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Discrete signals and DFT

I Fourier analysis of discrete signals x : [0,N − 1]→ C ⇒ DFT, iDFT

I Good (and quick) computational tool

⇒ Signal analysis ⇒ pattern discovery, frequency components

⇒ Signal processing ⇒ compression, noise removal

I Two important limitations

⇒ Time is neither discrete nor finite (not always, at least)

⇒ Properties and interpretations are easier in continuous time

I Fourier analysis of continuous signals ⇒ Fourier transform (FT)
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To infinity and beyond

I We have been dealing with discrete signals x : [0,N − 1]→ C

I To infinity ⇒ Let number of samples go to infinity

⇒ Discrete time signal x : Z→ C
⇒ Values x(n) for n = . . . ,−1, 0, 1, . . .

I And beyond ⇒ Fill in the gaps between samples

⇒ Continuous time signal x : R→ C
⇒ Values x(t) for t any real number in (−∞,+∞)

I Let’s begin by studying continuous time signals
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Continuous time signals

I Continuous time variable t ∈ R.

I Continuous time signal x is a function that maps t to real value x(t)

x : R→ R

I The values that the signal takes at time t is x(t)

I It will make sense to talk about complex signals (as in discrete case)

x : R→ C

I where the values x(t) = xR(t) + j xI (t) are complex numbers
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Inner product

I Given two signals x and y define the inner product of x and y as

〈x , y〉 :=

∫ ∞
−∞

x(t)y∗(t)dt

I Akin to inner product of discrete signals ⇒ 〈x , y〉 =
N∑

n=0

x(n)y(n)

xy

〈x , y〉 > 0

x

y

〈x , y〉 > 0

x

y

〈x , y〉 = 0

x

y

〈x , y〉 < 0

xy

〈x , y〉 < 0

I But we have infinite number of components. To infinity and beyond

I Intuition holds ⇒ 〈x , y〉 is how much of y falls in x direction

I E.g., if 〈x , y〉 = 0 the signals are orthogonal. They are “unrelated”
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Norm and energy

I As for regular (finite dimensional) signals define the norm of signal x

‖x‖ :=

[ ∫ ∞
−∞
|x(t)|2dt

]1/2

=

[ ∫ ∞
−∞
|xR(t)|2dt+

∫ ∞
−∞
|xI (t)|2dt

]1/2

I More important, define the energy of the signal as the norm squared

‖x‖2 :=

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|xR(t)|2dt +

∫ ∞
−∞
|xI (t)|2dt

I For complex numbers x(t)x∗(t) = |xR(t)|2 + |xI (t)|2 = |x(t)|2

I Thus, we can write the energy as ⇒ ‖x‖2 = 〈x , x〉

I Energy might be infinite. When energy is finite we write ‖x‖2 <∞
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Cauchy Schwarz inequality

I The largest an inner product can be is when the vectors are collinear

−‖x‖ ‖y‖ ≤ 〈x , y〉 ≤ ‖x‖ ‖y‖

I Or in terms of energy ⇒ 〈x , y〉2 ≤ ‖x‖2 ‖y‖2

I If you are the sort of person that prefers explicit expressions∫ ∞
−∞

x(t)y∗(t)dt ≤
[ ∫ ∞
−∞
|x(t)|2dt

][ ∫ ∞
−∞
|y(t)|2dt

]
I The equalities hold if and only if x and y are collinear
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Example: Square pulse

I The square pulse is the signal uT (t) that takes values

uT (t) = 1 for − T

2
≤ t <

T

2
uT (t) = 0 otherwise

t

uT (t)

−T/2

1

T/2

I To compute energy of the pulse we just evaluate the definition

‖ uT (t)‖2 :=

∫ ∞
−∞
| uT (t)(t)|2dt =

∫ T/2

−T/2

|1|2 dt = T

I Energy proportional to pulse duration (duh!)

I Can normalize energy dividing by
√
T . But we rather not.
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Shifted pulses (1 of 2)

I To shift a pulse we modify the argument ⇒ uT (t − τ)

⇒ The pulse is now centered at τ (t = τ is as t = 0 before)

t−T/2

1

T/2 τ − T/2 τ + T/2τ

I Inner product of two pulses with disjoint support (τ > T )

〈uT (t),uT (t − τ)〉 :=

∫ ∞
−∞
uT (t) uT (t − τ) = 0

I The signals are orthogonal, and indeed, “unrelated” to each other
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Shifted pulses (2 of 2)

I Inner product of two pulses with overlapping support (τ > T )

〈uT (t),uT (t − τ)〉 :=

∫ ∞
−∞
uT (t) uT (t − τ)

I The signals overlap between τ − T/2 and T/2. Thus

〈uT (t),uT (t − τ)〉 =

∫ T/2

τ−T/2

(1)(1)dt =
T

2
−
(
τ − T

2

)
= T − τ

t−T/2

1

T/2τ − T/2 τ + T/2τ

I Inner product is proportional to the relative overlap

⇒ which is, indeed, how much the signals are “related” to each other
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Complex exponentials

