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Discrete signals and DFT

I Fourier analysis of discrete signals x : [0,N − 1]→ C ⇒ DFT, iDFT

I Good (and quick) computational tool

⇒ Signal analysis ⇒ pattern discovery, frequency components

⇒ Signal processing ⇒ compression, noise removal

I Two important limitations

⇒ Time is neither discrete nor finite (not always, at least)

⇒ Properties and interpretations are easier in continuous time

I Fourier analysis of continuous signals ⇒ Fourier transform (FT)
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To infinity and beyond

I We have been dealing with discrete signals x : [0,N − 1]→ C

I To infinity ⇒ Let number of samples go to infinity

⇒ Discrete time signal x : Z→ C
⇒ Values x(n) for n = . . . ,−1, 0, 1, . . .

I And beyond ⇒ Fill in the gaps between samples

⇒ Continuous time signal x : R→ C
⇒ Values x(t) for t any real number in (−∞,+∞)

I Let’s begin by studying continuous time signals
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Continuous time signals

I Continuous time variable t ∈ R.

I Continuous time signal x is a function that maps t to real value x(t)

x : R→ R

I The values that the signal takes at time t is x(t)

I It will make sense to talk about complex signals (as in discrete case)

x : R→ C

I where the values x(t) = xR(t) + j xI (t) are complex numbers
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Inner product

I Given two signals x and y define the inner product of x and y as

〈x , y〉 :=

∫ ∞
−∞

x(t)y∗(t)dt

I Akin to inner product of discrete signals ⇒ 〈x , y〉 =
N∑

n=0

x(n)y(n)

xy

〈x , y〉 > 0

x

y

〈x , y〉 > 0

x

y

〈x , y〉 = 0

x

y

〈x , y〉 < 0

xy

〈x , y〉 < 0

I But we have infinite number of components. To infinity and beyond

I Intuition holds ⇒ 〈x , y〉 is how much of y falls in x direction

I E.g., if 〈x , y〉 = 0 the signals are orthogonal. They are “unrelated”
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Norm and energy

I As for regular (finite dimensional) signals define the norm of signal x

‖x‖ :=

[ ∫ ∞
−∞
|x(t)|2dt

]1/2

=

[ ∫ ∞
−∞
|xR(t)|2dt+

∫ ∞
−∞
|xI (t)|2dt

]1/2

I More important, define the energy of the signal as the norm squared

‖x‖2 :=

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|xR(t)|2dt +

∫ ∞
−∞
|xI (t)|2dt

I For complex numbers x(t)x∗(t) = |xR(t)|2 + |xI (t)|2 = |x(t)|2

I Thus, we can write the energy as ⇒ ‖x‖2 = 〈x , x〉

I Energy might be infinite. When energy is finite we write ‖x‖2 <∞
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Cauchy Schwarz inequality

I The largest an inner product can be is when the vectors are collinear

−‖x‖ ‖y‖ ≤ 〈x , y〉 ≤ ‖x‖ ‖y‖

I Or in terms of energy ⇒ 〈x , y〉2 ≤ ‖x‖2 ‖y‖2

I If you are the sort of person that prefers explicit expressions∫ ∞
−∞

x(t)y∗(t)dt ≤
[ ∫ ∞
−∞
|x(t)|2dt

][ ∫ ∞
−∞
|y(t)|2dt

]
I The equalities hold if and only if x and y are collinear
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Example: Square pulse

I The square pulse is the signal uT (t) that takes values

uT (t) = 1 for − T

2
≤ t <

T

2
uT (t) = 0 otherwise

t

uT (t)

−T/2

1

T/2

I To compute energy of the pulse we just evaluate the definition

‖ uT (t)‖2 :=

∫ ∞
−∞
| uT (t)(t)|2dt =

∫ T/2

−T/2

|1|2 dt = T

I Energy proportional to pulse duration (duh!)

I Can normalize energy dividing by
√
T . But we rather not.
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Shifted pulses (1 of 2)

I To shift a pulse we modify the argument ⇒ uT (t − τ)

⇒ The pulse is now centered at τ (t = τ is as t = 0 before)

t−T/2

1

T/2 τ − T/2 τ + T/2τ

I Inner product of two pulses with disjoint support (τ > T )

〈uT (t),uT (t − τ)〉 :=

∫ ∞
−∞
uT (t) uT (t − τ) = 0

I The signals are orthogonal, and indeed, “unrelated” to each other
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Shifted pulses (2 of 2)

I Inner product of two pulses with overlapping support (τ > T )

〈uT (t),uT (t − τ)〉 :=

∫ ∞
−∞
uT (t) uT (t − τ)

I The signals overlap between τ − T/2 and T/2. Thus

〈uT (t),uT (t − τ)〉 =

∫ T/2

τ−T/2

(1)(1)dt =
T

2
−
(
τ − T

2

)
= T − τ

t−T/2

1

T/2τ − T/2 τ + T/2τ

I Inner product is proportional to the relative overlap

⇒ which is, indeed, how much the signals are “related” to each other
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Complex exponentials

