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Continuous time, discrete time, discrete signals

I We have studied continuous time, discrete time, and discrete signals

I Complex exponentials (CE), discrete time CE, and discrete CE

I And also the Fourier transform (FT), the DTFT, and the DFT

I For which we respectively studied the iFT, iDTFT and the iDFT

I Different versions of related concepts

⇒ Let’s take time to summarize

⇒ And to emphasize analogies and differences
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Signals

I Continuous time (CT) t ∈ R ⇒ Continuous time signals

x : R→ C

I Discrete time (DT) n ∈ Z ⇒ Discrete time signals

x : Z→ C

I Discrete and finite n ∈ [0,N − 1] ⇒ Discrete signals

x : [0,N − 1]→ C

I From discrete signals we go to ...

... infinity ⇒ discrete time signals (extend borders)

... and beyond ⇒ continuos time signal (fill in spaces, dense)
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Inner products and energy

I Inner product in continuous time ⇒ 〈x , y〉 :=

∫ ∞
−∞

x(t)y∗(t)dt

I Inner product in discrete time ⇒ 〈x , y〉 :=
∞∑

n=−∞
x(n)y∗(n)

I Inner product of discrete signals ⇒ 〈x , y〉 :=
N−1∑
n=0

x(n)y∗(n)

I How much signals x and y are like each other

I Unrelated signals = orthogonality ⇒ 〈x , y〉 = 0

I Energy, same definition works for all ⇒ ‖x‖2 = 〈x , x〉

I Inner product may not exist and energy may be infinite (CT and DT)
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Continuous time complex exponentials

I Continuous time complex exponential ef ⇒ ef (t) = e j2πft

⇒ Signal is dense and extend to plus and minus infinity

−0.4 −0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
(
e j2πft

)
, Im

(
e j2πft

)
,

I Frequency f = 2Hz shown. Time t in seconds
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Discrete time complex exponentials

I Discrete time complex exponential efTs ⇒ efTs (n) = e j2πfnTs

⇒ Sample continuous time CE with sampling frequency fs = 1/Ts

⇒ Signal extend to plus and minus infinity but is not dense

−0.4 −0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
(
e j2πfnTs

)
, Im

(
e j2πfnTs

)

I Frequency f = 2Hz. Sampling freq. fs = 64Hz. Time t in seconds.
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Discrete complex exponentials

I Discrete complex exponential ⇒
√
NekN(n) = e j2πkn/N = e j2πfnTs

⇒ Discrete time CE observed during N samples = NTs time units

⇒ Defined for frequencies of the form f = (k/N)fs only

⇒ Exactly k oscillations during observation period N ⇔ T

−0.4 −0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
(
e j2πfnTs

)
, Im

(
e j2πfnTs

)

I Frequency f = 2Hz. Sampling freq. fs = 64Hz. Time t in seconds

I Observation time T = 1s ⇒ number samples N = Tfs = 64.

I Discrete frequency k = N(f /fs) = 2
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Orthogonality of complex exponentials

I Discrete complex exponentials are a set of N orthonormal signals

〈ekN , elN〉 = δ(k − l)

I We restrict k and l to interval of length N. E.g., [−N/2 + 1,N/2]

I CE with freqs. N apart are equivalent. Opposites are conjugates

I Discrete time complex exponentials are (sort of) orthogonal

〈efTs , egTs 〉 = δ(f − g)

I Continuous time delta ⇒ Involves a limit. Generalized function

I Same is true in continuous time ⇒ 〈ef , eg 〉 = δ(f − g)
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Fourier transforms

I Fourier transform (FT) of continuous time signal x is the function

X (f ) :=

∫ ∞
−∞

x(t)e−j2πf t dt

I The discrete time (DT)FT of discrete time signal x is the function

X (f ) := Ts

∞∑
n=−∞

x(n)e−j2πf nTs

I The discrete (D)FT of discrete signal x is the function

X (k) :=
1√
N

N−1∑
n=0

x(n)e−j2πkn/N =
1√
N

N−1∑
n=0

x(n)e−j2πf nTs

I Discrete frequency k equivalent to real f = k/NTs = kfs/N

I DFT is undefined for frequencies that are not f = kfs/N for some k
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Fourier transforms as inner products

