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Fourier transform and convolution

v

Fourier transform enables signal and information processing
= Patterns and properties easier to discern on frequency domain

v

Also enables analysis and deign of linear time invariant (LTI) systems

= Not altogether unrelated to pattern discernibility

v

Two properties of LTI systems
= Characterized by their (impulse) response to a delta input

= Responses to other inputs are convolutions with impulse response

v

Equivalent properties in the frequency domain
= Characterized by frequency response = F(impulse response)

= Output spectrum = input spectrum X frequency response
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> A system is characterized by an input (x(n)) output (y(n)) relation

» This relation is between functions, not values

» Each output value y(n) depends on all input values x(n)
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?Tﬁ TTT? ?TTTUTT? 9%””1’9 9TTTTTTT9
‘ ‘lllull‘ ‘lll n O ‘ S Oy

» We can, alternatively, consider continuous time systems. The same.
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Time invariant systems

> A system is time invariant if a delayed input yields a delayed output
» If input x(n) yields output y(n) then input x(n — k) yields y(n — k)
» Think of output when input is applied k time units later
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Linear systems

> In a linear system = input a linear combination of inputs

= Output the same linear combination of the respective outputs
> le., if input x1(n) yields output y;(n) and x2(n) yields y»(n)
= Input a1x1(n) + axxz2(n) yields output ayy1(n) + azy»(n)
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Linear time invariant systems

» Linear + time invariant system = linear time invariant system (LTI)

» Also called a LTI filter, or a linear filter, or simply a filter

» The impulse response is the output when input is a delta function
= Input is x(n) = §(n) (discrete time, 6(0) = 1)
= Output is y(n) = h(n) = impulse response

5(n) h(n)
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Scale and shifted impulse responses

> Since the system is time invariant (shift)

= Input 6(n — k) = Induces output response h(n — k)

» Since the system is linear (scale)
= input x(k)d(n — k) = Output x(k)h(n — k)

> Since the system is linear (sum)
= x(kl)é(n — k1) + X(kz)(S(n — k2) = X(kl)h(n — kl) + X(kz)h(l’l — kz)
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Scale and shifted impulse responses

> Since the system is time invariant (shift)
= Input 6(n — k) = Induces output response h(n — k)

» Since the system is linear (scale)
= input x(k)d(n — k) = Output x(k)h(n — k)

> Since the system is linear (sum)
= x(kl)é(n — k1) + X(kz)(S(n — k2) = X(kl)h(n — kl) + X(kz)h(l’l — kz)

5(n— k) h(n — k)
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Scale and shifted impulse responses

> Since the system is time invariant (shift)

= Input 6(n — k) = Induces output response h(n — k)

> Since the system is linear (scale)
= input x(k)d(n — k) = Output x(k)h(n — k)

> Since the system is linear (sum)
= x(kl)é(n — k1) + X(kz)(S(n — k2) = X(kl)h(n — kl) + X(kz)h(l’l — kz)

[x(k)zs(n — k)
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Scale and shifted impulse responses

> Since the system is time invariant (shift)
= Input 6(n — k) = Induces output response h(n — k)

> Since the system is linear (scale)
= input x(k)d(n — k) = Output x(k)h(n — k)

» Since the system is linear (sum)
= x(kl)é(n — k1) + X(kz)(S(n — k2) = X(kl)h(n — kl) + X(kz)h(l’l — kz)

6(n — k) System h(n — k)
x(kl)ﬁ(n — k1) =+ x(kz)é(n — kz) x(kl)h(n — k1) + X(kz)h(n — kz)
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Output of a linear time invariant system

v

Shift, Scale, and Sum = Is this a Convolution? = Of course
+oo
Can write any signal x as = x(n) = Z x(k)d(n — k)
k=—o00

Thus, output of LTI with impulse response h to input x is given by

v

v

+oo

y(n)= Y x(k)h(n—k)

k=—o00

v

The above sum is the convolution of x and h = y =xxh
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Output of a linear time invariant system

Theorem
A linear time invariant system is completely determined by its impulse
response h. In particular, the response to input x is the signal y = x * h.

» Innocent looking restrictions =- Linearity + time invariance

= Induce very strong structure (anything but innocent)

x(n) o (e ) = DA =)

» Can derive exact same result for continuous time systems
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Frequency response

» Frequency response = transform of impulse response = H = F(h)

Corollary

A linear time invariant system is completely determined by its frequency
response H. In particular, the response to input X is the signal Y = HX.