I Inner product and energy are indefinite integrals ⇒ need not exist

I Complex exponential of frequency f is ef with ef (t) = e j2πft

I Since they have unit modulus (|ef (t)| = |e j2πft | = 1), their energy is

‖ef ‖2 :=

∫ ∞
−∞
|ef (t)|2dt =

∫ ∞
−∞

1dt =∞

I Inner product of complex exponentials not defined (“keeps oscillating”)

〈ef , eg 〉 :=

∫ ∞
−∞
ef (t)e∗g (t)dt =

∫ ∞
−∞
e j2πfte−j2πgtdt =

∫ ∞
−∞
e j2π(f−g)tdt ⇒ @

I This is a problem because we can’t talk about orthogonality

⇒ Still, a complex exponential is much more like itself than another
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Definition of Fourier transform

I The Fourier transform of x is the function X : R→ C with values

X (f ) :=

∫ ∞
−∞

x(t)e−j2πf tdt

I We write X = F(x). All values of X depend on all values of x

I Integral need not exist ⇒ Not all signals have a Fourier transform

I The argument f of the Fourier transform is referred to as frequency

I Or, define ef with values ef (t) = e j2πf t to write as inner product

X (f ) = 〈x , ef 〉 =

∫ ∞
−∞

x(t)e∗f (t)dt

I Both, time and frequency are real ⇒ domain is infinite and dense

⇒ This is an analytical tool, not a computational tool (as the DFT)
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Example: Fourier transform of a square pulse

I Since pulse is not null only when T/2 ≤ t ≤ T/2 we reduce X (f ) to

X (f ) :=

∫ ∞
−∞
uT (t)e−j2πf tdt =

∫ T/2

−T/2

e−j2πf tdt

I For f 6= 0, the primitive of e−j2πf t is (−1/j2πf )e−j2πf t , which yields

X (f ) =

[
−e−j2πf T/2

j2πf
− −e

+j2πf T/2

j2πf

]
=

sin(πf T )

πf

I Where we used e jπf T − e−jπf T = 2j sin(πf T )

I For f = 0 we have e−j2πf t = 1 and X (f ) reduces to ⇒ X (f ) = T
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The sinc function

I Transform is important enough to justify definition of sinc function

sinc(u) =
sin(u)

u
for u 6= 0

sinc(u) = 1 for u = 0

I Value at origin, sinc(0) = 1, makes the function continuous

I With this definition and f 6= 0 we can write the pulse transform as

X (f ) =
sin(πf T )

πf
= T

sin(πf T )

πf T
= T sinc(πf T )

I Which is also true for f = 0 because X (0) = T sinc(π0T ) = T
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The pulse and its transform

I Fourier transform of pulse of width T is sinc with null crossings
k

T

t

uT (t)

−T/2

1

T/2

F

− 3
T
− 2

T
− 1

T
1
T

2
T

3
T

T

f

X (f )

I Most of the Fourier Transform energy is between −1/T and 1/T∫ 1/T

−1/T

∣∣∣X (f )
∣∣∣2df =

∫ 1/T

−1/T

∣∣∣T sinc(πfT )
∣∣∣2df ≈ 0.90T = 0.90‖ uT (t)‖2
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Pulses of different width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

time t (in seconds)

Square pulse of length T=0.5

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±2,±4, . . .

I Consistent with interpretation that shorter pulses are faster varying
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Pulses of different width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

time t (in seconds)

Square pulse of length T=1

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±1,±2, . . .

I Consistent with interpretation that shorter pulses are faster varying
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Pulses of different width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

time t (in seconds)

Square pulse of length T=2

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±0.5,±1.0, . . .

I Consistent with interpretation that shorter pulses are faster varying
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The Fourier transform and the DFT

I Let’s compute a Fourier transform by approximating the integral

I Use samples spaced by Ts time units

X (f ) =

∫ ∞
−∞

x(t)e−j2πf tdt ≈ Ts

∞∑
−∞

x(nTs)e
−j2πf nTs

I Still not computable ⇒ consider only N samples from 0 to N − 1

X (f ) ≈ Ts

N−1∑
k=0

x(nTs)e
−j2πf nTs

I This is true for all frequencies. Consider frequencies f = (k/N)fs

X

(
k

N
fs

)
≈ Ts

N−1∑
k=0

x(nTs)e
−j2π(k/N)fsnTs = Ts

N−1∑
k=0

x(nTs)e
−j2πkn/N

I Definition of the DFT of a discrete signal (up to constants)
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DFT as approximation of Fourier transform

