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Discrete time signals

I To infinity, but no beyond ⇒ Discrete but infinite time index n ∈ Z.

I Discrete time signal x is a function mapping Z to complex value x(n)

x : Z→ C (values x(n) can be, often are, real)

I Sampling time Ts is implicit. Time elapsed from sample n to n + 1

I So is sampling frequency fs = 1/Ts

I E.g., a shifted delta function δ(n − n0) has a spike at time n = n0

δ(n−n0) =

{
1 if n = n0

0 else

δ(n − n0)

1

n0Ts

I Signal continuous to plus and minus infinity (unlike discrete signals)
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Inner product and energy

I Given two signals x and y define the inner product of x and y as

〈x , y〉 :=
∞∑

n=−∞

x(n)y∗(n)

I Projection of x on y . How much of x falls in y direction.

I How much x and y are like each other ⇒ orthogonality ≡ unrelated

I Define the energy of the signal as the inner product with itself

‖x‖2 := 〈x , y〉 =
∞∑

n=−∞
|x(n)|2 =

∞∑
n=−∞

|xR(n)|2 +
∞∑

n=−∞
|xI (n)|2

I Sums extend to plus and minus infinity (they are series, not sums)

⇒ Inner product may not exist. Energy may be infinite
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Energy and inner products of pulses

I Define square pulse of odd length M + 1 as signal uM+1 with values

uM+1 (n) = 1 if − M

2
≤ n ≤ M

2

uM+1 (n) = 0 else M ≤ n

uM+1(n)

1

- M
2 Ts

M
2 Ts

I To compute energy of the pulse we just evaluate the definition

‖ uM+1 ‖2 :=
∞∑

n=−∞
| uM+1 (n)|2 =

M/2∑
n=−M/2

(1)2 = M + 1

I Can normalize for unit energy as we did for discrete signal case

I But we rather not, as we did for continuous time (to let M grow)
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Inner product of a pulse and a shifted pulse

I Inner product of pulse uM+1(n) and shifted pulse uM+1(n − K )

〈
uM+1 (n),uM+1(n − K)

〉
=

∞∑
n=−∞

uM+1(n) uM+1 (n − K)

uM+1(n)

1

- M
2 Ts

M
2 Ts KTsK − M

2 Ts K + M
2 Ts

I For shifts 0 ≤ K ≤ M + 1, signals overlap for K −M/2 ≤ n ≤ M/2

〈
uM+1 (n),uM+1(n − K)

〉
=

M/2∑
n=K−M/2

(1)(1) = (M + 1)− K

I Proportional to overlap ⇒ how much pulses “are like each other”
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The discrete time Fourier transform (DTFT)

I The DTFT of discrete signal x is the function X : R→ C with values

X (f ) := Ts

∞∑
n=−∞

x(n)e−j2πf nTs

I Denote as X = F(x). Argument f is continuous and called frequency

I Sum need not exist ⇒ Not all discrete time signals have a DTFT

I Definition depends on sampling time Ts . Facilitates connections later

I Fourier transform (FT) has continuous input and continuous output

I DFT is also well matched ⇒ It has discrete input and discrete output

I DTFT is mismatched ⇒ It has discrete input but continuous output

⇒ A little odd, but of little consequence
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DTFT is also an inner product

I Define ef Ts with values ef Ts (n) = Tse j2πf nTs . Write as inner product

X (f ) = 〈x , ef Ts 〉 = Ts

∞∑
n=−∞

x(n)e∗f Ts
(n)

I As in the case of the FT and the DFT, the DTFT value X (f ):

⇒ Is the projection of x onto discrete oscillation of freq. f

⇒ Measures how much x(n) resembles discrete oscillation of freq. f

I Conceptually identical to FT & DFT ⇒ Why a third definition?

⇒ All three, discrete time, discrete, and continuous signals exist

⇒ Deep connections between FT and DTFT and DTFT and DFT

I Analytical tool (as the FT). Not a computational tool (as the DFT)
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Periodicity of DTFT

Theorem
The DFTF X = F(x) of discrete time signal x is periodic with period fs

X (f + fs) = X (f ), for all f ∈ R.

I Any frequency interval of length fs contains all DTFT information

⇒ We will use the canonical set ⇒ f ∈ [−fs/2, fs/2]

I For sampling time Ts , freqs. larger than fs/2 have no physical meaning

⇒ Frequency −f is (more or less) the same as frequency f
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Proof of periodicity property

Proof.

