} = \frac{M}{M} = 1$$

Indeed, the unit energy square pulse has unit energy

• If the height of the pulse is 1 instead of $1/\sqrt{M}$, the energy is M.

Shifted pulses

- To shift a pulse we modify the argument $\Rightarrow \sqcap_M(n-K)$
 - \Rightarrow The pulse is now centered at K (n = K is as n = 0 before)



▶ Inner product of two pulses with disjoint support ($K \ge M$)

$$\langle \sqcap_M(n),\sqcap_M(n-K) \rangle := \sum_{n=0}^{N-1} \sqcap_M(n) \sqcap_M(n-K) = 0$$

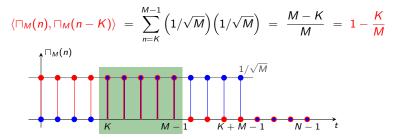
▶ The signals are orthogonal, and indeed, "unrelated" to each other

Overlapping shifted pulses

• Inner product of two pulses with overlapping support (K < M)

$$\langle \sqcap_M(n),\sqcap_M(n-K)\rangle := \sum_{n=0}^{N-1} \sqcap_M(n) \sqcap_M(n-K)$$

• The signals overlap between K and M - 1. Thus



Inner product is proportional to the relative overlap

 \Rightarrow which is, indeed, how much the signals are "related" to each other

Discrete signals

Inner products and energy

Discrete complex exponentials

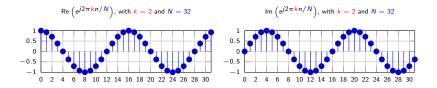
Discrete complex exponential of discrete frequency k and duration N

$$e_{kN}(n) = \frac{1}{\sqrt{N}} e^{j2\pi kn/N} = \frac{1}{\sqrt{N}} \exp(j2\pi kn/N)$$

The complex exponential is explicitly given by

$$e^{j2\pi kn/N} = \cos(2\pi kn/N) + j\sin(2\pi kn/N)$$

▶ Real part is a discrete cosine and imaginary part a discrete sine



Properties

[P1] For frequency k = 0, the exponential $e_{kN}(n) = e_{0N}(n)$ is a constant $e_{kN}(n) = \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} 1$

[P2] For frequency k = N, the exponential $e_{kN}(n) = e_{NN}(n)$ is a constant

$$e_{NN}(n) = \frac{e^{j2\pi Nn/N}}{\sqrt{N}} = \frac{(e^{j2\pi})^n}{\sqrt{N}} = \frac{(1)^n}{\sqrt{N}} = \frac{1}{\sqrt{N}}$$

• Actually, true for any frequency $k \in \dot{N}$ (multiple of N)

[P3] For k = N/2, the exponential $e_{kN}(n) = e_{N/2N}(n) = (-1)^n / \sqrt{N}$ $e_{N/2N}(n) = \frac{e^{j2\pi(N/2)n/N}}{\sqrt{N}} = \frac{(e^{j\pi})^n}{\sqrt{N}} = \frac{(-1)^n}{\sqrt{N}}$

▶ The fastest possible oscillation with *N* samples

That $e^{j2\pi} = 1$ follows from $e^{j\pi} = -1$, which follows from $e^{j\pi} + 1 = 0$. The latter relates the five most important constants in mathematics and proves god's existence.

Theorem If k - l = N the signals $e_{kN}(n)$ and $e_{lN}(n)$ coincide for all n, i.e.,

$$e_{kN}(n) = \frac{e^{j2\pi kn/N}}{\sqrt{N}} = \frac{e^{j2\pi ln/N}}{\sqrt{N}} = e_{lN}(n)$$

Exponentials with frequencies k and l are equivalent if k - l = N

Proof.

• We prove by showing that $e_{kN}(n)/e_{lN}(n) = 1$. Indeed,

$$\frac{e_{kN}(n)}{e_{lN}(n)} = \frac{e^{j2\pi kn/N}}{e^{j2\pi ln/N}} = e^{j2\pi (k-l)n/N}$$

• But since we have that k - l = N the above simplifies to

$$\frac{e_{kN}(n)}{e_{lN}(n)} = e^{j2\pi Nn/N} = \left[e^{j2\pi}\right]^n = 1^n = 1$$

ARI

• Exponentials with frequencies that are *N* apart are equivalent

$$\begin{array}{cccc} -N, & -N+1, & \dots, & -1 \\ 0, & 1, & \dots, & N-1 \\ N, & N+1, & \dots, & 2N-1 \end{array}$$

- Suffice to look at N consecutive frequencies, e.g., k = 0, 1, ..., N 1
- Another canonical choice is to make k = 0 the center frequency

- ▶ With N even (as usual) use N/2 positive and N/2 1 negative
- From one canonical set to the other \Rightarrow Chop and shift

Theorem

Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

$$\langle e_{kN}, e_{IN} \rangle = 0$$

when k - l < N. E.g., when k = 0, ..., N - 1, or k = -N/2 + 1, ..., N/2.