I Define x̃ with x̃(n) = x(nTs). The DFT of X̃ = F(x̃) has components

X̃ (k) =
1√
N

N−1∑
k=0

x̃(n)e−j2πkn/N =
1√
N

N−1∑
k=0

x(nTs)e
−j2πkn/N =

1

Ts

√
N
X

(
k

N
fs

)

x Fourier transform

DFTsample ⇒ Ts

sample ⇒
fs

N

X̃
x̃

X

I Can then aproximate Fourier transform as ⇒ X

(
k

N
fs

)
≈ Ts

√
NX̃ (k)

I Approximation becomes equality at infinity and beyond (N →∞, Ts → 0)
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Fourier transform of a complex exponential

I Complex exponential of frequency f0 ⇒ ef0 (t) = e j2πf0t

I Use inner product form to write the components of X = F(ef0 ) as

X (f ) = 〈x , ef 〉 = 〈ef0 , ef 〉

I We’ve seen that 〈ef0 , ef 〉 =∞ if f = f0 and oscillates (@) if f 6= f0

I The complex exponential does not have a Fourier transform

⇒ Happens because energy of complex exponentials is not finite

I Truncate to T/2 ≤ t ≤ T/2 ⇒ multiply by square pulse uT (t)

ẽf0T (t) := ef0 (t) uT (t) = e j2πf0t uT (t)
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Fourier transform of a complex exponential

I Truncated exponential not null only when T/2 ≤ t ≤ T/2 (pulse)

I Then, the Fourier transform X̃T (f ) := F(ẽf0T ) is given by

X̃ (f ) :=

∫ ∞
−∞
e j2πf0t uT (t)e−j2πf tdt =

∫ T/2

−T/2

e j2πf0te−j2πf tdt =

∫ T/2

−T/2

e−j2π(f−f0)tdt

I Same as pulse transform, except for frequency shift in exponent

I For f 6= f0, primitive of e−j2πf t is (−1/j2π(f − f0))e−j2π(f−f0)t . Thus

X̃ (f ) =

[
−e−j2π(f−f0)T/2

j2π(f − f0)
− −e

+j2π(f−f0)T/2

j2π(f − f0)

]
=

sin(π(f − f0)T )

π(f − f0)

I For f = f0 we have e−j2π(f−f0)t = 1 and X̃ (f ) reduces to ⇒ X̃ (f ) = T
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(π(f − f0)T )

−1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T →∞ truncated exponential approaches exponential

⇒ And shifted sinc becomes infinitely tall ⇒ delta function
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(π(f − f0)T )

−1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T →∞ truncated exponential approaches exponential

⇒ And shifted sinc becomes infinitely tall ⇒ delta function
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(π(f − f0)T )

−1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T →∞ truncated exponential approaches exponential

⇒ And shifted sinc becomes infinitely tall ⇒ delta function
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Inverse Fourier transform

I Given a transform X , the inverse Fourier transform is defined as

x(t) :=

∫ ∞
−∞

X (f )e j2πf t df

I We denote the inverse transform as x = F−1(X )

I Sign in the exponent changes with respect to Fourier transform

I Can write as inner product ⇒ x(t) = 〈X , e−t〉 (e−t(f ) = e−j2πft)

I As in the case of the iDFT, this is not the most useful interpretation
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Indeed, the inverse of the Fourier transform

Theorem
The inverse Fourier transform x̃ of the Fourier transform X of a given
signal x is the given signal x

x̃ = F−1(X ) = F−1[F(x)] = x

I Signals with Fourier transforms can be written as sums of oscillations

x(t) =

∫ ∞
−∞

X (f )e j2πft df ≈ (∆f )
∞∑

n=∞
X (fn)e j2πfnt

I This is conceptual, not literal (as was the case in discrete signals)
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Frequency decomposition of a signal

I X (f ) determines the density of frequency f in the signal x(t)

x(t) ≈
∞∑

n=∞
(∆f )X (fn)e j2πfnt

I It represents relative contribution (as opposed to absolute)

f

X (f )

f

X (f )

I Signal on left accumulates mass at low frequencies (changes slowly)

I Signal on right accumulates mass at high frequencies (changes fast)
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Proof of inverse Fourier transform

Proof.

I We want to show ⇒ x̃ = F−1(X ) = F−1[F(x)] = x . Use definitions

I From definition of inverse transform of X ⇒ x̃(t̃) :=

∫ ∞
−∞

X (f )e j2πf t̃ df

I From definition of transform of x ⇒ X (f ) :=

∫ ∞
−∞

x(t)e−j2πf tdt

I Substituting expression for X (f ) into expression for x̃(t̃) yields

x̃(t̃) =

∫ ∞
−∞

[ ∫ ∞
−∞

x(t)e−j2πf tdt

]
e j2πf t̃ df

I Repeating steps done for DFT and iDFT with integrals instead of sums
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Proof of inverse Fourier transform

Proof.