I Inner product and energy are indefinite integrals ⇒ need not exist

I Complex exponential of frequency f is ef with ef (t) = e j2πft

I Since they have unit modulus (|ef (t)| = |e j2πft | = 1), their energy is

‖ef ‖2 :=

∫ ∞
−∞
|ef (t)|2dt =

∫ ∞
−∞

1dt =∞

I Inner product of complex exponentials not defined (“keeps oscillating”)

〈ef , eg 〉 :=

∫ ∞
−∞
ef (t)e∗g (t)dt =

∫ ∞
−∞
e j2πfte−j2πgtdt =

∫ ∞
−∞
e j2π(f−g)tdt ⇒ @

I This is a problem because we can’t talk about orthogonality

⇒ Still, a complex exponential is much more like itself than another
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Definition of Fourier transform

I The Fourier transform of x is the function X : R→ C with values

X (f ) :=

∫ ∞
−∞

x(t)e−j2πf tdt

I We write X = F(x). All values of X depend on all values of x

I Integral need not exist ⇒ Not all signals have a Fourier transform

I The argument f of the Fourier transform is referred to as frequency

I Or, define ef with values ef (t) = e j2πf t to write as inner product

X (f ) = 〈x , ef 〉 =

∫ ∞
−∞

x(t)e∗f (t)dt

I Both, time and frequency are real ⇒ domain is infinite and dense

⇒ This is an analytical tool, not a computational tool (as the DFT)
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Example: Fourier transform of a square pulse

I Since pulse is not null only when T/2 ≤ t ≤ T/2 we reduce X (f ) to

X (f ) :=

∫ ∞
−∞
uT (t)e−j2πf tdt =

∫ T/2

−T/2

e−j2πf tdt

I For f 6= 0, the primitive of e−j2πf t is (−1/j2πf )e−j2πf t , which yields

X (f ) =

[
−e−j2πf T/2

j2πf
− −e

+j2πf T/2

j2πf

]
=

sin(πf T )

πf

I Where we used e jπf T − e−jπf T = 2j sin(πf T )

I For f = 0 we have e−j2πf t = 1 and X (f ) reduces to ⇒ X (f ) = T
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The sinc function

I Transform is important enough to justify definition of sinc function

sinc(u) =
sin(u)

u
for u 6= 0

sinc(u) = 1 for u = 0

I Value at origin, sinc(0) = 1, makes the function continuous

I With this definition and f 6= 0 we can write the pulse transform as

X (f ) =
sin(πf T )

πf
= T

sin(πf T )

πf T
= T sinc(πf T )

I Which is also true for f = 0 because X (0) = T sinc(π0T ) = T
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The pulse and its transform

I Fourier transform of pulse of width T is sinc with null crossings
k

T

t

uT (t)

−T/2

1

T/2

F

− 3
T
− 2

T
− 1

T
1
T

2
T

3
T

T

f

X (f )

I Most of the Fourier Transform energy is between −1/T and 1/T∫ 1/T

−1/T

∣∣∣X (f )
∣∣∣2df =

∫ 1/T

−1/T

∣∣∣T sinc(πfT )
∣∣∣2df ≈ 0.90T = 0.90‖ uT (t)‖2
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Pulses of different width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

time t (in seconds)

Square pulse of length T=0.5

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±2,±4, . . .

I Consistent with interpretation that shorter pulses are faster varying
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Pulses of different width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

time t (in seconds)

Square pulse of length T=1

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±1,±2, . . .

I Consistent with interpretation that shorter pulses are faster varying
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Pulses of different width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

time t (in seconds)

Square pulse of length T=2

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±0.5,±1.0, . . .

I Consistent with interpretation that shorter pulses are faster varying
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The Fourier transform and the DFT

I Let’s compute a Fourier transform by approximating the integral

I Use samples spaced by Ts time units

X (f ) =

∫ ∞
−∞

x(t)e−j2πf tdt ≈ Ts

∞∑
−∞

x(nTs)e
−j2πf nTs

I Still not computable ⇒ consider only N samples from 0 to N − 1

X (f ) ≈ Ts

N−1∑
k=0

x(nTs)e
−j2πf nTs

I This is true for all frequencies. Consider frequencies f = (k/N)fs

X

(
k

N
fs

)
≈ Ts

N−1∑
k=0

x(nTs)e
−j2π(k/N)fsnTs = Ts

N−1∑
k=0

x(nTs)e
−j2πkn/N

I Definition of the DFT of a discrete signal (up to constants)
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DFT as approximation of Fourier transform

