

Signal and information processing in time

Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

February 27, 2018

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

- ▶ We have studied continuous time, discrete time, and discrete signals
- ► Complex exponentials (CE), discrete time CE, and discrete CE
- ► And also the Fourier transform (FT), the DTFT, and the DFT
- ► For which we respectively studied the iFT, iDTFT and the iDFT
- Different versions of related concepts
 - \Rightarrow Let's take time to summarize
 - \Rightarrow And to emphasize analogies and differences

• Continuous time (CT) $t \in \mathbb{R} \Rightarrow$ Continuous time signals

 $x:\mathbb{R}\to\mathbb{C}$

▶ Discrete time (DT) $n \in \mathbb{Z} \Rightarrow$ Discrete time signals

 $x:\mathbb{Z}\to\mathbb{C}$

▶ Discrete and finite $n \in [0, N-1] \Rightarrow$ Discrete signals

 $x:[0,N-1] \to \mathbb{C}$

From discrete signals we go to ...

... infinity \Rightarrow discrete time signals (extend borders)

... and beyond \Rightarrow continuos time signal (fill in spaces, dense)

• Inner product in continuous time $\Rightarrow \langle x, y \rangle := \int_{-\infty}^{\infty} x(t)y^{*}(t)dt$

▶ Inner product in discrete time $\Rightarrow \langle x, y \rangle := \sum_{n=-\infty}^{\infty} x(n)y^*(n)$

• Inner product of discrete signals $\Rightarrow \langle x, y \rangle := \sum_{n=0}^{N-1} x(n) y^*(n)$

- How much signals x and y are like each other
- Unrelated signals = orthogonality $\Rightarrow \langle x, y \rangle = 0$
- Energy, same definition works for all $\Rightarrow ||x||^2 = \langle x, x \rangle$
- Inner product may not exist and energy may be infinite (CT and DT)

▶ Continuous time complex exponential $e_f \Rightarrow e_f(t) = e^{j2\pi ft}$

 \Rightarrow Signal is dense and extend to plus and minus infinity

• Frequency f = 2Hz shown. Time *t* in seconds

► Discrete time complex exponential $e_{fT_s} \Rightarrow e_{fT_s}(n) = e^{j2\pi fnT_s}$ ⇒ Sample continuous time CE with sampling frequency $f_s = 1/T_s$ ⇒ Signal extend to plus and minus infinity but is not dense

Frequency f = 2Hz. Sampling freq. $f_s = 64$ Hz. Time t in seconds.

Discrete complex exponentials

- Discrete complex exponential $\Rightarrow \sqrt{N}e_{kN}(n) = e^{j2\pi kn/N} = e^{j2\pi fnT_s}$
 - \Rightarrow Discrete time CE observed during N samples = NT_s time units
 - \Rightarrow Defined for frequencies of the form $f = (k/N)f_s$ only
 - \Rightarrow Exactly k oscillations during observation period N \Leftrightarrow T

- Frequency f = 2Hz. Sampling freq. $f_s = 64$ Hz. Time t in seconds
- Observation time $T = 1s \Rightarrow$ number samples $N = Tf_s = 64$.

• Discrete frequency
$$k = N(f/f_s) = 2$$

• Discrete complex exponentials are a set of N orthonormal signals

 $\langle e_{kN}, e_{IN} \rangle = \delta(k-I)$

- ▶ We restrict k and l to interval of length N. E.g., [-N/2 + 1, N/2]
- ► CE with freqs. N apart are equivalent. Opposites are conjugates
- Discrete time complex exponentials are (sort of) orthogonal

$$\langle e_{fT_s}, e_{gT_s} \rangle = \delta(f - g)$$

- Continuous time delta \Rightarrow Involves a limit. Generalized function
- Same is true in continuous time $\Rightarrow \langle e_f, e_g \rangle = \delta(f g)$

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

▶ Fourier transform (FT) of continuous time signal x is the function

$$X(f) := \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

▶ The discrete time (DT)FT of discrete time signal x is the function

$$X(f) := T_s \sum_{n=-\infty}^{\infty} x(n) e^{-j2\pi f n T_s}$$

The discrete (D)FT of discrete signal x is the function

$$X(k) := \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi f n T_s}$$

- Discrete frequency k equivalent to real $f = k/NT_s = kf_s/N$
- DFT is undefined for frequencies that are not $f = kf_s/N$ for some k

Recall definitions of inner products and complex exponentials

• Write the FT of x as
$$\Rightarrow X(f) = \langle x, e_f \rangle = \int_{-\infty}^{\infty} x(t) e_f^*(t) dt$$

• Write DTFT of x as
$$\Rightarrow X(f) = \langle x, e_{fT_s} \rangle = T_s \sum_{n=-\infty}^{\infty} x(n) e_{fT_s}^*(n)$$

• Write the DFT of x as
$$\Rightarrow X(k) = \langle x, e_{kN} \rangle = \sum_{n=0}^{N-1} x(n) e_{kN}^*(n)$$

> All three transforms written as inner products in respective spaces

- Inner products with frequency $f(f = kf_s/N)$ complex exponentials
- ► It follows that they are different formalizations of the same concept
 ⇒ They are projections of x onto oscillations of frequency f
 ⇒ They measure how much x resembles oscillation of frequency f
- Integrals, indefinite sums, sums \Rightarrow Inherent differences in signals
- ▶ FT and DTFT are analysis tools. DFT is a computational tool

- Input and output spaces for FTs are continuous
- ► For DTFTs, discrete inputs, continuous and periodic outputs (odd)
- ► For DFTs, input and outputs are discrete and periodic or finite