I Exchange integration order to integrate first over f and then over t

x̃(t̃) =

∫ ∞
−∞

x(t)

[ ∫ ∞
−∞

e j2πf t̃e−j2πf tdf

]
dt

I Pulled x(t) out because it doesn’t depend on k

I Innermost integral is the inner product between et̃ and et .∫ ∞
−∞

e j2πf t̃e−j2πf tdf = 〈et̃ , et〉

I Up until now we repeated same steps we did for DFT and iDFT

I But we encounter a problem ⇒ 〈et̃ , et〉 does not exist (infinity, oscillates)

I To exchange integration order, all integrals have to exist. But one doesn’t

⇒ It is mathematically incorrect to interchange the order of integration
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Proof of inverse Fourier transform

Proof.

I Replace infinite summation boundaries with finite summation boundaries

x̃(t̃)
F→∞

=

∫ ∞
−∞

x(t)

[ ∫ F/2

−F/2

e j2πf t̃e−j2πf tdf

]
dt

I Eventually, we need to take F →∞, but not yet.

I All integrals exist now. Innermost one is a sinc (truncated exponential)∫ F/2

−F/2

e j2πf t̃e−j2πf tdf = F sinc(π(t − t̃)F )

I Substitute sinc for innermost integral on previous expression

x̃(t̃)
F→∞

=

∫ ∞
−∞

x(t)

[
F sinc(π(t − t̃)F )

]
dt
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Proof of inverse Fourier transform

Proof.

I take the limit formally ⇒ x̃(t̃) = lim
F→∞

∫ ∞
−∞

x(t)

[
F sinc(π(t − t̃)F )

]
dt

I The sinc function is centered at time t = t̃

I The sinc becomes infinitely tall and thin as we take F →∞
I Can then take x(t̃) outside of the integral (only “meaningful” value)

x̃(t̃) = lim
F→∞

x(t̃)

∫ ∞
−∞

F sinc(π(t − t̃)F )dt

I The sinc function has unit integral ⇒
∫ ∞
−∞

F sinc(π(t − t̃)F ) = 1

I We then have x̃(t̃) = x(t̃) and x̃ = x as we wanted to show
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Fourier transform pairs

I Symmetry between transform and inverse ⇒ Transform pairs

I Interpret given function z as signal. Fourier transform X = F(z) is

X (f ) =

∫ ∞
−∞

z(t)e−j2πf tdt

I Conjugate z and interpet z∗ as a transform. Inverse x = F−1(z∗) is

x(t) =

∫ ∞
−∞

z∗(f )e j2πf t df =

[ ∫ ∞
−∞

z(f )e−j2πf t df

]∗
I Same integrals except for switch of integration index and argument

X (f ) = x∗(t), when f = t

I X is transform of z and z is transform of X ∗≡ x∗ ⇒ They are a pair

⇒ Conjugation unnecessary when signal and transform are real
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The square pulse – sinc Fourier transform pair

I Square of length T ⇒ Sinc with zero crossings at k/T , Tsinc(πfT )

t

uT (t)

−T/2

1

T/2

F

F−1

− 3
T
− 2

T
− 1

T
1
T

2
T

3
T

T

f

X (f )

I Sinc with zero crossings at k/F , Tsinc(πFt) ⇒ Square of length F

− 3
F
− 2

F
− 1

F
1
F

2
F

3
F

F

t

x(t) F

F−1

f

uF (f )

−F/2

1

F/2

I Transform of sinc pulse is difficult to compute through direct operation
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)

1/t
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

δ(t) := lim
F→∞

Fsinc(πFt)

I Limit is δ(t) =∞ for t = 0

I But does not exist for other t

⇒ Oscillates between ±1/πt
− 1

F
1
F

F

2F

3F

4F

t

Fsinc(πFt)

1/t

I On second thought, maybe we should use a different definition

I Intuitively, we want to say that the delta function is

⇒ Infinity for t = 0 ⇒ δ(t) =∞ for t = 0

⇒ Null for all other t ⇒ δ(t) = 0 for t 6= 0

I But the question is what can we say mathematically? ⇒ Integrate
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Limit of inner products

I Integrate the product of a signal with a sinc that is thin and tall

⇒ Recovers the value of the signal at time t = 0

I Since x(0) multiplies most of sinc mass∫ ∞
−∞

x(t)Fsinc(πFt)dt ≈ x(0)

I Can write formally as

lim
F→∞

∫ ∞
−∞

x(t)Fsinc(πFt)dt = x(0) − 1
F

1
F

F

2F

3F

4F

t

Fsinc(πFt)

x(t)

1/t

I Observe that integral is the inner product of x with sinc. Then

lim
F→∞

〈x ,Fsinc(πFt)〉 = x(0)

I Inner product of a signal with arbitrarily tall sinc is its value at zero
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Delta function

I Define delta function as the entity δ that has this property. I.e., if

〈x , δ〉 = x(0)

I for any signal x , we say that δ is a delta function

I In terms of integrals we write ⇒
∫ ∞
−∞

x(t)δ(t)dt = x(0)