I Define x̃ with x̃(n) = x(nTs). The DFT of X̃ = F(x̃) has components

X̃ (k) =
1√
N

N−1∑
k=0

x̃(n)e−j2πkn/N =
1√
N

N−1∑
k=0

x(nTs)e
−j2πkn/N =

1

Ts

√
N
X

(
k

N
fs

)

x Fourier transform

DFTsample ⇒ Ts

sample ⇒
fs

N

X̃
x̃

X

I Can then aproximate Fourier transform as ⇒ X

(
k

N
fs

)
≈ Ts

√
NX̃ (k)

I Approximation becomes equality at infinity and beyond (N →∞, Ts → 0)
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Fourier transform of a complex exponential

I Complex exponential of frequency f0 ⇒ ef0 (t) = e j2πf0t

I Use inner product form to write the components of X = F(ef0 ) as

X (f ) = 〈x , ef 〉 = 〈ef0 , ef 〉

I We’ve seen that 〈ef0 , ef 〉 =∞ if f = f0 and oscillates (@) if f 6= f0

I The complex exponential does not have a Fourier transform

⇒ Happens because energy of complex exponentials is not finite

I Truncate to T/2 ≤ t ≤ T/2 ⇒ multiply by square pulse uT (t)

ẽf0T (t) := ef0 (t) uT (t) = e j2πf0t uT (t)
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Fourier transform of a complex exponential

I Truncated exponential not null only when T/2 ≤ t ≤ T/2 (pulse)

I Then, the Fourier transform X̃T (f ) := F(ẽf0T ) is given by

X̃ (f ) :=

∫ ∞
−∞
e j2πf0t uT (t)e−j2πf tdt =

∫ T/2

−T/2

e j2πf0te−j2πf tdt =

∫ T/2

−T/2

e−j2π(f−f0)tdt

I Same as pulse transform, except for frequency shift in exponent

I For f 6= f0, primitive of e−j2πf t is (−1/j2π(f − f0))e−j2π(f−f0)t . Thus

X̃ (f ) =

[
−e−j2π(f−f0)T/2

j2π(f − f0)
− −e

+j2π(f−f0)T/2

j2π(f − f0)

]
=

sin(π(f − f0)T )

π(f − f0)

I For f = f0 we have e−j2π(f−f0)t = 1 and X̃ (f ) reduces to ⇒ X̃ (f ) = T
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(π(f − f0)T )

−1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T →∞ truncated exponential approaches exponential

⇒ And shifted sinc becomes infinitely tall ⇒ delta function
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(π(f − f0)T )

−1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T →∞ truncated exponential approaches exponential

⇒ And shifted sinc becomes infinitely tall ⇒ delta function
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(π(f − f0)T )

−1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T →∞ truncated exponential approaches exponential

⇒ And shifted sinc becomes infinitely tall ⇒ delta function
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Inverse Fourier transform

I Given a transform X , the inverse Fourier transform is defined as

x(t) :=

∫ ∞
−∞

X (f )e j2πf t df

I We denote the inverse transform as x = F−1(X )

I Sign in the exponent changes with respect to Fourier transform

I Can write as inner product ⇒ x(t) = 〈X , e−t〉 (e−t(f ) = e−j2πft)

I As in the case of the iDFT, this is not the most useful interpretation
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Indeed, the inverse of the Fourier transform

Theorem
The inverse Fourier transform x̃ of the Fourier transform X of a given
signal x is the given signal x

x̃ = F−1(X ) = F−1[F(x)] = x

I Signals with Fourier transforms can be written as sums of oscillations

x(t) =

∫ ∞
−∞

X (f )e j2πft df ≈ (∆f )
∞∑

n=∞
X (fn)e j2πfnt

I This is conceptual, not literal (as was the case in discrete signals)

Signal and Information Processing Fourier transforms 30



Frequency decomposition of a signal

I X (f ) determines the density of frequency f in the signal x(t)

x(t) ≈
∞∑

n=∞
(∆f )X (fn)e j2πfnt

I It represents relative contribution (as opposed to absolute)

f

X (f )

f

X (f )

I Signal on left accumulates mass at low frequencies (changes slowly)

I Signal on right accumulates mass at high frequencies (changes fast)
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Proof of inverse Fourier transform

Proof.

I We want to show ⇒ x̃ = F−1(X ) = F−1[F(x)] = x . Use definitions

I From definition of inverse transform of X ⇒ x̃(t̃) :=

∫ ∞
−∞

X (f )e j2πf t̃ df

I From definition of transform of x ⇒ X (f ) :=

∫ ∞
−∞

x(t)e−j2πf tdt

I Substituting expression for X (f ) into expression for x̃(t̃) yields

x̃(t̃) =

∫ ∞
−∞

[ ∫ ∞
−∞

x(t)e−j2πf tdt

]
e j2πf t̃ df

I Repeating steps done for DFT and iDFT with integrals instead of sums
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Proof of inverse Fourier transform

Proof.