I Use the DTFT definition to write X (f + fs) as

X (f + fs) = Ts

∞∑
n=−∞

x(n)e−j2π(f +fs )nTs

I Separate the complex exponential in two factors

X (f + fs) = Ts

∞∑
n=−∞

x(n)e−j2πf nTs e−j2πfsnTs

I Use fsTs = 1 in last factor ⇒ e−j2πfsnTs = e−j2πn =
(
e j2π

)−n = 1

I Substitute in previous expression and observe definition of DTFT

X (f + fs) = Ts

∞∑
n=−∞

x(n)e−j2πf nTs = X (f )
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DTFT of a square pulse

I Consider square pulse of odd length M + 1

uM+1 (n) = 1 if − M

2
≤ n ≤ M

2

uM+1 (n) = 0 else M ≤ n

uM+1(n)

1

- M
2 Ts

M
2 Ts

I To compute the pulse DTFT X = F(uM+1) evaluate the definition

X (f ) = Ts

∞∑
n=−∞

uM+1(n)e−j2πf nTs = Ts

M/2∑
n=−M/2

e−j2πf nTs

I Write down the individual elements of the sum to express DTFT as

X (f )

Ts
= e j2πf (−

M
2 )Ts + e j2πf (−

M
2

+1)Ts + . . .+ e j2πf (
M
2
−1)Ts + e j2πf (

M
2 )Ts

Signal and Information Processing Sampling 12



DTFT of a square pulse (computation, 1 of 2)

I Multiply by e j2πf ( 1
2 )Ts and e j2πf (− 1

2 )Ts to write the equalities

e j2πf (
1
2 )Ts

X (f )

Ts
= e j2πf (−

M
2

+ 1
2 )Ts + e j2πf (−

M
2

+ 3
2 )Ts + . . .+ e j2πf (

M
2
− 1

2 )Ts + e j2πf (
M
2

+ 1
2 )Ts

e−j2πf ( 1
2 )Ts

X (f )

Ts
= e j2πf (−

M
2
− 1

2 )Ts + e j2πf (−
M
2

+ 1
2 )Ts + . . .+ e j2πf (

M
2
− 3

2 )Ts + e j2πf (
M
2
− 1

2 )Ts

I First term in first row = second term in second row

I Second term in first row = third term in second row (unseen)
...

I Penultimate term in first row = last term in second row

I Subtracting second row from first row only two terms survive

⇒ The last term in the first row and the first term in the second row
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DTFT of a square pulse (computation, 1 of 2)

I Multiply by e j2πf ( 1
2 )Ts and e j2πf (− 1

2 )Ts to write the equalities

e j2πf (
1
2 )Ts

X (f )

Ts
= e j2πf (−

M
2

+ 1
2 )Ts +e j2πf (−

M
2

+ 3
2 )Ts + . . .+e j2πf (

M
2
− 1

2 )Ts + e j2πf (
M
2

+ 1
2 )Ts

e−j2πf ( 1
2 )Ts

X (f )

Ts
= e j2πf (−

M
2
− 1

2 )Ts +e j2πf (−
M
2

+ 1
2 )Ts + . . .+e j2πf (

M
2
− 3

2 )Ts +e j2πf (
M
2
− 1

2 )Ts

I First term in first row = second term in second row

I Second term in first row = third term in second row (unseen)
...

I Penultimate term in first row = last term in second row

I Subtracting second row from first row only two terms survive

⇒ The last term in the first row and the first term in the second row
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DTFT of a square pulse (computation, 2 of 2)

I Implementing the subtraction results in the equality

X (f )

Ts

[
e j2πf (

1
2 )Ts − e−j2πf ( 1

2 )Ts

]
= e j2πf (

M
2

+ 1
2 )Ts − e j2πf (−

M
2
− 1

2 )Ts

I Complex exponentials are conjugate. Subtraction cancels real parts

I We keep imaginary parts only, which are sines

X (f )

Ts

[
2j sin

(
2πf

(
1

2

)
Ts

)]
= 2j sin

(
2πf

(
M + 1

2

)
Ts

)
I Solve for X (f ) and simplify terms. Pulse length T = (M + 1)Ts

X (f ) = Ts

sin
(
πf (M + 1) Ts

)
sin
(
πf Ts

) = Ts

sin
(
πf T

)
sin
(
πf Ts

)
I A slow sine over a fast sine ⇒ not unlike a sinc pulse
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Evaluation of the DTFT of a square pulse

I Sampling freq. fs = 100Hz. Pulse length in time T = 110ms pulse

⇒ Resulting in M + 1 = 11 nonzero samples

-150 −100 = −fs -50 = fs/2 0 -50 = fs/2 100 = fs 150

-2.0

0

2.0

4.0

6.0

8.0

10.0

12.0

frequency f in Hertz

DTFT X (f ) of a square pulse of duration T = 110ms sampled fs = 100Hz (M = 11 nonzero samples)

I DTFT is periodic, as we know it should. Focus on f ∈ [−fs/2, fs/2]
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The DTFT of a square pulse and the sinc pulse

I Similar to the sinc pulse ⇒ T
sin
(
πf T

)
πf T

= T sinc
(
πf T

)
I Fourier transform of unsampled pulse

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75

-2.0

0

2.0

4.0

6.0

8.0

10.0

frequency f in Hertz

DTFT X (f ) of square pulse (fs = 100Hz, T = 90ms, M = 9)