I Is the delta function a function? ⇒ Of course not

I We say that δ is a distribution or generalized function

I Abstract entity without meaning until we pass through an integral

⇒ Can’t observe directly, but can observe its effect on other signals

I Can define orthogonality and transforms of complex exponentials
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Generalized orthogonality

Continuous time signals

Fourier transform

Inverse Fourier transform

Delta function

Generalized orthogonality

Generalized Fourier transforms

Properties of the Fourier transform

Convolution
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Orthogonality of complex exponentials

I Consider complex exponentials of frequencies f and g

⇒ Frequency f ⇒ ef (t) = e j2πft . Frequency g ⇒ eg (t) = e j2πgt

I We define their inner product 〈ef , eg 〉 as the delta function δ(f − g)

〈ef , eg 〉 = δ(f − g)

I This is a definition, not a derivation. We are accepting it to be true.

I If it is a definition: Does it make sense? What’s its meaning?
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It makes sense

I Complex exponentials don’t have a mutual inner product.

I But truncated exponentials ef ,T and egT do have a mutual product

⇒ Multiply by uT . Make signal null for t > T/2 and t < T/2

I Can write inner product of truncated signals as

〈efT , egT 〉 :=

∫ T/2

−T/2

ef (t)e∗g (t)dt =

∫ T/2

−T/2

e j2πfte−j2πgtdt =

∫ T/2

−T/2

e j2π(f−g)tdt

I Integral above resolves to a sinc with zero crossings at k/T

〈efT , egT 〉 = T sinc
[
π(f − g)T

]
I As T →∞ truncated signals approach non-truncated counterparts...

I ...and the sinc limit is our first attempt at defining δ(f − g)

I Definition didn’t work. But we are looking for sense, not meaning
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What does it mean?

I Delta function is not observable directly, only after integration

I For an arbitrary given signal X (f ) we must have∫ ∞
−∞

X (f )〈efT , egT 〉df =

∫ ∞
−∞

X (f )δ(f − g)df = X (g)

I Equivalently, we can write in terms of integrals∫ ∞
−∞

∫ ∞
−∞

X (f )e j2πfte−j2πgt dt df = X (g)

I OK, fine, but really, stop messing and tell us what it means

⇒ When f = g ⇒ 〈ef , ef 〉 =∞. When f 6= g ⇒ 〈ef , eg 〉 = 0

I Can use for intuitive reasoning, but not for mathematical derivations
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Generalized Fourier transforms

Continuous time signals

Fourier transform

Inverse Fourier transform
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Generalized orthogonality

Generalized Fourier transforms

Properties of the Fourier transform
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Fourier transform of complex exponential

I Again, we can define, not derive, the Fourier transform of eg

I Denote as Xg := F(eg ) the transform of eg . We define Xg as

Xg (f ) = δ(f − g)

− 1
g

− 1
2g

1
2g

1
g

t

eg (t) = e j2πgt

F

g f

Xg (f ) = δ(f − g)

I We draw delta functions with an arrow pointing to the sky
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It makes sense and it has meaning

I Does it make sense to have Xg (f ) = δ(f − g)

I Yes ⇒ Transform definition consistent with orthogonality definition

Xg (f ) = 〈eg , ef 〉 = δ(f − g)

I Yes ⇒ Definition is consistent with definition of inverse transform

eg (t) =

∫ ∞
−∞

Xg (f )e j2πftdf =

∫ ∞
−∞

δ(f − g)e j2πftdf = e j2πgt

I Making Xg (f ) = δ(f − g) maintains Fourier analysis coherence

I Definition has clear, albeit, disappointingly trivial meaning

I Exponential of freq. g can be written as exponential of freq. g
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Fourier transform of a shifted delta function

I Denote as Xu the transform of the shifted delta function δ(t − u)

I This one we can compute ⇒ Complex exponential of frequency u

Xu(f ) =

∫ ∞
−∞

δ(t − u)e−j2πftdt = e−j2πfu = e−u(f )

u t

δ(t − u)
F

F−1

− 1
u

− 1
u

1
2u

1
u

f

Xu(f ) = e−j2πfu

I It is the inverse we need to define as a delta function centered at u
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The delta – constant transform pair

I When frequencies are null we have constants and unshifted deltas

I Transform of x(t) = δ(t) ⇒ X (f ) = 1. Transform of x(t) = 1 ⇒ X (f ) = δ(f )

t

δ(t) F

F−1

f

X (f ) = 1

t

x(t) = 1 F

F−1

f

X (f ) = δ(f )
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Fourier transform of a cosine

I To find Fourier transform of cosine write as difference of exponentials

cos(2πgt) =
1

2

[
e j2πgt + e−j2πgt

]
I Since Fourier is a linear operator we transform each of the summands

X (f ) =
1

2

[
δ(f − g) + δ(f + g)

]

t

x(t) = cos(2πgt)
F

F−1

−g g

1/2

f

X (f ) = 1
2

[
δ(f − g) + δ(f + g)

]