I Recall definitions of inner products and complex exponentials

I Write the FT of x as ⇒ X (f ) = 〈x , ef 〉 =

∫ ∞
−∞

x(t)e∗f (t) dt

I Write DTFT of x as ⇒ X (f ) = 〈x , ef Ts 〉 = Ts

∞∑
n=−∞

x(n)e∗fTs
(n)

I Write the DFT of x as ⇒ X (k) = 〈x , ekN〉 =
N−1∑
n=0

x(n)e∗kN(n)

I All three transforms written as inner products in respective spaces

Signal and Information Processing Signal and information processing in time 12



Different formalizations of the same concept

I Inner products with frequency f (f = kfs/N) complex exponentials

I It follows that they are different formalizations of the same concept

⇒ They are projections of x onto oscillations of frequency f

⇒ They measure how much x resembles oscillation of frequency f

I Integrals, indefinite sums, sums ⇒ Inherent differences in signals

I FT and DTFT are analysis tools. DFT is a computational tool

Signal and Information Processing Signal and information processing in time 13



Input and output spaces

I Input and output spaces for FTs are continuous

I For DTFTs, discrete inputs, continuous and periodic outputs (odd)

I For DFTs, input and outputs are discrete and periodic or finite

Input space Output space

Fourier transform Continuous

Continuous

DTFT Discrete Periodic

Continuous

DFT Discrete Periodic

Periodic Discrete

I Observe the duality between sampling and periodicity or finiteness
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The DTFT as proxy for the FT (1 of 3)

I Filter ⇒ multiply in frequency by H ⇒ convolve in time with h

Xf = HX ⇐⇒ xf = x ∗ h

I Sample filtered signal Xf ⇒ Periodize filtered spectrum Xf

xs(n) = xf (nTs) ⇐⇒ Xs(f ) =
∞∑

k=−∞

Xf (f − kfs)

I Distortion (information loss) occurs during filtering step

⇒ Frequency ⇒ Loss above fs/2 + some distortion if H not perfect

⇒ Time ⇒ Convolution with h
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The DTFT as proxy for the FT (2 of 3)

I Filtering (chop) induces convolution. Sampling induces periodization

x

conv. ⇒ x ∗ h

xf

sample ⇒ Ts

xs

FT

FT

DTFT

X

filter ⇒ HX

Xf

period ⇒ ± fs

Xs

I Small distortion ⇒ Make fs so that X (f ) ≈ 0 for f /∈ [−fs/2, fs/2]
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The DTFT as proxy for the FT (3 of 3)

I Continuous time signal x with FT X ⇒ Not necessarily bandlimited

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

x(t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

X (f )

I Continuous time filtered signal xf ⇒ filtering smoothes (distorts) x

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

xf (t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xf (f )

I Sampled signal xs obtained from filtered xf ⇒ No further distortion

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )
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The DFT as proxy for the DTFT (1 of 3)

I Filter ⇒ multiply by window wN ⇒ convolve in frequency with WN

xw (n) = x(n)× wN(n) ⇐⇒ Xw (f ) = Xs(f ) ∗WN(f )

I Sample windowed spectrum Xw ⇒ Periodize windowed signal xw

xd(n) =
∞∑

k=−∞

xw (n − kN) ⇐⇒ Xd

(
kfs
N

)
= Ts

√
N Xw (k)

I Distortion (information loss) occurs during windowing step

⇒ Frequency sampling is with no loss of information
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The DFT as proxy for the DTFT (2 of 3)

I Window (chop) induces convolution. Sampling induces periodization

xs

window ⇒ xwN

xw

periodize ⇒ N

xd

DTFT

DTFT

DFT

Xs

conv ⇒ X ∗W

Xw

sample ⇒ fs/N

Xd

I Small distortion ⇒ Make N so that x(n) ≈ 0 for n /∈ [0,N − 1]
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The DFT as proxy for the DTFT (3 of 3)

I Discrete time signal xs with DTFT Xs ⇒ Not necessarily finite

-NTs NTs 2NTs
n

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )

I Discrete time windowed signal xw ⇒ windowing smoothes (distorts) Xs

-NTs NTs 2NTs
t

xw (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xw (f )

I Discrete DFT XD samples windowed DTFT Xw ⇒ No further distortion

-NTs NTs 2NTs
t

xd (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xd (f )
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Bandlimited and finite (periodic) signals

I If signal is bandlimited and sampled at frequency fs ≥W

⇒ The DTFT and the FT coincide in the interval [−fs/2, fs/2]

I If signal is finite, and windowed with N larger than its length

⇒ DFT and DTFT coincide at the sampled frequencies f = kfs/N

I What happens when signal is bandlimited and finite?