I Exchange integration order to integrate first over f and then over t

x̃(t̃) =

∫ ∞
−∞

x(t)

[ ∫ ∞
−∞

e j2πf t̃e−j2πf tdf

]
dt

I Pulled x(t) out because it doesn’t depend on k

I Innermost integral is the inner product between et̃ and et .∫ ∞
−∞

e j2πf t̃e−j2πf tdf = 〈et̃ , et〉

I Up until now we repeated same steps we did for DFT and iDFT

I But we encounter a problem ⇒ 〈et̃ , et〉 does not exist (infinity, oscillates)

I To exchange integration order, all integrals have to exist. But one doesn’t

⇒ It is mathematically incorrect to interchange the order of integration
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Proof of inverse Fourier transform

Proof.

I Replace infinite summation boundaries with finite summation boundaries

x̃(t̃)
F→∞

=

∫ ∞
−∞

x(t)

[ ∫ F/2

−F/2

e j2πf t̃e−j2πf tdf

]
dt

I Eventually, we need to take F →∞, but not yet.

I All integrals exist now. Innermost one is a sinc (truncated exponential)∫ F/2

−F/2

e j2πf t̃e−j2πf tdf = F sinc(π(t − t̃)F )

I Substitute sinc for innermost integral on previous expression

x̃(t̃)
F→∞

=

∫ ∞
−∞

x(t)

[
F sinc(π(t − t̃)F )

]
dt
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Proof of inverse Fourier transform

Proof.

I take the limit formally ⇒ x̃(t̃) = lim
F→∞

∫ ∞
−∞

x(t)

[
F sinc(π(t − t̃)F )

]
dt

I The sinc function is centered at time t = t̃

I The sinc becomes infinitely tall and thin as we take F →∞
I Can then take x(t̃) outside of the integral (only “meaningful” value)

x̃(t̃) = lim
F→∞

x(t̃)

∫ ∞
−∞

F sinc(π(t − t̃)F )dt

I The sinc function has unit integral ⇒
∫ ∞
−∞

F sinc(π(t − t̃)F ) = 1

I We then have x̃(t̃) = x(t̃) and x̃ = x as we wanted to show
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Fourier transform pairs

I Symmetry between transform and inverse ⇒ Transform pairs

I Interpret given function z as signal. Fourier transform X = F(z) is

X (f ) =

∫ ∞
−∞

z(t)e−j2πf tdt

I Conjugate z and interpet z∗ as a transform. Inverse x = F−1(z∗) is

x(t) =

∫ ∞
−∞

z∗(f )e j2πf t df =

[ ∫ ∞
−∞

z(f )e−j2πf t df

]∗
I Same integrals except for switch of integration index and argument

X (f ) = x∗(t), when f = t

I X is transform of z and z is transform of X ∗≡ x∗ ⇒ They are a pair

⇒ Conjugation unnecessary when signal and transform are real
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The square pulse – sinc Fourier transform pair

I Square of length T ⇒ Sinc with zero crossings at k/T , Tsinc(πfT )

t

uT (t)

−T/2

1

T/2

F

F−1

− 3
T
− 2

T
− 1

T
1
T

2
T

3
T

T

f

X (f )

I Sinc with zero crossings at k/F , Tsinc(πFt) ⇒ Square of length F

− 3
F
− 2

F
− 1

F
1
F

2
F

3
F

F

t

x(t) F

F−1

f

uF (f )

−F/2

1

F/2

I Transform of sinc pulse is difficult to compute through direct operation
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)

1/t
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)

1/t

I On second thought, maybe we should use a different definition

I Intuitively, we want to say that the delta function is

⇒ Infinity for t = 0 ⇒ δ(t) =∞ for t = 0

⇒ Null for all other t ⇒ δ(t) = 0 for t 6= 0

I But the question is what can we say mathematically? ⇒ Integrate
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Limit of inner products

I Integrate the product of a signal with a sinc that is thin and tall

⇒ Recovers the value of the signal at time t = 0

I Since x(0) multiplies most of sinc mass∫ ∞
−∞

x(t)Fsinc(πFt)dt ≈ x(0)

I Can write formally as

lim
F→∞

∫ ∞
−∞

x(t)Fsinc(πFt)dt = x(0) − 1
F

1
F

F

2F

3F

4F

t

Fsinc(πFt)

x(t)

1/t

I Observe that integral is the inner product of x with sinc. Then

lim
F→∞

〈x ,Fsinc(πFt)〉 = x(0)

I Inner product of a signal with arbitrarily tall sinc is its value at zero
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Delta function

I Define delta function as the entity δ that has this property. I.e., if

〈x , δ〉 = x(0)

I for any signal x , we say that δ is a delta function

I In terms of integrals we write ⇒
∫ ∞
−∞

x(t)δ(t)dt = x(0)