I Pair of deltas of “height 1/2” at (opposite) frequencies ±g
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Properties of the Fourier transform

Continuous time signals

Fourier transform

Inverse Fourier transform

Delta function

Generalized orthogonality

Generalized Fourier transforms

Properties of the Fourier transform

Convolution

Signal and Information Processing Fourier transforms 57



Three properties we already studied for the DFT

I Fourier transform is conjugate symmetric, linear, and conserves energy

I Transforms of real signals satisfy ⇒ X (−k) = X ∗(k)

I Linearity ⇒ F(ax + by) = aF(x) + bF(y)

I Energy ⇒
∫ ∞
−∞

∣∣x(t)
∣∣2dt =

∥∥x∥∥2
=
∥∥X∥∥2

=

∫ ∞
−∞

∣∣X (f )
∣∣2df

I Not surprising, Fourier transform and DFT are conceptually identical

I Properties follow from properties of inner products and orthogonality

I Both transforms are projections on complex exponentials (inner product)

I And both project onto sets of orthogonal signals

Signal and Information Processing Fourier transforms 58



Symmetry

Theorem
The Fourier transform X = F(x) of a real signal x is conjugate symmetric

X (−f ) = X ∗(f )

I For real signals only positive half of spectrum carries information

I Conjugate symmetry implies that X (−f ) and X ∗(f ) are such that...

⇒ Real parts are equal ⇒ Re (X (f )) = Re (X (−f ))

⇒ Imaginary parts are opposites ⇒ Im (X (f )) = Im (X (−f ))

⇒ Moduli are equal ⇒ |X (f )| = |X (−f )|
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Proof of symmetry property

Proof.

I Write the Fourier transform X (−k) using its definition

X (−f ) :=

∫ ∞
−∞

x(t)e−j2π(−f )tdt

I When the signal is real, its conjugate is itself ⇒ x(n) = x∗(n)

I Conjugating a complex exponential ⇒ changing the exponent’s sign

I Can then rewrite ⇒ X (−f ) :=

∫ ∞
−∞

x∗(t)
(
e−j2πf t

)∗
dt

I Integration and multiplication can change order with conjugation

X (−f ) =

[ ∫ ∞
−∞

x∗(t)
(
e−j2πf t

)∗
dt

]∗
= X ∗(f )
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Linearity

Theorem
The Fourier transform of a linear combination of signals is the linear combination
of the respective Fourier transforms of the individual signals,

F(ax + by) = aF(x) + bF(y).

Proof.

I Let Z := F(ax + by). From the Fourier transform definition

Z(f ) =

∫ ∞
−∞

[
ax(t) + by(t)

]
e−j2πftdt

I Expand the product, reorder terms, identify transforms of x and y

Z(f ) = a

∫ ∞
−∞

x(t)e−j2πftdt + b

∫ ∞
−∞

y(t)e−j2πftdt = aX (f ) + bY (f )
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Energy conservation

Theorem (Parseval)

Let X = F(x) be the Fourier transform of signal x. The energies of x
and X are the same, i.e.,∫ ∞

−∞

∣∣x(t)
∣∣2dt =

∥∥x∥∥2
=
∥∥X∥∥2

=

∫ ∞
−∞

∣∣X (f )
∣∣2df

I It follows that X (f ) is the energy density concentrated around f

I E.g., removing frequency component ≡ remove corresponding energy

We omit proof as it is analogous to DFT case. Need to use finite integration

region and take limit after exchanging order of integration. Not worth

repeating.
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Shift ⇔ modulation

I Two more properties we didn’t study for DFTs

⇒ They (sort of) hold for DFTs, but are difficult to explain

I Time shift ⇒ multiplication by complex exponential in frequency

I Multiplication by complex exponential in time ⇒ Shift in frequency

I Properties are dual of each other ⇒ inverse transform symmetry

⇒ If one holds the other has to be true
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Time shift

I Given signal x and shift τ define shifted signal xτ ⇒ xτ = x(t − τ)

I Fourier transform of x is X = F(x). Transform of xτ is Xτ = F(xτ ).

Theorem
A time shift of τ units in the time domain is equivalent to multiplication
by a complex exponential of frequency −τ in the frequency domain

xτ = x(t − τ) ⇐⇒ Xτ (f ) = e−j2πf τX (f )

I The phase of X (f ) changes, but the modulus remains the same∣∣Xτ (f )
∣∣ =

∣∣e−j2πf τX (f )
∣∣ =

∣∣e−j2πf τ ∣∣× ∣∣X (f )
∣∣ =

∣∣X (f )
∣∣

I Useful in signal detection ⇒ Don’t have to compare different shifts
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Proof of time shift property

Proof.