I Some difference for f close to ±f2/2. Also, sinc is not periodic
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Pulses of different length

I As the pulse widens, the DTFT concentrates. Same as FT and DFT

I As pulse widens difference with FT of continuous time pulse diminishes

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75
−1

0

1

2

3

DTFT X (f ) of square pulse (fs = 100Hz, T = 30ms, M = 3)

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75

0

2

4

DTFT X (f ) of square pulse (fs = 100Hz, T = 50ms, M = 5)

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75

0

5

10

DTFT X (f ) of square pulse (fs = 100Hz, T = 90ms, M = 9)

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75

0

10

DTFT X (f ) of square pulse (fs = 100Hz, T = 170ms, M = 17)
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The FT and the DTFT

I Interpret signal x(n) as samples xC (nTs) of continuous signal xC (t)

I DTFT X = F(x) is Riemann sum approximation of FT XC = F(xC )

XC (f ) =

∫ ∞
−∞

xC (t)e−j2πftdt ≈ Ts

∞∑
n=−∞

x(n)e−j2πfnTs = X (f )

I Only frequencies between ±fs/2 have meaning in DTFT ⇒ Chop

I FT XC (f ) ⇒ sample in time, chop in frequency ⇒ DTFT X (f )
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The DTFT and the DFT

I Chop x to n ∈ [0,N − 1] ⇒ Discrete signal xD with DFT XD = F(xD)

I If elements discarded from x are small

X (f ) = Ts

∞∑
n=−∞

x(n)e−j2πfnTs ≈ Ts

N−1∑
n=0

xD(n)e−j2πfnTs

I True for all frequencies f . Sample in frequency at f = (k/N)fs

X

(
k

N
fs

)
≈ Ts

N−1∑
n=0

xD(n)e−j2π(k/N)fsnTs = Ts

N−1∑
n=0

xD(n)e−j2πkn/N = Ts

√
N XD(k)

I DTFT ⇒ Chop in time, sample in frequency ⇒ DFT
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The FT, the DTFT, and the DFT

I The DTFT bridges FT and DFT by dual sample and chopping

xC

sample ⇒ Ts

x

chop ⇒ [0,NTs ]

xD

FT

DTFT

DFT

XC

chop ⇒ ±
fs

2

X

sample ⇒
fs

N

XD

I The argument was careless though ⇒ We will probe deeper
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The inverse (i)DTFT

I The iDTFT x of DTFT X , is the discrete time signal with elements

x(n) :=

∫ fs/2

−fs/2

X (f )e j2πf nTs df

I We denote x = F−1(X ). Sampling time Ts (freq. fs) implicit in X

I Sign in exponent changes with respect to DTFT.

I DTFT is an indefinite sum but iDTFT is a definite integral

⇒ DTFT mismatch. Odd, but of little consequence

I Since DTFT X is periodic, any interval of width fs does it. E.g.

x(n) =

∫ fs/2

−fs/2

X (f )e j2πf nTs df =

∫ fs

0

X (f )e j2πf nTs df

Signal and Information Processing Sampling 23



Indeed, the iDTFT is the inverse of the DTFT

Theorem
The iDTFT x̃ of the DTFT X of the discrete time signal x is the signal x

x̃ = F−1(X ) = F−1[F(x)] = x .

I What a surprise. It’s getting tired. But this is the last one.

I As usual, discrete time signals can be written as sums of oscillations

x(n) =

∫ fs/2

−fs/2

X (f )e j2πfnTs df ≈ (∆f )

N/2∑
n=−N/2

X (fk)e j2πfknTs

I Conceptual; cf. continuous signals. Not literal; cf. discrete signals.
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Proof of inverse Fourier transform

Proof.

I We want to show ⇒ x̃ = F−1(X ) = F−1[F(x)] = x . Use definitions

I Definition of inverse transform of X ⇒ x̃(ñ) :=

∫ fs/2

−fs/2

X (f )e j2πf ñTs df

I From definition of transform of x ⇒ X (f ) := Ts

∞∑
n=−∞

x(n)e−j2πf nTs

I Substituting expression for X (f ) into expression for x̃(ñ) yields

x̃(ñ) =

∫ fs/2

−fs/2

[
Ts

∞∑
n=−∞

x(n)e−j2πf nTs

]
e j2πf ñTs df

I Same as done for iDFT and iFT but with one integral and one sum
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Proof of inverse Fourier transform

Proof.

I Exchange integration with sum ⇒ Integrate first over f , then sum over n

x̃(ñ) = Ts

∞∑
n=−∞

x(n)

[ ∫ fs/2

−fs/2

e j2πf ñTs e−j2πf nTs df

]
I Pulled x(n) out because it doesn’t depend on f

I Up until now we repeated steps we already did for iDFT and iFT

⇒ They worked for iDFT but didn’t for iFT ⇒ They work here.