⇒ Doesn’t matter. These signals don’t exist. Uncertainty principle
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Inverse Fourier transforms

I Given a transform X , the inverse Fourier transform is defined as

x(t) :=

∫ ∞
−∞

X (f )e j2πf t df

I The iDTFT x of DTFT X , is the discrete time signal with elements

x(n) =

∫ fs/2

−fs/2

X (f )e j2πf nTs df =

∫ fs

0

X (f )e j2πf nTs df

I Given a Fourier transform X , the inverse (i)DFT is defined as

x(n) :=
1√
N

N−1∑
k=0

X (k)e j2πkn/N =
1√
N

N/2∑
k=−N/2+1

X (k)e j2πkn/N

I Same as direct transform but for sign in the exponent ⇒ duality
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The inverses are inverses indeed

Theorem
The inverse FT (or inverse DTFT or inverse DFT) x̃ of the FT
(respectively, DTFT or DFT) X of a given signal x is the given signal x

x̃ = F−1(X ) = F−1[F(x)] = x

I We can recover signal from transform ⇒ equivalent representation

⇒ Neither less, nor more information. Just different interpretability

I Implies that we can write signal as a sum of complex exponentials

⇒ Literally for iDFT, conceptually for iDTFT and iFT
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Inverse DFT as sum of complex exponentials

I Signal as sum of exponentials ⇒ x(n) =
1√
N

N/2∑
k=−N/2+1

X (k)e j2πkn/N

I Expand the sum inside out from k = 0 to k = ±1, to k = ±2, . . .

x(n) = X (0) e j2π0n/N constant

+ X (1) e j2π1n/N + X (−1) e−j2π1n/N single oscillation

+ X (2) e j2π2n/N + X (−2) e−j2π2n/N double oscillation

...
...

...
...

...

+ X

(
N

2
− 1

)
e j2π( N

2
−1)n/N + X

(
−
N

2
+ 1

)
e−j2π( N

2
−1)n/N

(
N

2
− 1

)
– oscillation

+ X

(
N

2

)
e j2π( N

2 )n/N N

2
– oscillation

I Start with slow variations and progress on to add faster variations
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Linearity and conjugate symmetry

Theorem
The FT, DTFT, and DFT of linear combinations of signals are linear
combinations of the respective transforms of the individual signals,

F(ax + by) = aF(x) + bF(y).

I Useful to compute transforms when considering sums of signals

Theorem
The FT, DTFT, and DFT X = F(x) of a real signal x (one with
Im(x) ≡ 0) are conjugate symmetric

X (−f ) = X ∗(f )

I Only the positive half of the spectrum carries information
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Energy conservation (Parseval’s Theorem)

Theorem (Parseval)

The energy of a signal x and its FT, DTFT, or DFT X = F(x) are the
same, i.e., ∥∥x∥∥2

=
∥∥X∥∥2

I Energy definitions are different for different signal spaces

I For the FT ⇒
∫ ∞
−∞

∣∣x(t)
∣∣2dt =

∥∥x∥∥2
=
∥∥X∥∥2

=

∫ ∞
−∞

∣∣X (f )
∣∣2df

I For the DTFT ⇒
∞∑

n=−∞

∣∣x(n)
∣∣2 =

∥∥x∥∥2
=
∥∥X∥∥2

=

∫ fs/2

−fs/2

∣∣X (f )
∣∣2df

I For the DFT ⇒
N−1∑
n=0

∣∣x(n)
∣∣2 =

∥∥x∥∥2
=
∥∥X∥∥2

=

N/2∑
k=−N/2+1

∣∣X (k)
∣∣2
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Shift and modulation

Theorem
A time shift of τ units in the time domain is equivalent to multiplication
by a complex exponential of frequency −τ in the frequency domain

xτ = x(t − τ) ⇐⇒ Xτ (f ) = e−j2πf τX (f )

Theorem
A multiplication by a complex exponential of frequency g in the time
domain is equivalent to a shift of g units in the frequency domain

xg = e j2πgtx(t) ⇐⇒ Xg (f ) = X (f − g)