I Shifted signal transform ⇒ Xτ (f ) =

∫ ∞
−∞

x(t − τ)e−j2πf tdt

I Change of variables u = t − τ . Separate exponent in two factors

Xτ (f ) =

∫ ∞
−∞

x(u)e−j2πf (u+τ)du =

∫ ∞
−∞

x(u)e−j2πf τe−j2πfudu

I Pull the term e−j2πf τ out of the integral. Identify X (f )

Xτ (f ) = e−j2πf τ
∫ ∞
−∞

x(u)e−j2πfudu = e−j2πf τX (f )
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Modulation

I For signal x and freq. g define modulated signal ⇒ xg = e−j2πgtx(t)

I Fourier transform of x is X = F(x). Transform of xg is Xτ = F(xg ).

Theorem
A multiplication by a complex exponential of frequency g in the time domain
is equivalent to a shift of g units in the frequency domain

xg = e j2πgtx(t) ⇐⇒ Xg (f ) = X (f − g)

I Dual of time shift result ⇒ Proof not really necessary

I Principle behind transmission of signals on electromagnetic spectrum
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Modulation of bandlimited signals

I Signal x has bandwidth W ⇒ X (f ) = 0 for f /∈ [−W /2,W /2]

I Multiplying by complex exponential shifts spectrum to the right

⇒ Re-center spectrum at frequency g

x(t) xg (t)

e j2πgt

f

X (f )

-W/2 W/2 f

Xg (f )

g −W/2 g + W/2g

I Can recover signal x by multiplying with conjugate frequency e−j2πgt
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Modulation of multiple bandlimited signals

I Modulate two signals with bandwidth W using frequencies g1 and g2

⇒ Spectrum of x recentered at g1. Spectrum of y recentered at g2

x(t) xg1
(t)

e j2πg1t

y(t) yg2
(t)

e j2πg2t

z(t) = xg1
(t) + yg2

(t)

I Sum up to construct signal z(t) = xg1 (t) + yg2 (t)

⇒ Can we recover x and y from mixed signal z? ⇒ Yes
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Spectrum of multiple modulated signals

I No spectral mixing if modulating frequencies satisfy g2 − g1 >W

f

Z(f )

g1 −W/2 g1 + W/2g1
g2 −W/2 g2 + W/2g2

I To recover x multiply by conjugate frequency e−j2πg1t

I And eliminated all frequencies outside the interval [−W /2,W /2]

I To recover y multiply by conjugate frequency e−j2πg2t

I And eliminated all frequencies outside the interval [−W /2,W /2]
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Convolution ⇔ Product

I Both, Fourier transforms and DFTs are:

⇒ Conjugate symmetric, linear, & conserve energy

I The Fourier transform also satisfies shift and modulation theorems

⇒ They also (sort of) hold for DFTs (although we haven’t shown)

⇒ As they should, DFTs are close to Fourier transforms

I A sixth property of Fourier transforms, also sort of true for DFTs

⇒ Convolution in time equivalent to multiplication in frequency
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Convolution

I Given signal x with values x(t) and signal h with values h(t)

I Convolution of x with h is the signal y = x ∗ h with values

[x ∗ h](t) = y(t) =

∫ ∞
−∞

x(u)h(t − u) du

I Operation is commutative ⇒ [x ∗ h] ≡ [h ∗ x ]

[h∗x ](t) =

∫ ∞
−∞

h(u)x(t − u) du =

∫ ∞
−∞

h(t − v)x(v) dv = [x ∗h](t)

I Still, prefer to interpret roles of x and h as asymmetric ⇒ x hits h

x
h

y = x ∗ h
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Convolution with delta functions

I Convolution with x(t) = δ(t) ⇒ y(t) =

∫ ∞
−∞

δ(u)h(t − u) du = h(t)

I Hitting h with delta function produces convolution output y ≡ h

tt = 0

y(t) = h(t)

x(t) = δ(t)

t = s

y(t) = h(t − s)

x(t) = δ(t − s)

I Convolution with delayed delta x(t) = δ(t − s) (u = s in integrand)

y(t) =

∫ ∞
−∞

δ(u − s)h(t − u) du = h(t − s)

I Hitting h with delayed delta produces delayed h as output
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Convolution with scaled delta functions

I Convolution with scaled delta function x(t) = αδ(t)

y(t) =

∫ ∞
−∞

αδ(u)h(t − u) du = α

∫ ∞
−∞

δ(u)h(t − u) du = αh(t)

I Convolution with scaled and delayed delta x(t) = αδ(t − s)

y(t) =

∫ ∞
−∞

αδ(u − s)h(t − u) du = α

∫ ∞
−∞

δ(u − s)h(t − u) du = αh(t − s)

ft = 0

x(t) = αδ(t)

y(t) = αh(t)

h(t)

t = s

x(t) = αδ(t − s)

y(t) = αh(t − s)

h(t−s)

I Convolution with scaled and delayed delta is scaled and delayed h
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Interpretation ⇒ Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

∫ ∞
−∞

x(u)h(t − u) du ≈ Ts

∞∑
n=−∞

x(un)h(t − un)

I For each un ⇒ Scale h(t) by x(un) to produce x(un)h(t)