I The innermost integral we have computed repeatedly ⇒ It’s a sinc∫ fs/2

−fs/2

e j2πf ñTs e−j2πf nTs df = fssinc(πfs(n − ñ)Ts) = fssinc(π(n − ñ))

I We used fsTs = 1 in second equality. Recall that n and ñ are discrete
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Proof of inverse Fourier transform

Proof.

I Evaluate sinc for n = ñ ⇒ fssinc(π(n − ñ)) = fs because sinc(0) = 1

I Evaluate sinc for n 6= ñ ⇒ fssinc(π(n − ñ)) = 0 because sinc(kπ) = 0

I Lucky for us, the innermost integral was a delta function in disguise∫ fs/2

−fs/2

e j2πf ñTs e−j2πf nTs df = fsδ(n − ñ)

I Substituting in expression for x̃(ñ), only one term in sum is not null

x̃(ñ) = Ts fs

∞∑
n=−∞

x(n)δ(n − ñ) = x(ñ)

I Also used fsTs = 1. Since we have x̃(ñ) = x(ñ) for all ñ ⇒ x̃ ≡ x
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From time to frequency and back

I If a discrete signal x has a DTFT X , its DTFT has an iDTFT

⇒ The iDTFT of the DTFT X recovers original signal x

I The DTFT is a transformation without loss of information

⇒ Can always come back from frequency domain to time domain

x X

DTFT

iDTFT

I True of DFT–iDFT and FT–iFT as well. Hadn’t need to mention yet
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The DTFT of a constant

I Discrete time constant x has value x(n) = 1 for all n. The DTFT is

X (f ) = Ts

∞∑
n=−∞

x(n)e−j2πfnTs = Ts

∞∑
n=−∞

e−j2πfnTs

I It does not exist. For n = 0, X (f )→∞, for other n oscillates

I We know how to solve this problem ⇒ Use delta function

I Write constant as pulse limit. DTFT of pulse we saw is ratio of sines

I Then, can think of writing DTFT of constant as the limit

X (f ) = lim
M→∞

Ts

M/2∑
n=−M/2

e−j2πfnTs = lim
M→∞

Ts
sin(πf (M + 1)Ts)

sin(πfTs)

I Except that it is this limit the one that does not exist
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The limit of the DTFT of a square pulse

I As M grows, DTFT grows and narrows around f = 0. And f = ±kfs

⇒ But it doesn’t decrease for other frequencies

−fs − fs
2

fs
2

fs

T

2T

4T

f

Ts
sin(πf (M + 1)Ts )

sin(πfTs )

x(t)

Ts/sin(πfTs )

I But when multiplying by Y (f ) and integrating we recover Y (0)

lim
M→∞

∫ fs/2

−fs/2

Y (f )Ts
sin(πf (M + 1)Ts)

sin(πfTs)
df = Y (0)

I Define (already did) delta function as the entity with this property
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The Dirac train

I The delta function δ is a generalized function such that for all Y∫ ∞
−∞

Y (f )δ(f ) df = Y (0)

I We can then define the DTFT of a constant as a delta function

I Almost correct, but observe that we also have peaks at f = ±kfs
I The DTFT of a constant is then defined as

X (f ) =
k=∞∑
k=−∞

δ(f − kfs)

−4fs −3fs −2fs −fs fs 2fs 3fs 4fs f

k=∞∑
k=−∞

δ(f − kfs )

I We call this signal a train of deltas, a Dirac train, or a Dirac comb
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What it means? Does it make sense?

I Informally ⇒ δ(f ) =∞ for f = 0, f = ±fs , f = ±2fs , . . .

⇒ δ(f ) = 0 for all other f

I Mathematically, only has sense after multiplication and integration∫ ∞
−∞

Y (f )X (f ) df =

∫ ∞
−∞

Y (f )
k=∞∑
k=−∞

δ(f − kfs) df =
k=∞∑
k=−∞

Y (f − kfs)

I Recovers the values of Y (f ) at the points where the train has spikes

I In particular, the iDTFT recovers the constant∫ fs/2

−fs/2

X (f )e j2πfnTs df =

∫ fs/2

−fs/2

k=∞∑
k=−∞

δ(f − kfs)e
j2πfnTs df = e j2π0nTs = 1

I Definition makes sense ⇒ Preserves consistency of DTFT analyses
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The constant - Dirac train non-pair

I DTFT of a constant is a Dirac train ⇒ suspiciously similar

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

F

F−1

-4fs -3fs -2fs -fs 0 fs 2fs 3fs 4fs f

I Can we use duality to say the FT of a train is another train?

