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Fourier transform and convolution

I Fourier transform enables signal and information processing

⇒ Patterns and properties easier to discern on frequency domain

I Also enables analysis and deign of linear time invariant (LTI) systems

⇒ Not altogether unrelated to pattern discernibility

I Two properties of LTI systems

⇒ Characterized by their (impulse) response to a delta input

⇒ Responses to other inputs are convolutions with impulse response

I Equivalent properties in the frequency domain

⇒ Characterized by frequency response = F(impulse response)

⇒ Output spectrum = input spectrum × frequency response
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Systems

I A system is characterized by an input (x(n)) output (y(n)) relation

I This relation is between functions, not values

I Each output value y(n) depends on all input values x(n)
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I We can, alternatively, consider continuous time systems. The same.

Signal and Information Processing Sampling 4



Time invariant systems

I A system is time invariant if a delayed input yields a delayed output

I If input x(n) yields output y(n) then input x(n − k) yields y(n − k)

I Think of output when input is applied k time units later
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Linear systems

I In a linear system ⇒ input a linear combination of inputs

⇒ Output the same linear combination of the respective outputs

I I.e., if input x1(n) yields output y1(n) and x2(n) yields y2(n)

⇒ Input a1x1(n) + a2x2(n) yields output a1y1(n) + a2y2(n)

a1x1(n) + a2x2(n)
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Linear time invariant systems

I Linear + time invariant system = linear time invariant system (LTI)

I Also called a LTI filter, or a linear filter, or simply a filter

I The impulse response is the output when input is a delta function

⇒ Input is x(n) = δ(n) (discrete time, δ(0) = 1)

⇒ Output is y(n) = h(n) = impulse response

δ(n)
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Scale and shifted impulse responses

I Since the system is time invariant (shift)

⇒ Input δ(n − k) ⇒ Induces output response h(n − k)

I Since the system is linear (scale)

⇒ input x(k)δ(n − k) ⇒ Output x(k)h(n − k)

I Since the system is linear (sum)

⇒ x(k1)δ(n − k1) + x(k2)δ(n − k2) ⇒ x(k1)h(n − k1) + x(k2)h(n − k2)

δ(n)
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Signal and Information Processing Sampling 8



Scale and shifted impulse responses

I Since the system is time invariant (shift)

⇒ Input δ(n − k) ⇒ Induces output response h(n − k)

I Since the system is linear (scale)

⇒ input x(k)δ(n − k) ⇒ Output x(k)h(n − k)

I Since the system is linear (sum)

⇒ x(k1)δ(n − k1) + x(k2)δ(n − k2) ⇒ x(k1)h(n − k1) + x(k2)h(n − k2)

δ(n − k)
System

h(n − k)

n

δ(n − k)

n

h(n − k)

Signal and Information Processing Sampling 9



Scale and shifted impulse responses

I Since the system is time invariant (shift)

⇒ Input δ(n − k) ⇒ Induces output response h(n − k)

I Since the system is linear (scale)

⇒ input x(k)δ(n − k) ⇒ Output x(k)h(n − k)

I Since the system is linear (sum)

⇒ x(k1)δ(n − k1) + x(k2)δ(n − k2) ⇒ x(k1)h(n − k1) + x(k2)h(n − k2)

δ(n − k)
System

h(n − k)

n

x(k)δ(n − k)

n

x(k)h(n − k)

Signal and Information Processing Sampling 10



Scale and shifted impulse responses
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Output of a linear time invariant system

I Shift, Scale, and Sum ⇒ Is this a Convolution? ⇒ Of course

I Can write any signal x as ⇒ x(n) =
+∞∑

k=−∞

x(k)δ(n − k)

I Thus, output of LTI with impulse response h to input x is given by

y(n) =
+∞∑

k=−∞

x(k)h(n − k)

I The above sum is the convolution of x and h ⇒ y = x ∗ h
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Output of a linear time invariant system

Theorem
A linear time invariant system is completely determined by its impulse
response h. In particular, the response to input x is the signal y = x ∗ h.

I Innocent looking restrictions ⇒ Linearity + time invariance

⇒ Induce very strong structure (anything but innocent)

x(n)
h(n)

(x ∗ h)(n) =
∞∑
−∞

x(k)h(t − k)

I Can derive exact same result for continuous time systems
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Frequency response

I Frequency response = transform of impulse response ⇒ H = F(h)

Corollary

A linear time invariant system is completely determined by its frequency
response H. In particular, the response to input X is the signal Y = HX .