I Is the delta function a function? ⇒ Of course not

I We say that δ is a distribution or generalized function

I Abstract entity without meaning until we pass through an integral

⇒ Can’t observe directly, but can observe its effect on other signals

I Can define orthogonality and transforms of complex exponentials
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Generalized orthogonality

Continuous time signals

Fourier transform

Inverse Fourier transform

Delta function

Generalized orthogonality

Generalized Fourier transforms

Properties of the Fourier transform

Convolution
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Orthogonality of complex exponentials

I Consider complex exponentials of frequencies f and g

⇒ Frequency f ⇒ ef (t) = e j2πft . Frequency g ⇒ eg (t) = e j2πgt

I We define their inner product 〈ef , eg 〉 as the delta function δ(f − g)

〈ef , eg 〉 = δ(f − g)

I This is a definition, not a derivation. We are accepting it to be true.

I If it is a definition: Does it make sense? What’s its meaning?
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It makes sense

I Complex exponentials don’t have a mutual inner product.

I But truncated exponentials ef ,T and egT do have a mutual product

⇒ Multiply by uT . Make signal null for t > T/2 and t < T/2

I Can write inner product of truncated signals as

〈efT , egT 〉 :=

∫ T/2

−T/2

ef (t)e∗g (t)dt =

∫ T/2

−T/2

e j2πfte−j2πgtdt =

∫ T/2

−T/2

e j2π(f−g)tdt

I Integral above resolves to a sinc with zero crossings at k/T

〈efT , egT 〉 = T sinc
[
π(f − g)T

]
I As T →∞ truncated signals approach non-truncated counterparts...

I ...and the sinc limit is our first attempt at defining δ(f − g)

I Definition didn’t work. But we are looking for sense, not meaning
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What does it mean?

I Delta function is not observable directly, only after integration

I For an arbitrary given signal X (f ) we must have∫ ∞
−∞

X (f )〈efT , egT 〉df =

∫ ∞
−∞

X (f )δ(f − g)df = X (g)

I Equivalently, we can write in terms of integrals∫ ∞
−∞

∫ ∞
−∞

X (f )e j2πfte−j2πgt dt df = X (g)

I OK, fine, but really, stop messing and tell us what it means

⇒ When f = g ⇒ 〈ef , ef 〉 =∞. When f 6= g ⇒ 〈ef , eg 〉 = 0

I Can use for intuitive reasoning, but not for mathematical derivations
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Generalized Fourier transforms

Continuous time signals

Fourier transform

Inverse Fourier transform
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Generalized orthogonality

Generalized Fourier transforms

Properties of the Fourier transform
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Fourier transform of complex exponential

I Again, we can define, not derive, the Fourier transform of eg

I Denote as Xg := F(eg ) the transform of eg . We define Xg as

Xg (f ) = δ(f − g)

− 1
g

− 1
2g

1
2g

1
g

t

eg (t) = e j2πgt

F

g f

Xg (f ) = δ(f − g)

I We draw delta functions with an arrow pointing to the sky
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It makes sense and it has meaning

I Does it make sense to have Xg (f ) = δ(f − g)

I Yes ⇒ Transform definition consistent with orthogonality definition

Xg (f ) = 〈eg , ef 〉 = δ(f − g)

I Yes ⇒ Definition is consistent with definition of inverse transform

eg (t) =

∫ ∞
−∞

Xg (f )e j2πftdf =

∫ ∞
−∞

δ(f − g)e j2πftdf = e j2πgt

I Making Xg (f ) = δ(f − g) maintains Fourier analysis coherence

I Definition has clear, albeit, disappointingly trivial meaning

I Exponential of freq. g can be written as exponential of freq. g
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Fourier transform of a shifted delta function

I Denote as Xu the transform of the shifted delta function δ(t − u)

I This one we can compute ⇒ Complex exponential of frequency u

Xu(f ) =

∫ ∞
−∞

δ(t − u)e−j2πftdt = e−j2πfu = e−u(f )

u t

δ(t − u)
F

F−1

− 1
u

− 1
u

1
2u

1
u

f

Xu(f ) = e−j2πfu

I It is the inverse we need to define as a delta function centered at u
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The delta – constant transform pair

I When frequencies are null we have constants and unshifted deltas

I Transform of x(t) = δ(t) ⇒ X (f ) = 1. Transform of x(t) = 1 ⇒ X (f ) = δ(f )

t

δ(t) F

F−1

f

X (f ) = 1

t

x(t) = 1 F

F−1

f

X (f ) = δ(f )
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Fourier transform of a cosine

I To find Fourier transform of cosine write as difference of exponentials

cos(2πgt) =
1

2

[
e j2πgt + e−j2πgt

]
I Since Fourier is a linear operator we transform each of the summands

X (f ) =
1

2

[
δ(f − g) + δ(f + g)

]

t

x(t) = cos(2πgt)
F

F−1

−g g

1/2

f

X (f ) = 1
2

[
δ(f − g) + δ(f + g)