⇒ Not quite. Left signal is discrete. Right signal is continuous

I Not a transform pair ⇒ Can’t define Dirac train in discrete time

⇒ Definition of delta functions relies on integration

I But we are on to something
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A Dirac train in the time domain

I For continuous time index t define continuous signal x as

xC (t) = Ts

∞∑
n=−∞

δ(t − nTs)

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

I This signal is a Dirac train in time. Not a discrete time constant

I Being continuous, the Dirac train has a Fourier transform XC

XC (f ) =

∫ ∞
−∞

xC (t)e−j2πft dt =

∫ ∞
−∞

[
Ts

∞∑
n=−∞

δ(t−nTs)

]
e−j2πft dt

I Can be related to the DTFT of a discrete time constant
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DTFT of a constant ≡ FT of a Dirac train

I Exchange order of sum and integration, use delta function definition

XC (f ) = Ts

∞∑
n=−∞

[ ∫ ∞
−∞

δ(t − nTs)e−j2πf t dt

]
= Ts

∞∑
n=−∞

e−j2πf nTs

I The sum on the right is the DTFT of a constant

X (f ) = Ts

∞∑
n=−∞

x(n)e−j2πfnTs = Ts

∞∑
n=−∞

e−j2πf nTs

I The DTFT of a constant and the FT of a Dirac train coincide

XC (f ) = X (f ) =
∞∑

k=−∞

δ(t − kfs)

I Both are a Dirac trains in frequency with spacing fs
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The Dirac train - Dirac train FT pair

I FT of Dirac train with spacing Ts is a Dirac train with spacing fs

xC (t) =
∞∑

n=−∞
δ(t − nTs) ⇐⇒ XC (f ) =

∞∑
k=−∞

δ(t − kfs)

I The set of Dirac trains is an invariant class with respect to the FT

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

F

F−1

-4fs -3fs -2fs -fs 0 fs 2fs 3fs 4fs f

I This is a Fourier transform pair because both are continuous signals
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Fundamentally different but equal

I Discrete time constant sampled at Ts ⇒ DTFT ⇒ Dirac train spaced fs

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

F

F−1

-4fs -3fs -2fs -fs 0 fs 2fs 3fs 4fs f

I Dirac train spaced every Ts ⇒ FT ⇒ Dirac train spaced every fs

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

F

F−1

-4fs -3fs -2fs -fs 0 fs 2fs 3fs 4fs f

I Discrete time constant fundamentally different from continuous time train

I Thus, DFTF of constant fundamentally different from FT of Dirac train

I But they coincide ⇒ Something deeper is at play here
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Sampling

I Consider continuous time signal x and sampling time Ts (freq. fs)

I The sampled signal xs is a discrete time signal with values

xs(n) = x(nTs)

I Creates discrete time signal xs from continuous time signal x

I We’ve been doing this since first day. We want to understand it now

⇒ Information lost from x when discarding all but samples x(nTs)?

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

x xsSample ⇒ Ts

x xs

Ts
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Sampling as multiplication by a Dirac train

I Equivalently, we represent sampling as multiplication by a Dirac train

xδ(t) = x(t)× Ts

∞∑
n=−∞

δ(t − nTs)

I Indeed, since the only value that is relevant for δ(t − nTs) is x(nTs)

xδ(t) = Ts

∞∑
n=−∞

x(nTs)δ(t − nTs)

I We can construct xs if given xδ and construct xδ if given xs

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t -4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts

t
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DTFT & FT of sampled signals coincide

Theorem
The DTFT Xs = F(xs) of the sampled signal xs and the FT Xδ = F(xδ)
of the Dirac sampled signal xδ coincide

Xδ(f ) = Xs(f )

I True for all freqs., not just between ±fs/2. FT Xδ(f ) is periodic

I We already saw this property for sampling continuous time constants

⇒ Discrete time constant and Dirac train

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t -4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts

t
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DTFT & FT of sampled signals coincide (proof)

Proof.

I Write the definition of the FT Xδ = F(xδ) of Dirac sampled signal

Xδ(f ) =

∫ ∞
−∞

[
Ts

∞∑
n=−∞

x(nTs)δ(t − nTs)e
−j2πf t

]
df

I Exchange the order of summation and integration

Xδ(f ) = Ts

∞∑
n=−∞

[ ∫ ∞
−∞

x(nTs)δ(t − nTs)e
−j2πf t df

]
I Multiplying by delta and integrating recovers value at spike. Thus,

Xδ(f ) = Ts

∞∑
n=−∞

x(nTs)e
−j2πf nTs = Ts

∞∑
n=−∞

xs(n)e−j2πf nTs = Xs(f )

I We use xs(n) = x(nTs) and definition of DTFT in last two equalities
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Product in time ⇒ convolution in frequency

I When we convolve signals in time we multiply their spectra

I Duality ⇒ When we multiply them in time we convolve their spectra

⇒ Don’t need to prove. It has to be true because iFT is like an FT

I We obtain Dirac sampled signal xδ by multiplying x with Dirac train

xδ(t) = x(t)× Ts

∞∑
n=−∞

δ(t − nTs)

I Spectrum Xδ is convolution of X = F(x) with the FT of Dirac train

Xδ = X ∗ F
[

Ts

∞∑
n=−∞

δ(t − nTs)

]
I Fourier transform of the Dirac train (Ts) is another Dirac train (fs)
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The spectrum of the Dirac sampled signal