- Signals of canonical sets are "unrelated." Different rates of change
- Also note that the energy is $||e_{kN}||^2 = \langle e_{kN}, e_{kN} \rangle = 1$
- Exponentials with frequencies k = 0, 1, ..., N 1 are orthonormal

$$\langle e_{kN}, e_{IN} \rangle = \delta(I-k)$$

► They are an orthonormal basis of signal space with N samples

Proof of orthogonality

Proof.

▶ Use definitions of inner product and discrete complex exponential to write

$$\langle e_{kN}, e_{lN} \rangle = \sum_{n=0}^{N-1} e_{kN}(n) e_{lN}^*(n) = \sum_{n=0}^{N-1} \frac{e^{j2\pi kn/N}}{\sqrt{N}} \frac{e^{-j2\pi ln/N}}{\sqrt{N}}$$

Regroup terms to write as geometric series

$$\langle e_{kN}, e_{lN} \rangle = \frac{1}{N} \sum_{n=0}^{N-1} e^{j2\pi(k-l)n/N} = \frac{1}{N} \sum_{n=0}^{N-1} \left[e^{j2\pi(k-l)/N} \right]^n$$

• Geometric series with basis a sums to $\sum_{n=0}^{N-1} a^n = (1 - a^N)/(1 - a)$. Thus,

$$\langle e_{kN}, e_{lN} \rangle = \frac{1}{N} \frac{1 - \left[e^{j2\pi(k-l)/N} \right]^N}{1 - e^{j2\pi(k-l)/N}} = \frac{1}{N} \frac{1 - 1}{1 - e^{j2\pi(k-l)/N}} = 0$$

• Completed proof by noting $\left[e^{j2\pi(k-l)/N}\right]^N = e^{j2\pi(k-l)} = \left[e^{j2\pi}\right]^{(k-l)} = 1$

Theorem

Opposite frequencies k and -k yield conjugate signals: $e_{-kN} = e_{kN}^*(n)$

Proof.

Just use the definitions to write the chain of equalities

$$e_{-kN}(n) = \frac{e^{j2\pi(-k)n/N}}{\sqrt{N}} = \frac{e^{-j2\pi kn/N}}{\sqrt{N}} = \left[\frac{e^{j2\pi kn/N}}{\sqrt{N}}\right]^* = e_{kN}^*(n) \quad \square$$

▶ Opposite frequencies ⇒ Same real part. Opposite imaginary part
 ⇒ The cosine is the same, the sine changes sign

• Of the N canonical frequencies, only N/2 + 1 are distinct.

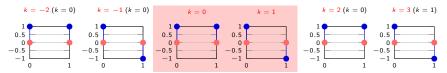
0, 1, ...,
$$N/2 - 1$$
 $N/2$
-1, ..., $-N/2 + 1$
 $N - 1$, ..., $N/2 + 1$

Frequencies 0 and N/2 have no counterpart. Others have conjugates

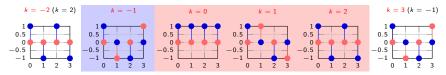
- Canonical set $-N/2 + 1, \dots, -1, 0, 1, \dots, N/2$ easier to interpret
- Reasonable \Rightarrow Can't have more than N/2 oscillations in N samples
- ► With sampling frequency f_s and signal duration $T = NT_s = N/f_s$ ⇒ Discrete frequency k ⇒ frequency $f_0 = \frac{k}{T} = \frac{k}{NT_s} = \frac{k}{N}f_s$
- ▶ Frequencies from 0 to $N/2 \leftrightarrow f_s/2$ have physical meaning
 - \Rightarrow Negative frequencies are conjugates of the positive frequencies

Complex exponentials for N = 2 and N = 4

• When N = 2 only k = 0 and k = 1 represent distinct signals



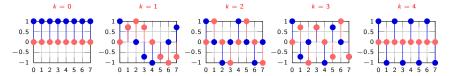
- The signals are real, they have no imaginary parts
- When N = 4, k = 0, 1, 2 are distinct. k = -1 is conjugate of k = 1



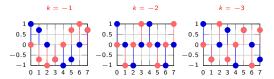
• Can also use k = 3 as canonical instead of k = -1 (conjugate of k = 1)

Complex exponentials for N = 8

• Frequencies from k = 1 to k = 4 represent distinct signals



Frequencies k = -1 to k = -3 are conjugate signals of k = 1 to k = 3



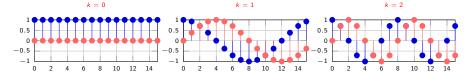
All other frequencies represent one of the signals above

Complex exponentials for N = 16

k = 3

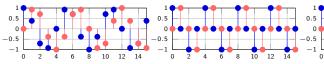
k = 6

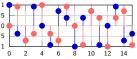
► There are 9 distinct frequencies and 7 conjugates (not shown). Some look like actual oscillations. Border effect of k = 0 and k = N/2 becomes less relevant



k = 4

k = 7





k = 8

k = 5