]

I Pair of deltas of “height 1/2” at (opposite) frequencies ±g
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Three properties we already studied for the DFT

I Fourier transform is conjugate symmetric, linear, and conserves energy

I Transforms of real signals satisfy ⇒ X (−k) = X ∗(k)

I Linearity ⇒ F(ax + by) = aF(x) + bF(y)

I Energy ⇒
∫ ∞
−∞

∣∣x(t)
∣∣2dt =

∥∥x∥∥2
=
∥∥X∥∥2

=

∫ ∞
−∞

∣∣X (f )
∣∣2df

I Not surprising, Fourier transform and DFT are conceptually identical

I Properties follow from properties of inner products and orthogonality

I Both transforms are projections on complex exponentials (inner product)

I And both project onto sets of orthogonal signals
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Symmetry

Theorem
The Fourier transform X = F(x) of a real signal x is conjugate symmetric

X (−f ) = X ∗(f )

I For real signals only positive half of spectrum carries information

I Conjugate symmetry implies that X (−f ) and X ∗(f ) are such that...

⇒ Real parts are equal ⇒ Re (X (f )) = Re (X (−f ))

⇒ Imaginary parts are opposites ⇒ Im (X (f )) = Im (X (−f ))

⇒ Moduli are equal ⇒ |X (f )| = |X (−f )|
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Proof of symmetry property

Proof.

I Write the Fourier transform X (−k) using its definition

X (−f ) :=

∫ ∞
−∞

x(t)e−j2π(−f )tdt

I When the signal is real, its conjugate is itself ⇒ x(n) = x∗(n)

I Conjugating a complex exponential ⇒ changing the exponent’s sign

I Can then rewrite ⇒ X (−f ) :=

∫ ∞
−∞

x∗(t)
(
e−j2πf t

)∗
dt

I Integration and multiplication can change order with conjugation

X (−f ) =

[ ∫ ∞
−∞

x∗(t)
(
e−j2πf t

)∗
dt

]∗
= X ∗(f )
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Linearity

Theorem
The Fourier transform of a linear combination of signals is the linear combination
of the respective Fourier transforms of the individual signals,

F(ax + by) = aF(x) + bF(y).

Proof.

I Let Z := F(ax + by). From the Fourier transform definition

Z(f ) =

∫ ∞
−∞

[
ax(t) + by(t)

]
e−j2πftdt

I Expand the product, reorder terms, identify transforms of x and y

Z(f ) = a

∫ ∞
−∞

x(t)e−j2πftdt + b

∫ ∞
−∞

y(t)e−j2πftdt = aX (f ) + bY (f )
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Energy conservation

Theorem (Parseval)

Let X = F(x) be the Fourier transform of signal x . The energies of x
and X are the same, i.e.,∫ ∞

−∞

∣∣x(t)
∣∣2dt =

∥∥x∥∥2
=
∥∥X∥∥2

=

∫ ∞
−∞

∣∣X (f )
∣∣2df

I It follows that X (f ) is the energy density concentrated around f

I E.g., removing frequency component ≡ remove corresponding energy

We omit proof as it is analogous to DFT case. Need to use finite integration

region and take limit after exchanging order of integration. Not worth

repeating.
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Shift ⇔ modulation

I Two more properties we didn’t study for DFTs

⇒ They (sort of) hold for DFTs, but are difficult to explain

I Time shift ⇒ multiplication by complex exponential in frequency

I Multiplication by complex exponential in time ⇒ Shift in frequency

I Properties are dual of each other ⇒ inverse transform symmetry

⇒ If one holds the other has to be true
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Time shift

I Given signal x and shift τ define shifted signal xτ ⇒ xτ = x(t − τ)

I Fourier transform of x is X = F(x). Transform of xτ is Xτ = F(xτ ).

Theorem
A time shift of τ units in the time domain is equivalent to multiplication
by a complex exponential of frequency −τ in the frequency domain

xτ = x(t − τ) ⇐⇒ Xτ (f ) = e−j2πf τX (f )

I The phase of X (f ) changes, but the modulus remains the same∣∣Xτ (f )
∣∣ =

∣∣e−j2πf τX (f )
∣∣ =

∣∣e−j2πf τ ∣∣× ∣∣X (f )
∣∣ =

∣∣X (f )
∣∣

I Useful in signal detection ⇒ Don’t have to compare different shifts
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Proof of time shift property

Proof.

I Shifted signal transform ⇒ Xτ (f ) =

∫ ∞
−∞

x(t − τ)e−j2πf tdt

I Change of variables u = t − τ . Separate exponent in two factors

Xτ (f ) =

∫ ∞
−∞

x(u)e−j2πf (u+τ)du =

∫ ∞
−∞

x(u)e−j2πf τe−j2πfudu

I Pull the term e−j2πf τ out of the integral. Identify X (f )

Xτ (f ) = e−j2πf τ
∫ ∞
−∞

x(u)e−j2πfudu = e−j2πf τX (f )
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Modulation

I For signal x and freq. g define modulated signal ⇒ xg = e−j2πgtx(t)

I Fourier transform of x is X = F(x). Transform of xg is Xτ = F(xg ).