I Spectrum Xδ convolves X with a Dirac train with spacing fs

Xδ = X ∗
[ ∞∑
k=−∞

δ(t − kfs)

]

I But convolution is a linear operation ⇒ Xδ =
∞∑

k=−∞

X ∗ δ(f − kfs)

I Convolving with shifted delta is a shift ⇒ Xδ(f ) =
∞∑

k=−∞

X (f − kfs)

Theorem
Spectrum of sampled signal is a sum of shifted versions of original spectrum

Xs(f ) = Xδ(f ) =
∞∑

k=−∞

X (f − kfs)
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Spectrum periodization

I We start with the spectrum X of x and the Dirac train in frequency

I Sampling to create xs ⇒ Multiplication with time Dirac train (Ts)

I Which in frequency domain entails convolution with Dirac train (fs)

I Which is equivalent to summing shifted copies of the spectrum X

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I FT X of continuous time signal x
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Spectrum periodization

I We start with the spectrum X of x and the Dirac train in frequency

I Sampling to create xs ⇒ Multiplication with time Dirac train (Ts)

I Which in frequency domain entails convolution with Dirac train (fs)

I Which is equivalent to summing shifted copies of the spectrum X

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I First convolution step is to duplicate and shift spectrum to kfs
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Spectrum periodization

I We start with the spectrum X of x and the Dirac train in frequency

I Sampling to create xs ⇒ Multiplication with time Dirac train (Ts)

I Which in frequency domain entails convolution with Dirac train (fs)

I Which is equivalent to summing shifted copies of the spectrum X

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Second convolution step is to sum all shifted copies
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Information loss

I When sampling x to xs we lose information at high frequencies

⇒ Everything that happens above fs/2 is lost

⇒ Freqs. close to fs/2 distorted by superposition with freqs. above fs/2

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I We say that the sampling process results in spectral aliasing

⇒ When fs is small, severe aliasing destroys all information

Signal and Information Processing Sampling 50



Increasing sampling time

I As we increase the sampling time, aliasing becomes less severe

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Aliasing eventually disappears ⇒ Approximately true in general

I But exactly true for bandlimited signals.

⇒ Signals with X (f ) = 0 for f /∈ [−W /2,W /2] (bandwidth W )
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-fs -fs/2 0 fs/2 fs 3fs/2 2fs f
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Increasing sampling time

I As we increase the sampling time, aliasing becomes less severe

-fs -fs/2 0 fs/2 fs 3fs/2 f

I Aliasing eventually disappears ⇒ Approximately true in general

I But exactly true for bandlimited signals.

⇒ Signals with X (f ) = 0 for f /∈ [−W /2,W /2] (bandwidth W )
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Sampling of bandlimited signals

I We have therefore proved the following theorem

Theorem
Let x be a signal of bandwidth W . If the signal is sampled at a frequency
fs ≥W we have that

Xδ(f ) = Xs(f ) = X (f )

for all frequencies f ∈ [−W /2,W /2]

I There is no loss of information ⇒ We can recover x from xδ

I Use low pass filter to remove all frequencies outside of [−W /2,W /2]
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Sampling of bandlimited signals

I Signal with bandwidth W ⇒ X (f ) = 0 for all f /∈ [−W /2,W /2]

I Upon sampling, spectrum is periodized but not aliased

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I This means that sampling entails no loss of information

⇒ Can low pass xs to recover x.
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Non-vanishing sampling time

I That there is no loss of information is quite surprising

I We are discarding part of the signal, indeed, most of the signal

t

x(t)

Ts

t

xs (n)

I It is reasonable to expect that we don’t lose information as Ts → 0

⇒ But we don’t have to let the sampling time vanish

I Any sampling time Ts ≤
1

W
yields fs ≥W and no information loss
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Sampling of non-bandlimited signals

I Information in frequency components larger than fs/2 is lost

⇒ Nothing we can do about that other than increasing fs

I Can’t capture variability faster than fs/2 with sampling time Ts

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I But aliasing is also distorting information in components below fs/2
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Prefiltering

I To avoid aliasing distortion we preprocess x with a low pass filter

I I.e., we transform x into signal xfs with spectrum Xfs = F(xfs )

Xfs (f ) = X (f )ufs (f ) ufs (f )
X Xfs = ufs (f )X (f )

I The signal xfs has bandwidth fs and can be sampled without aliasing

⇒ Frequency components below fs/2 are retained with no distortion

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f
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Prefiltering in time domain

I Prefiltering can be implemented as convolution in the time domain

xfs = x ∗ h

I where h is iFT of low pass filter X (f )ufs ⇒ h(t) = fssinc(πfst)

h(t) = fssinc(πfs t) Sample ⇒ Ts
x xfs = x ∗ h xs

I Convolution has to be implemented in continuous time (circuits)
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Low pass filter recovery

I Bandwidth W (X (f ) = 0 for all f /∈ [−W /2,W /2]). Sample at fs ≥W

I Can recover signal x from sampled signal xs with low pass filter

⇒ What does exactly mean that “we use a low pass filter”?