I Theorems are duals of each other. True for FT and DTFT

I For DFT we need to define circular shifts. Not covered in this course
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Convolutions in continuous and discrete time

I Let x and h be continuous time signals

I Convolution of x with h is the signal y = x ∗ h with values

[x ∗ h](t) = y(t) =

∫ ∞
−∞

x(u)h(t − u) du

I Let x and h be discrete time signals

I Convolution of x with h is the signal y = x ∗ h with values

[x ∗ h](n) = y(n) =
∞∑

k=−∞

x(k)h(n − k)
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Multiplication and convolution

I Convolution in time domain ≡ to multiplication in frequency domain

Theorem (Convolution theorem)

Given signals x and y with transforms X = F(x) and Y = F(y). The
FT Z = F(z) of the convolved signal z = x ∗ y is the product Z = XY

z = x ∗ y ⇐⇒ Z = XY

I True for FT and DTFT. For DFT need to define circular convolution

I The dual is also true

I Convolution in frequency domain ≡ to multiplication in time domain
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Sampling

I The sampled signal xs is a discrete time signal with values

xs(n) = x(nTs)

I Creates discrete time signal xs from continuous time signal x

I Equivalently, we represent sampling as multiplication by a Dirac train

xδ(t) = x(t)× Ts

∞∑
n=−∞

δ(t − nTs)

I Dirac train lives in continuous time. Compare FT of xδ to FT of x

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t -4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts

t
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Spectral effect of sampling

I Multiplication ⇔ Convolution . Thus spectrum Xδ = F(xδ) is

Xδ = X ∗ F
[
Ts

∞∑
n=−∞

δ(t − nTs)

]
I Fourier transform of the Dirac train (Ts) is another Dirac train (fs)

Xδ = X ∗ Ts

∞∑
n=−∞

δ(f − kfs) =
∞∑

n=−∞
X ∗ δ(f − kfs)

Theorem
Sampled signal spectrum is a sum of shifted versions of original spectrum

Xs(f ) = Xδ(f ) =
∞∑

k=−∞

X (f − kfs)

I We say the spectrum of X is periodized when the signal is sampled
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Spectrum periodization

I Start with the spectrum X of x and the Dirac train in frequency

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I First convolution step is to duplicate and shift spectrum to kfs

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I Second convolution step is to sum all shifted copies

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Loose all info. above fs/2. And some below to aliasing distortion
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Sampling of bandlimited signals

I Signal with bandwidth W ⇒ X (f ) = 0 for all f /∈ [−W /2,W /2]

I Upon sampling, spectrum is periodized but not aliased

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I This means that sampling entails no loss of information
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Prefiltering

I To avoid aliasing preprocess x into xfs with a low pass filter

Xfs (f ) = X (f )ufs (f )

I The signal xfs has bandwidth fs and can be sampled without aliasing

⇒ Frequency components below fs/2 retained with no distortion

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Prefiltering can be implemented as convolution in the time domain

xfs = x ∗ h, h(t) = fssinc(πfst)

I iFT of low pass filter with cutoff fs/2 is the sinc pulse with freq. fs
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Reconstruction

I In principle, we can recover x from xδ with a low pass filter

I Since Dirac train can’t be generated, we modulate train of pulses

xp(t) = Ts

∞∑
n=−∞

xs(n)p(t − nTs)

I For narrow pulses, pulse and Dirac modulation are close, i.e, xp ≈ xδ

-2Ts -Ts Ts 2Ts

1/T

t

x(t)
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The spectrum of the reconstructed signal

I Spectrum Xs of sampled signal ⇒ Xs(f ) =
∞∑

k=−∞

X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Spectrum Xp of pulse train ⇒ Xp(f ) = P(f )×
∞∑

k=−∞

X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Reconstructed spectrum Xr ⇒ Xr (f ) = ufs (f )P(f )X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Good pulse for recovery ⇒ X (f ) = 1 for f ∈ [−fs/2, fs/2]
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Modulation of a sinc train

I The sinc pulse fssinc(πfst) has a flat spectrum for f ∈ [−fs/2, fs/2]

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(πfst) has a flat spectrum for f ∈ [−fs/2, fs/2]

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(πfst) has a flat spectrum for f ∈ [−fs/2, fs/2]

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(πfst) has a flat spectrum for f ∈ [−fs/2, fs/2]