Theorem
A multiplication by a complex exponential of frequency g in the time domain
is equivalent to a shift of g units in the frequency domain

xg = e j2πgtx(t) ⇐⇒ Xg (f ) = X (f − g)

I Dual of time shift result ⇒ Proof not really necessary

I Principle behind transmission of signals on electromagnetic spectrum
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Modulation of bandlimited signals

I Signal x has bandwidth W ⇒ X (f ) = 0 for f /∈ [−W /2,W /2]

I Multiplying by complex exponential shifts spectrum to the right

⇒ Re-center spectrum at frequency g

x(t) xg (t)

e j2πgt

f

X (f )

-W/2 W/2 f

Xg (f )

g −W/2 g + W/2g

I Can recover signal x by multiplying with conjugate frequency e−j2πgt
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Modulation of multiple bandlimited signals

I Modulate two signals with bandwidth W using frequencies g1 and g2

⇒ Spectrum of x recentered at g1. Spectrum of y recentered at g2

x(t) xg1
(t)

e j2πg1t

y(t) yg2
(t)

e j2πg2t

z(t) = xg1
(t) + yg2

(t)

I Sum up to construct signal z(t) = xg1 (t) + yg2 (t)

⇒ Can we recover x and y from mixed signal z? ⇒ Yes
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Spectrum of multiple modulated signals

I No spectral mixing if modulating frequencies satisfy g2 − g1 >W

f

Z(f )

g1 −W/2 g1 + W/2g1
g2 −W/2 g2 + W/2g2

I To recover x multiply by conjugate frequency e−j2πg1t

I And eliminated all frequencies outside the interval [−W /2,W /2]

I To recover y multiply by conjugate frequency e−j2πg2t

I And eliminated all frequencies outside the interval [−W /2,W /2]
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Convolution ⇔ Product

I Both, Fourier transforms and DFTs are:

⇒ Conjugate symmetric, linear, & conserve energy

I The Fourier transform also satisfies shift and modulation theorems

⇒ They also (sort of) hold for DFTs (although we haven’t shown)

⇒ As they should, DFTs are close to Fourier transforms

I A sixth property of Fourier transforms, also sort of true for DFTs

⇒ Convolution in time equivalent to multiplication in frequency
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Convolution

I Given signal x with values x(t) and signal h with values h(t)

I Convolution of x with h is the signal y = x ∗ h with values

[x ∗ h](t) = y(t) =

∫ ∞
−∞

x(u)h(t − u) du

I Operation is commutative ⇒ [x ∗ h] ≡ [h ∗ x ]

[h∗x ](t) =

∫ ∞
−∞

h(u)x(t − u) du =

∫ ∞
−∞

h(t − v)x(v) dv = [x ∗h](t)

I Still, prefer to interpret roles of x and h as asymmetric ⇒ x hits h

x
h

y = x ∗ h
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Convolution with delta functions

I Convolution with x(t) = δ(t) ⇒ y(t) =

∫ ∞
−∞

δ(u)h(t − u) du = h(t)

I Hitting h with delta function produces convolution output y ≡ h

tt = 0

y(t) = h(t)

x(t) = δ(t)

t = s

y(t) = h(t − s)

x(t) = δ(t − s)

I Convolution with delayed delta x(t) = δ(t − s) (u = s in integrand)

y(t) =

∫ ∞
−∞

δ(u − s)h(t − u) du = h(t − s)

I Hitting h with delayed delta produces delayed h as output
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Convolution with scaled delta functions

I Convolution with scaled delta function x(t) = αδ(t)

y(t) =

∫ ∞
−∞

αδ(u)h(t − u) du = α

∫ ∞
−∞

δ(u)h(t − u) du = αh(t)

I Convolution with scaled and delayed delta x(t) = αδ(t − s)

y(t) =

∫ ∞
−∞

αδ(u − s)h(t − u) du = α

∫ ∞
−∞

δ(u − s)h(t − u) du = αh(t − s)

ft = 0

x(t) = αδ(t)

y(t) = αh(t)

h(t)

t = s

x(t) = αδ(t − s)

y(t) = αh(t − s)

h(t−s)

I Convolution with scaled and delayed delta is scaled and delayed h
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Interpretation ⇒ Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

∫ ∞
−∞

x(u)h(t − u) du ≈ Ts

∞∑
n=−∞

x(un)h(t − un)

I For each un ⇒ Scale h(t) by x(un) to produce x(un)h(t)

⇒ Shift to time un to produce x(un)h(t − un)
I Sum over all possible un ⇒ integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coefficients x(u)
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Interpretation ⇒ Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