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I Can’t filter discrete time signal and have continuous time magically appear

t

xs (n)

t

xδ(t)

I But we can filter the continuous time Dirac sampled signal xδ(t)
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Ideal sampling – reconstruction system

I We sample by keeping observations at nTs ⇒ xs(n) = x(nTs)

t

x(t)

Sample ⇒ Ts
x xs

t

xs (n)

I To reconstruct we modulate Dirac train ⇒ xδ(t) = Ts

∞∑
n=−∞

xs(n)δ(t − nTs)

I And low pass filter Dirac train xδ ⇒ x = xδ ∗
[
fssinc(πfst)

]

t

xs (n)

t

xδ(t)

t

x(t)

Modulate Dirac train h(t) = fs sinc(πfs t)
xs xδ(t) x = xδ ∗ h
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Reconstruction with a pulse train

I Dirac train is an abstract representation ⇒ Can’t be generated

I Modulate train of (narrow) pulses

xp(t) = Ts

∞∑
n=−∞

xs(n)p(t − nTs)

I If pulse is sufficiently narrow ⇒ xp ≈ xδ

I E.g. p(t) =
1

T
sinc

(
π

t

T

)
with T � Ts -3T -T T 3T

1/T

t

p(t)

I Scale pulse by x(n), shift to t = nTs , sum all copies ⇒ convolution?

-2Ts -Ts Ts 2Ts

1/T

t

x(t)
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Dirac train representation of pulse train

I Pulse train modulation can be represented as convolution with xδ

xp = p ∗ xδ

I Indeed use definition of xδ and convolution linearity to write p ∗ xδ as

xp = p ∗
[
Ts

∞∑
n=−∞

xs(n)δ(t − nTs)

]
= Ts

∞∑
n=−∞

xs(n)
[
p ∗ δ(t − nTs)

]

I Convolving with shifted delta is a shift ⇒ xp(t) = Ts

∞∑
n=−∞

xs(n)p(t− nTs)

-2Ts -Ts Ts 2Ts

1/T

t

xp(t)
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Spectrum of modulated pulse train

I Convolution in time is equivalent to multiplication in frequency

I Then, the spectrum of Xp = F(xp) is the product of P = F(p) and Xδ

Xp(f ) = P(f )Xδ(f ) = P(f )
∞∑

k=−∞

X (f − kfs)

I Reconstructed signal xr obtained by low pass filtering. FT Xr = F(xr ) is

Xr (f ) = P(f )Xδ(f ) ufs (f ) = P(f ) ufs (f )
∞∑

k=−∞

X (f − kfs)

I Low pass filter eliminates all frequencies outside of [−fs/2, fs/2]

Xr (f ) = P(f ) ufs (f )X (f )

Modulate train ⇒ P(f ) Low pass⇒ ufs (f )
X (f )

P(f )
∞∑

k=−∞
X (f − kfs )

P(f ) ufs (f )X (f )
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More on the spectrum of sampling and recovery

I We start with a bandlimited signal that we sample at fs = W

I Spectrum is ⇒ X (f )

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I
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More on the spectrum of sampling and recovery

I The spectrum Xs of the sampled signal is periodization of X

⇒ Xs(f ) =
∞∑

k=−∞

X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I
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More on the spectrum of sampling and recovery

I To recover the signal we modulate a pulse train. Pulse FT is P(f )

⇒ Xp(f ) = P(f )×
∞∑

k=−∞

X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I
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More on the spectrum of sampling and recovery

I We finalize recovery with a low pass filter of bandwidth fs

⇒ Xr (f ) = ufs (f )P(f )X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Good pulse for recovery ⇒ X (f ) = 1 for f ∈ [−fs/2, fs/2]
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Modulation of a sinc train

I Do we know a pulse with X (f ) = 1 for f ∈ [−fs/2, fs/2] ?

⇒ We do! ⇒ The sinc pulse fssinc(πfst)

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)

I Reconstruction without a Dirac train ⇒ (mostly) implementable
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Modulation of a sinc train

I Do we know a pulse with X (f ) = 1 for f ∈ [−fs/2, fs/2] ?
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Modulation of a sinc train

I Do we know a pulse with X (f ) = 1 for f ∈ [−fs/2, fs/2] ?