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Philosophical digression

I Sampling is a straightforward operation, but its effects are obscure

⇒ Or not. If we look at the signal in frequency effects are also clear

I Loss of information contained at frequencies f > fs/2

I Aliasing distortion for frequencies f ≤ fs/2

I Perfect recovery of bandlimited signals

I Avoid aliasing with prefiltering

I Reconstruction distortion when modulating a train of pulses

I If we had a sixth sense for frequencies, all of this would be obvious

⇒ But we do have that sense, or rather have grown that sense
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Time invariant systems

I Systems are characterized by input-output (x → y) relationships

I A system is time invariant if a delayed input yields a delayed output

I If input x(n) yields output y(n) then input x(n − k) yields y(n − k)

x(n − k)
System

y(n − k)

n

x(n)

n

y(n)

n

x(n − k)

n

y(n − k)
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Linear systems

I In a linear system ⇒ input a linear combination of inputs

⇒ Output the same linear combination of the respective outputs

I I.e., if input x1(n) yields output y1(n) and x2(n) yields y2(n)

⇒ Input a1x1(n) + a2x2(n) yields output a1y1(n) + a2y2(n)

a1x1(n) + a2x2(n)
System

a1y1(n) + a2y2(n)

n

x1(n)

n

y1(n)

n

x2(n)

n

y2(n)

n

a1x1(n) + a2x2(n)

n

a1y1(n) + a2y2(n)
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Output of a linear time invariant system

I linear time invariant system (LTI) ⇒ Linear + time invariant

Theorem
A linear time invariant system is completely determined by its impulse
response h. In particular, the response to input x is the signal y = x ∗ h.

x(n)
h(n)

(x ∗ h)(n) =
∞∑
−∞

x(k)h(t − k)

I Theorem true for discrete time and continuous time signals

⇒ Convolutions are defined differently

I For discrete signals we need to use circular convolutions
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Linear time invariant system frequency response

I Frequency response ⇒ impulse response transform ⇒ H = F(h)

Corollary

A linear time invariant system is completely determined by its frequency
response H. In particular, the response to input X is the signal Y = HX .

X (f )
H(f )

Y (f ) = H(f )X (f )

I What a LTI system does to a signal is obscure

⇒ Or not. If we look at the signal in frequency the effects are clear

I If we had a sixth sense for frequencies. Oh wait, we do

I It is obvious what LTI filters do ⇒ They alter frequency components

I But they don’t mix frequency components. Each of them is separate
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Applications
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Applications

I Practical applications of frequency analysis are very common

I Here are a few applications that we have covered

⇒ Noise removal,

⇒ Music synthesis,

⇒ Compression,

⇒ Modulation,

⇒ Signal detection (voice recognition)

I There are many more we have not covered

⇒ E.g., equalization, high-pass filtering, band-pass filtering

I In all of these applications understanding time is complicated

⇒ But understanding frequency is straightforward
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Noise removal

I There is signal and noise, but what is signal and what is noise?

I We already know answer ⇒ Signal discernible in frequency domain
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Original signal x(t). It moves randomly, but not that much

I
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Noise removal

I There is signal and noise, but what is signal and what is noise?

I We already know answer ⇒ Signal discernible in frequency domain
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Fourier transform X (f ) of original signal

I Filter out all frequencies above 100Hz (and below -100Hz)
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Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

⇒ Only frequencies between ±W /2 = ±100Hz are retained
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Fourier transform Y (f ) = H(f )X (f ) of filtered signal

I This spectral operation does separate signal from noise
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Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

⇒ Only frequencies between ±W /2 = ±100Hz are retained
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Filtered signal y(t) with y = x ∗ h and h = F−1(H) = F−1(uW )

I This spectral operation does separate signal from noise
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Low pass filter implementation

I We can implement filtering in the frequency domain

⇒ Sample ⇒ DFT ⇒ Multiply by H(f ) = uW (f ) ⇒ iDFT

x h(t) = W sinc(πWt) y = x ∗ h

I We can also implement filtering in the time domain

⇒ Inverse transform of uW (f ) is h(t) = W sinc(πWt)

I How is it that convolving with a sinc removes noise? ⇒ obscure

I But is is very clear if we use our frequency sense

I Signal occupies some frequencies but noise occupies all frequencies
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Signal compression

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with 9 frequency components (k ∈ [−4, 4])
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Pulse reconstruction with k=4 frequencies (N = 256, M = 128)

I Compression ⇒ Store 9 DFT values instead of N = 128 samples
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Signal compression

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with k = 16 frequency components
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Pulse reconstruction with k=16 frequencies (N = 256, M = 128)

I Can tradeoff less compression for better signal accuracy
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Signal compression

I Generic compression ⇒ Keep largest DFT coefficients

⇒ Not necessarily the lowest frequencies

I The approximation error energy is that of the coefficients dropped

I What’s the advantage of comprising in frequency domain?