⇒ Shift to time un to produce x(un)h(t − un)
I Sum over all possible un ⇒ integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coefficients x(u)
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Interpretation ⇒ Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

∫ ∞
−∞

x(u)h(t − u) du ≈ Ts

∞∑
n=−∞

x(un)h(t − un)

I For each un ⇒ Scale h(t) by x(un) to produce x(un)h(t)

⇒ Shift to time un to produce x(un)h(t − un)
I Sum over all possible un ⇒ integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coefficients x(u)
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Interpretation ⇒ Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

∫ ∞
−∞

x(u)h(t − u) du ≈ Ts

∞∑
n=−∞

x(un)h(t − un)

I For each un ⇒ Scale h(t) by x(un) to produce x(un)h(t)

⇒ Shift to time un to produce x(un)h(t − un)
I Sum over all possible un ⇒ integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coefficients x(u)
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Interpretation ⇒ Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

∫ ∞
−∞

x(u)h(t − u) du ≈ Ts

∞∑
n=−∞

x(un)h(t − un)

I For each un ⇒ Scale h(t) by x(un) to produce x(un)h(t)

⇒ Shift to time un to produce x(un)h(t − un)
I Sum over all possible un ⇒ integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coefficients x(u)
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Time convolution ≡ Frequency multiplication

Theorem (Convolution theorem)

Given signals x and y with transforms X = F(x) and Y = F(y). The
Fourier transform Z = F(z) of the convolved signal z = x ∗ y is the
product Z = XY

z = x ∗ y ⇐⇒ Z = XY

I Convolution in time domain ≡ to multiplication in frequency domain

I When we convolve signals x and y in the time domain

⇒ Their transforms are multiplied in the frequency domain

I When we multiply two transforms in the frequency domain

⇒ The signals get convolved in the time domain
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Proof of convolution theorem

Proof.

I Use the definition of Fourier transform to write the transform of Z as

Z (f ) =

∫ ∞
−∞

z(t)e−j2πft dt

I Use the definition of convolution to write the signal z as

z(t) =

∫ ∞
−∞

x(u)h(t − u) du

I Substitute the expression for z(t) into expression for Z (f )

Y (f ) =

∫ ∞
−∞

(∫ ∞
−∞

x(u)h(t − u) du

)
e−j2πft dt
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Proof of convolution theorem

Proof.

I Rewrite the nested integral as a double integral

Y (f ) =

∫ ∞
−∞

∫ ∞
−∞

x(u)h(t − u)e−j2πft du dt

I Make the change of variables v = t − u and write

Y (f ) =

∫ ∞
−∞

∫ ∞
−∞

x(u)h(v)e−j2πf (u+v) du dt

I Write e−j2πf (u+v) = e−j2πfue−j2πfv and reorder terms to obtain

Y (f ) =

(∫ ∞
−∞

x(u)e−j2πfu du

)(∫ ∞
−∞

h(v)e−j2πfv dv

)
I Factors on the right are the Fourier transforms X (f ) and Y (f )
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System equivalence

I Convolution in time equivalent to multiplication in frequency

⇒ Is this useful in any way? ⇒ Certainly, few facts are more useful

I Convolution theorem implies that these two systems are equivalent

x h y = x ∗ h

X H Y = HX

F F−1 F F−1 F F−1

I The lower path for design, the upper path for implementation
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The signal and the noise

I There is signal and noise, but what is signal and what is noise?

I We already know answer ⇒ Signal discernible in frequency domain

0 1 2 3 4 5 6 7
-1.0

-0.5

0

0.5

1.0

1.5

2.0

time t in miliseconds

Original signal x(t). It moves randomly, but not that much

I
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The signal and the noise

I There is signal and noise, but what is signal and what is noise?

I We already know answer ⇒ Signal discernible in frequency domain
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Frequency f in Hertz

Fourier transform X (f ) of original signal

I Filter out all frequencies above 100Hz (and below -100Hz)
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Noise removal – Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

⇒ Only frequencies between ±W /2 = ±100Hz are retained
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Frequency f in Hertz

Fourier transform Y (f ) = H(f )X (f ) of filtered signal

I This spectral operation does separate signal from noise
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Noise removal – Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

⇒ Only frequencies between ±W /2 = ±100Hz are retained
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Filtered signal y(t) with y = x ∗ h and h = F−1(H) = F−1(uW )

I This spectral operation does separate signal from noise
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Noise removal – Low pass filter implementation

I We can implement filtering in the frequency domain

⇒ Sample ⇒ DFT ⇒ Multiply by H(f ) = uW (f ) ⇒ iDFT

x h(t) = W sinc(πWt) y = x ∗ h

X H(f ) = uW (f ) Y = HX

F F−1

I We can also implement filtering in the time domain

⇒ Inverse transform of uW (f ) is h(t) = W sinc(πWt)

⇒ Sample (or not) ⇒ Implement convolution with h(t)
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