X (f )
H(f )

Y (f ) = H(f )X (f )

I Design in frequency ⇒ Implement in time

⇒ Have done this already, but now we know its true for any LTI
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Causality

I A causal filter is one with h(n) = 0 for all negative n < 0

⇒ Otherwise, we would respond to spike before seeing spike

I In general ⇒ y(n) =
+∞∑

k=−∞

x(k)h(n − k) =
n∑

k=−∞

x(k)h(n − k)

I The value y(n) is only affected by past inputs x(k), with k ≤ n

I If filter is not causal but h(n) = 0 for all n < N

⇒ Make it causal with a delay ⇒ h̃(n) = h(n − N)

I Frequency response of delayed filter ⇒ H̃(f ) = H(f )e j2πfN

⇒ Qualitatively the same filter
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Finite impulse response

I A causal finite impulse response filter (FIR) is one for which

h(n) = 0 for all n ≥ N

I We say the filter is of length N; only N values in h(n) are not null

I Can write output at time n as

y(n) = h(0)x(n) + h(1)x(n − 1) + . . . h(N − 1)x(n − N + 1)

I Running input vector xN(n) = [x(n); x(n − 1); . . . ; x(n − N + 1)]

I FIR filter vector response h = [h(0), h(1), . . . , h(N − 1)]

I Can then write output at time n as ⇒ y(n) = hTxN
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Finite impulse response filter design
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Filter design and implementation

I We want to utilize a LTI system to process discrete time signal x(n)

⇒ E.g., to smooth out the signal x(n) shown below

x(n)
h(n) ⇔ H(f )

y(n)

n

x(n)

n

y(n)

I All LTIs are completely determined by their impulse responses h

⇒ Design h and implement filter as time convolution ⇒ y = x ∗ h

I All LTIs are completely determined by their frequency responses h

⇒ Design H and implement filter as spectral product ⇒ Y = HX
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Frequency design and time implementation

I Time and frequency representations are equivalent

x(n) h(n) y(n) = (x ∗ h)(n)

X (f ) H(f ) Y (f ) = H(f )X (f )

F F−1 F F−1 F F−1

I Identify pattern transformation in frequency domain ⇒ Design H

I Use inverse DTFT to compute impulse response ⇒ h = F−1(H)

I Implement convolution in time ⇒ y(n) = (x ∗ h)(n)
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Causality and infinite response

I Impulse response h = F−1(H) is typically not causal and infinite

⇒ E.g., Low pass filter with cutoff freq. W /2 ⇒ H(f ) = uW (f )

h(n) =

∫ fs/2

−fs/2
H(f )e j2πfnTs df = W sinc(πWnTs)

f

H(f ) = uF (f )
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W

F

t

h(n)

I Multiply by window (chop) for finite response with N nonzero coeffs.

I Delay h(n) to obtain a causal filter with h(n) = 0 for n ≤ 0
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FIR filter design

I Transform h(n) into finite impulse response

hw (n) = h(n)w(n)

I Window w(n) = 0 for n /∈ [Nmin,Nmax]

I Filter length N = Nmax − Nmin + 1

I Transform hw (n) into causal response

hw (n) =⇒ hw (n − Nmin)

I Choose borders Nmin and Nmax to retain
highest values of h(n)

I Often, around n = 0. But not always
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Spectral effects of windowing and delaying

I Multiplication in time domain ⇒ Convolution in frequency domain

I As a result, instead of filtering with H(f ), we filter with

Hw = H ∗W

I Choose windows with spectrum W = F(w) close to delta function

I Time delay ⇒ Multiplication with complex exponential in frequency

Hw (f ) =⇒ Hw (f )e j2πfNminTs

I Irrelevant, as it should, we just shifted the response
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FIR filter design methodology

I Procedure to design time coefficients of a FIR filter

(1) Spectral analysis to determine filter frequency response H(f )

(2) Inverse DFT (not DTFT) to determine impulse response h(n)

(3) Determine nr. of coefficients N and coefficient range [Nmin,Nmax]

(4) Select window w(n) ⇒ Alters spectrum to Hw = H ∗W

(5) Shift impulse response by Nmin time steps to make filter causal

I How to we use FIR filter coefficients h(n) to implement the filter?
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FIR implementation

I The output y(n) of the FIR filter is given by the convolution value

y(n) =
∞∑

k=−∞

x(k)h(n − k)

I Since h is finite and causal, only N nonzero terms. Make k = n − l

y(n) =
n∑

k=n−(N−1)

x(k)h(n − k)=
N−1∑
l=0

h(l)x(n − l)

I Easier to visualize when written in expanded form

y(n) = h(0) x(n) + h(1) x(n − 1) + . . .+ h(N − 1) x(n − N + 1)

I The expression above can be implemented with a shift register
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Shift registers

I Upon arrival of signal value x(n) we compute output value y(n) by

⇒ Delay (shift) units to shift elements of signal x

⇒ Product (scale) units to multiply with filter coefficients x(n)

⇒ Sum units to aggregate the products h(k)x(n − k)

x(n)
Ts

x(n−1)
Ts

x(n − 2)
Ts

x(n − 3)
Ts

x(n−N+1)

h(0)

h(0)x(n)

h(1)

h(1)x(n − 1)

h(2)

h(2)x(n − 2)

h(3)

h(3)x(n − 3)

h(N−1)

h(N)x(n−N+1)

I Shift register can be implemented in hardware (or software)
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Voice recognition ⇒ Spectral design

I For a given word to be recognized we compare the spectra X̄ and X

⇒ X̄ ⇒ Average spectrum magnitude of word to be recognized

⇒ X ⇒ Recorded spectrum during execution time
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I Made coparison with inner product ⇒ XT X̄

I Equivalent to using X̄ to filter X ⇒ Y (f ) = H(f )X (f ) with H(f ) = X̄
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Voice recognition ⇒ Filter design

(2) Impulse response h(n) ⇒ Inverse DFT of X̄

(4) Window to keep N = 1, 000 largest consecutive taps
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