I Well, how would you compress in time domain

I Keep largest coefficients?

⇒ No. Close values are redundant. Small values also important

I Keep values at certain spacing?

⇒ Maybe. Actually that’s sampling. Better think in freq. domain

I Compression is obscure but becomes clear if we use frequency sense
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Modulation of multiple bandlimited signals

I Transmit multiple bandlimited signals (W ) in a common support

⇒ Wireless, optical fiber, coaxial cable, twisted pair

I Modulate (multiply by complex exponentials) with freqs. g1 and g2

z(t) = e j2πg1tx(t) + e j2πg2ty(t)

x(t) xg1 (t)

e j2πg1t

y(t) yg2 (t)

e j2πg2t

z(t) = xg1 (t) + yg2 (t)

I Spectrum of x recentered at g1. Spectrum of y recentered at g2
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Spectrum of multiple modulated signals

I No spectral mixing if modulating frequencies satisfy g2 − g1 >W

f

Z(f )

g1 −W/2 g1 + W/2g1
g2 −W/2 g2 + W/2g2

I To recover x multiply by conjugate frequency e−j2πg1t

I And eliminate all frequencies outside the interval [−W /2,W /2]

I To recover y multiply by conjugate frequency e−j2πg2t

I And eliminate all frequencies outside the interval [−W /2,W /2]
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Modulation analysis and design

I Can we understand modulation in time?

⇒ Actually, yes. Use orthogonality of complex exponentials

I But still, spectral analysis is clearer. Simplifies design

I Modulation is not entirely obscure

⇒ But it becomes clearer if we use frequency sense
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Signal detection (voice recognition)

I For a given word to be recognized we compare the spectra X̄ and X

⇒ X̄ ⇒ Average spectrum magnitude of word to be recognized

⇒ X ⇒ Recorded spectrum during execution time
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N/2∑
k=−N/2+1

(Xi X̄i )
2 ⇒ Filter X with X̄ , i.e., Y (f ) = H(f )X (f ) with H(f ) = X̄
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Voice recognition ⇒ Filter design

I Determine impulse response h(n) as inverse DFT of spectrum X̄

I Window h(n) to keep, say, N = 1, 000 largest consecutive taps
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Signal detection analysis and design

I Can we understand signal detection in time?

⇒ Actually, yes. It’s called a matched filter

I But, as in modulation, spectral analysis is clearer. Simplifies design

I Signal detection is not entirely obscure

⇒ But it becomes clearer if we use frequency sense
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It’s all oh so simple

I Once and again, things are invisible or obscure in time domain

⇒ But they become, visible and clear in the frequency domain

I Even when clear in time, they are easier to understand in frequency

I Literally a new sense to view things that are otherwise invisible

“On ne voit bien qu’avec le coeur.
L’essentiel est invisible pour les yeux.”

The Little Prince

I One sees clearly only with the frequency

The essential is invisible to the eyes
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Signal representation

I Why a new sense? ⇒ We can write signals as sums of shifted deltas

x(n) =
N∑

k=1

x(k)δ(k − n)

I Conceptually, the same as writing signals as sums of oscillations

x(n) =
N∑

k=1

X (k)e j2πkn/N

I Only difference is that we sense time but we don’t sense frequency

I We say we change the signal representation or we change the basis

I It all hinges in our ability to represent the signal in a different domain
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Moving forward

I If something is obscure in time but also obscure in frequency

⇒ Change the representation ≡ Change the basis

I Images ⇒ multidimensional DFT, Discrete cosine transform (DCT)

I Stochastic processes ⇒ Principal component analysis (PCA)

⇒ Eigenvectors of the correlation matrix

I Signals defined on graphs ⇒ Graph signal processing

⇒ Eigenvalues of the graph Laplacian
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