⇒ We do! ⇒ The sinc pulse fssinc(πfst)

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)

I Reconstruction without a Dirac train ⇒ (mostly) implementable
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The DFT as a proxy for the FT

I We use the DFT for frequency analysis of continuous time signals

I Justifiable ⇒ They’re approximately equal for small Ts and large N

x

sample ⇒ Ts

xs

chop ⇒ [0,NTs ]

xD

FT

DTFT

DFT

X

chop ⇒ ±
fs

2

Xs

sample ⇒
fs

N

XD

I Sampling ⇒ Can understand what is lost in the approximation
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Sampling ⇒ From the FT to the DTFT

I Sampling in time ≡ periodization (not “chop”) in frequency

xs(n) = x(nTs) ⇐⇒ Xs(f ) =
∞∑

k=−∞

X (f − kfs)

I Replicate. Shift to recenter at f = kfs . Add all shifted copies

I If signal is bandlimited ⇒ Xs(f ) = X (f ) for all f ∈ [−fs/2, fs/2]

⇒ Spectra coincide perfectly ⇒ No approximation

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I In general, signals are not bandlimited and we expect some distortion
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Lost in approximation

I Signal is not bandlimited ⇒ freqs. above fs/2 not seen in DTFT

I Without prefiltering ⇒ aliasing distorts freqs. close to fs/2

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I With prefiltering ⇒ all freqs. below fs/2 approximated correctly

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Which means that we do use a low pass filter prior to sampling
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The DTFT as proxy for the FT (1 of 3)

I Filter ⇒ multiply in frequency by H ⇒ convolve in time with h

Xf = HX ⇐⇒ xf = x ∗ h

I Sample filtered signal Xf ⇒ Periodize filtered spectrum Xf

xs(n) = xf (nTs) ⇐⇒ Xs(f ) =
∞∑

k=−∞

Xf (f − kfs)

I Distortion (information loss) occurs during filtering step

⇒ Frequency ⇒ Loss above fs/2 + some distortion if H not perfect

⇒ Time ⇒ Convolution with h
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The DTFT as proxy for the FT (2 of 3)

I Continuous time signal x with FT X ⇒ Not necessarily bandlimited

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

x(t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

X (f )

I Continuous time filtered signal xf ⇒ filtering smoothes (distorts) x

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

xf (t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xf (f )

I Sampled signal xs obtained from filtered xf ⇒ No further distortion

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )
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The DTFT as proxy for the FT (3 of 3)

I Filtering (chop) induces convolution. Sampling induces periodization

x

conv. ⇒ x ∗ h

xf

sample ⇒ Ts

xs

FT

FT

DTFT

X

filter ⇒ HX

Xf

period ⇒ ± fs

Xs

I Small distortion ⇒ Make fs so that X (f ) ≈ 0 for f /∈ [−fs/2, fs/2]
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Windowing ⇒ From the DTFT to the DFT

I DTFT of sampled signal xs is ⇒ Xs(f ) = Ts

∞∑
n=−∞

x(n)e−j2πfnTs

I Windowed signal ⇒ Nullify signal values outside of interval [0,N − 1]

xw (n) = xs(n), for all n ∈ [0,N − 1]

I Windowed signal is xw (n) = 0 outside of window (all n /∈ [0,N − 1])

I DTFT of windowed signal xw is ⇒ Xs(f ) = Ts

N−1∑
n=0

x(n)e−j2πfnTs
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Spectrum after windowing

I Windowing equivalent to multiplication with square pulse

I More generically ⇒ define a window signal wN as one for which

wN(n) = 0 for all n /∈ [0,N − 1]

I Rewrite discrete time windowed signal as ⇒ xw (n) = x(n)× wN(n)

I Since multiplication in time is equivalent to convolution in frequency

Xw (f ) = Xs(f ) ∗WN(f )

I Multiplicative distortion given by DTFT of window function

I If xs is already finite ⇒ No distortion (dual of bandlimited)
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Frequency sampling

I DTFT of windowed signal xw is ⇒ Xs(f ) = Ts

N−1∑
n=0

x(n)e−j2πf nTs

I Reinterpret xw as discrete signal xD (null vs undefined outside [0,N − 1])

I Signal xD has a DFT (finite) ⇒ XD(f ) =
1√
N

N−1∑
n=0

xD(n)e−j2πkn/N

I Comparing expressions ⇒ Xs

(
k

N
fs

)
= Ts

√
N XD(k)

I Sample in time ≡ periodize in frequency ⇒ Dual property holds?

⇒ Yes. The iDFT is a periodic operation

⇒ We have xD(n + N) = xD(N) because e j2πk(n+N)/N = e j2πkn/N
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The DFT as proxy for the DTFT (1 of 2)

I Window (chop) induces convolution. Sampling induces periodization

xs

window ⇒ xwN

xw

periodize ⇒ N

xD

DTFT

DTFT

DFT

Xs

conv ⇒ X ∗W

Xw

sample ⇒ fs/N

XD

I Small distortion ⇒ Make N so that x(n) ≈ 0 for n /∈ [0,N − 1]
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The DFT as proxy for the DTFT (2 of 2)

I Discrete time signal xs with DTFT Xs ⇒ Not necessarily finite

-NTs NTs 2NTs
n

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )

I Discrete time windowed signal xw ⇒ windowing smoothes (distorts) Xs

-NTs NTs 2NTs
t

xw (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xw (f )

I Discrete DFT XD samples windowed DTFT Xw ⇒ No further distortion

-NTs NTs 2NTs
t

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

XD (f )
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