∫ ∞
−∞

x(u)h(t − u) du ≈ Ts

∞∑
n=−∞

x(un)h(t − un)

I For each un ⇒ Scale h(t) by x(un) to produce x(un)h(t)

⇒ Shift to time un to produce x(un)h(t − un)
I Sum over all possible un ⇒ integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coefficients x(u)
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Interpretation ⇒ Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

∫ ∞
−∞

x(u)h(t − u) du ≈ Ts

∞∑
n=−∞

x(un)h(t − un)

I For each un ⇒ Scale h(t) by x(un) to produce x(un)h(t)

⇒ Shift to time un to produce x(un)h(t − un)
I Sum over all possible un ⇒ integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coefficients x(u)
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Interpretation ⇒ Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

∫ ∞
−∞

x(u)h(t − u) du ≈ Ts

∞∑
n=−∞

x(un)h(t − un)

I For each un ⇒ Scale h(t) by x(un) to produce x(un)h(t)

⇒ Shift to time un to produce x(un)h(t − un)
I Sum over all possible un ⇒ integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coefficients x(u)
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Time convolution ≡ Frequency multiplication

Theorem (Convolution theorem)

Given signals x and y with transforms X = F(x) and Y = F(y). The
Fourier transform Z = F(z) of the convolved signal z = x ∗ y is the
product Z = XY

z = x ∗ y ⇐⇒ Z = XY

I Convolution in time domain ≡ to multiplication in frequency domain

I When we convolve signals x and y in the time domain

⇒ Their transforms are multiplied in the frequency domain

I When we multiply two transforms in the frequency domain

⇒ The signals get convolved in the time domain
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Proof of convolution theorem

Proof.

I Use the definition of Fourier transform to write the transform of Z as

Z (f ) =

∫ ∞
−∞

z(t)e−j2πft dt

I Use the definition of convolution to write the signal z as

z(t) =

∫ ∞
−∞

x(u)h(t − u) du

I Substitute the expression for z(t) into expression for Z (f )

Y (f ) =

∫ ∞
−∞

(∫ ∞
−∞

x(u)h(t − u) du

)
e−j2πft dt

Signal and Information Processing Fourier transforms 80



Proof of convolution theorem

Proof.

I Rewrite the nested integral as a double integral

Y (f ) =

∫ ∞
−∞

∫ ∞
−∞

x(u)h(t − u)e−j2πft du dt

I Make the change of variables v = t − u and write

Y (f ) =

∫ ∞
−∞

∫ ∞
−∞

x(u)h(v)e−j2πf (u+v) du dt

I Write e−j2πf (u+v) = e−j2πfue−j2πfv and reorder terms to obtain

Y (f ) =

(∫ ∞
−∞

x(u)e−j2πfu du

)(∫ ∞
−∞

h(v)e−j2πfv dv

)
I Factors on the right are the Fourier transforms X (f ) and Y (f )
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System equivalence

I Convolution in time equivalent to multiplication in frequency

⇒ Is this useful in any way? ⇒ Certainly, few facts are more useful

I Convolution theorem implies that these two systems are equivalent

x h y = x ∗ h

X H Y = HX

F F−1 F F−1 F F−1

I The lower path for design, the upper path for implementation
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The signal and the noise

I There is signal and noise, but what is signal and what is noise?

I We already know answer ⇒ Signal discernible in frequency domain

0 1 2 3 4 5 6 7
-1.0

-0.5

0

0.5

1.0

1.5

2.0

time t in miliseconds

Original signal x(t). It moves randomly, but not that much

I

Signal and Information Processing Fourier transforms 83



The signal and the noise

I There is signal and noise, but what is signal and what is noise?

I We already know answer ⇒ Signal discernible in frequency domain
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Frequency f in Hertz

Fourier transform X (f ) of original signal

I Filter out all frequencies above 100Hz (and below -100Hz)
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Noise removal – Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

⇒ Only frequencies between ±W /2 = ±100Hz are retained
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0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Frequency f in Hertz

Fourier transform Y (f ) = H(f )X (f ) of filtered signal

I This spectral operation does separate signal from noise
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Noise removal – Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

⇒ Only frequencies between ±W /2 = ±100Hz are retained
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Filtered signal y(t) with y = x ∗ h and h = F−1(H) = F−1(uW )

I This spectral operation does separate signal from noise
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Noise removal – Low pass filter implementation

I We can implement filtering in the frequency domain

⇒ Sample ⇒ DFT ⇒ Multiply by H(f ) = uW (f ) ⇒ iDFT

x h(t) = W sinc(πWt) y = x ∗ h

X H(f ) = uW (f ) Y = HX

F F−1

I We can also implement filtering in the time domain

⇒ Inverse transform of uW (f ) is h(t) = W sinc(πWt)

⇒ Sample (or not) ⇒ Implement convolution with h(t)
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