X(f) ) Y(F) = H(FX(F)

» Design in frequency = Implement in time

=- Have done this already, but now we know its true for any LTI
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Causality

v

A causal filter is one with h(n) = 0 for all negative n < 0

= Otherwise, we would respond to spike before seeing spike

+oo n
> In general = y(n) = Z x(k)h(n— k) = Z x(k)h(n — k)
k=—o0 k=—o0
» The value y(n) is only affected by past inputs x(k), with k <n

v

If filter is not causal but h(n) =0 for all n < N
= Make it causal with a delay = h(n) = h(n — N)

» Frequency response of delayed filter = H(f) = H(f)
= Qualitatively the same filter
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Finite impulse response

v

A causal finite impulse response filter (FIR) is one for which

h(n) =0 foralln> N

v

We say the filter is of length N; only N values in h(n) are not null
» Can write output at time n as

y(n) = h(0)x(n) + h(1)x(n—1)+ ... (N — 1)x(n — N+ 1)

v

Running input vector xy(n) = [x(n); x(n—1);...;x(n— N+ 1)]

v

FIR filter vector response h = [h(0), h(1),..., h(N — 1)]

v

Can then write output at time nas = y(n) = h'xy
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Finite impulse response filter design

Linear time invariant systems

Finite impulse response filter design
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Filter design and implementation

» We want to utilize a LTI system to process discrete time signal x(n)

= E.g., to smooth out the signal x(n) shown below

x(n) y(n)

h(n) & H(f) —o 5

x(n) y(n)
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» All LTls are completely determined by their impulse responses h

= Design h and implement filter as time convolution = y = x % h

» All LTls are completely determined by their frequency responses h

= Design H and implement filter as spectral product = Y = HX

Signal and Information Processing Sampling 18



Frequency design and time implementation

» Time and frequency representations are equivalent

x(n) ————— h(n) > y(n) = (x* h)(n)
F F! F F! ]-‘< F
X(f) —————> H(f) ——— Y(f) = H(f)X(f)

> Identify pattern transformation in frequency domain = Design H
» Use inverse DTFT to compute impulse response = h = F 1(H)
> Implement convolution in time = y(n) = (x * h)(n)
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Causality and infinite response

» Impulse response h = F~1(H) is typically not causal and infinite
= E.g., Low pass filter with cutoff freq. W /2 = H(f) = Ny(f)

fi/2 _
h(n) = / H(f)e”*™™Ts df = Wsinc(mWnT,)
—£/2

—W/2 w2 f

» Multiply by window (chop) for finite response with N nonzero coeffs.

» Delay h(n) to obtain a causal filter with h(n) =0 for n <0
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FIR filter design

hy (n)
» Transform h(n) into finite impulse response . %
?

hw(n) = h(n)w(n)

» Window w(n) =0 for n & [Nmin, Nmax]
» Filter length N = Nyax — Nipin + 1

» Transform h,(n) into causal response

hw(n) — hW(n— Nmin)

» Choose borders Npin, and Npyax to retain
highest values of h(n)

» Often, around n = 0. But not always
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Spectral effects of windowing and delaying

v

Multiplication in time domain =- Convolution in frequency domain
As a result, instead of filtering with H(f), we filter with

v

H, = H* W

v

Choose windows with spectrum W = F(w) close to delta function

v

Time delay = Multiplication with complex exponential in frequency

Hy(f) = H,(f)e/>MminTs

v

Irrelevant, as it should, we just shifted the response
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FIR filter design methodology

» Procedure to design time coefficients of a FIR filter

Spectral analysis to determine filter frequency response H(f)

Inverse DFT to determine impulse response h(n)

(1)
(2)
(3) Determine nr. of coefficients N and coefficient range [Nmin, Nimax]
(4) Select window w(n) = Alters spectrum to H,, = H * W

(5)

Shift impulse response by N, time steps to make filter causal

» How to we use FIR filter coefficients h(n) to implement the filter?
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FIR implementation

» The output y(n) of the FIR filter is given by the convolution value
y(n) =Y x(k)h(n - k)
k=—o0
» Since h is finite and causal, only N nonzero terms. Make k =n— |/
n N—-1
y(my= > x(kh(n—k)="D_ h(l)x(n—1)
k=n—(N—1) =0

v

Easier to visualize when written in expanded form

y(n) = h(0)x(n)+h(1)x(n—1)+...+ h(N—-1)x(n— N +1)

v

The expression above can be implemented with a shift register
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Shift registers

» Upon arrival of signal value x(n) we compute output value y(n) by
= Delay (shift) units to shift elements of signal x
= Product (scale) units to multiply with filter coefficients x(n)
= Sum units to aggregate the products h(k)x(n — k)

Ei‘ EZ‘ Ez) Eﬂ A(N—1)

h(0)x(n) h(1)x(n — 1) h(2)x(n — 2) h(3)x(n — 3) h(N)x(n—N+1)

» Shift register can be implemented in hardware (or software)
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Voice recognition = Spectral design

» For a given word to be recognized we compare the spectra X and X
= X = Average spectrum magnitude of word to be recognized
= X = Recorded spectrum during execution time

Average spectrum of spoken word “one”

0.5 T T T T T

| | | |
0
-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6

frequency (KHz)

» Made coparison with inner product = X7X
» Equivalent to using X to filter X = Y/(f) = H(f)X(f) with H(f) = X
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Voice recognition = Filter design

(2) Impulse response h(n) = Inverse DFT of X

(4) Window to keep N = 1,000 largest consecutive taps
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