	Input space	Output space
Fourier transform	Continuous	
		Continuous
DTFT	Discrete	Periodic
		Continuous
DFT	Discrete	Periodic
	Periodic	Discrete

Observe the duality between sampling and periodicity or finiteness

▶ Filter \Rightarrow multiply in frequency by $H \Rightarrow$ convolve in time with h

$$X_f = HX \iff x_f = x * h$$

▶ Sample filtered signal $X_f \Rightarrow$ Periodize filtered spectrum X_f

$$x_s(n) = x_f(nT_s) \iff X_s(f) = \sum_{k=-\infty}^{\infty} X_f(f - kf_s)$$

Distortion (information loss) occurs during filtering step
 ⇒ Frequency ⇒ Loss above f_s/2 + some distortion if H not perfect
 ⇒ Time ⇒ Convolution with h

The DTFT as proxy for the FT (2 of 3)

► Filtering (chop) induces convolution. Sampling induces periodization

▶ Small distortion \Rightarrow Make f_s so that $X(f) \approx 0$ for $f \notin [-f_s/2, f_s/2]$

The DTFT as proxy for the FT (3 of 3)

▶ Filter \Rightarrow multiply by window $w_N \Rightarrow$ convolve in frequency with W_N

$$x_w(n) = x(n) \times w_N(n) \iff X_w(f) = X_s(f) * W_N(f)$$

▶ Sample windowed spectrum $X_w \Rightarrow$ Periodize windowed signal x_w

$$x_d(n) = \sum_{k=-\infty}^{\infty} x_w(n-kN) \quad \Longleftrightarrow \quad X_d\left(\frac{kf_s}{N}\right) = T_s \sqrt{N} X_w(k)$$

► Distortion (information loss) occurs during windowing step ⇒ Frequency sampling is with no loss of information

The DFT as proxy for the DTFT (2 of 3)

Window (chop) induces convolution. Sampling induces periodization

▶ Small distortion \Rightarrow Make N so that $x(n) \approx 0$ for $n \notin [0, N-1]$

The DFT as proxy for the DTFT (3 of 3)

2NTst

NTs

-NTs

 $-3f_{5}/2$

-fs

 $-f_{5}/2$

 $_{3f_{5}/2}f$

 $f_S/2$ f_S

- If signal is bandlimited and sampled at frequency f_s ≥ W
 ⇒ The DTFT and the FT coincide in the interval [-f_s/2, f_s/2]
- ▶ If signal is finite, and windowed with N larger than its length ⇒ DFT and DTFT coincide at the sampled frequencies $f = kf_s/N$
- What happens when signal is bandlimited and finite?
 ⇒ Doesn't matter. These signals don't exist. Uncertainty principle

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

Inverse Fourier transforms

• Given a transform X, the inverse Fourier transform is defined as

$$x(t) := \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df$$

• The iDTFT \times of DTFT X, is the discrete time signal with elements

$$x(n) = \int_{-f_s/2}^{f_s/2} X(f) e^{j2\pi f n T_s} df = \int_0^{f_s} X(f) e^{j2\pi f n T_s} df$$

▶ Given a Fourier transform X, the inverse (i)DFT is defined as

$$\mathbf{x(n)} := \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \mathbf{X(k)} e^{j2\pi kn/N} = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} \mathbf{X(k)} e^{j2\pi kn/N}$$

• Same as direct transform but for sign in the exponent \Rightarrow duality

The inverse FT (or inverse DTFT or inverse DFT) \tilde{x} of the FT (respectively, DTFT or DFT) X of a given signal x is the given signal x

$$\tilde{x} = \mathcal{F}^{-1}(\mathbf{X}) = \mathcal{F}^{-1}[\mathcal{F}(\mathbf{x})] = \mathbf{x}$$

- We can recover signal from transform ⇒ equivalent representation
 ⇒ Neither less, nor more information. Just different interpretability
- Implies that we can write signal as a sum of complex exponentials
 Literally for iDFT, conceptually for iDTFT and iFT

Inverse DFT as sum of complex exponentials

- ► Signal as sum of exponentials $\Rightarrow x(n) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} X(k) e^{j2\pi k n/N}$
- Expand the sum inside out from k = 0 to $k = \pm 1$, to $k = \pm 2$, ...
 - $\begin{aligned} \mathbf{x}(n) &= X(0) \qquad e^{j2\pi 0n/N} & \text{constant} \\ &+ X(1) \qquad e^{j2\pi 1n/N} &+ X(-1) \qquad e^{-j2\pi 1n/N} & \text{single oscillation} \\ &+ X(2) \qquad e^{j2\pi 2n/N} &+ X(-2) \qquad e^{-j2\pi 2n/N} & \text{double oscillation} \\ &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ &+ X\left(\frac{N}{2}-1\right)e^{j2\pi \left(\frac{N}{2}-1\right)n/N} + X\left(-\frac{N}{2}+1\right)e^{-j2\pi \left(\frac{N}{2}-1\right)n/N} & \left(\frac{N}{2}-1\right) \text{oscillation} \\ &+ X\left(\frac{N}{2}\right) \qquad e^{j2\pi \left(\frac{N}{2}\right)n/N} & \frac{N}{2} \text{oscillation} \end{aligned}$
- Start with slow variations and progress on to add faster variations

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

The FT, DTFT, and DFT of linear combinations of signals are linear combinations of the respective transforms of the individual signals,

 $\mathcal{F}(ax + by) = a\mathcal{F}(x) + b\mathcal{F}(y).$

Useful to compute transforms when considering sums of signals

Theorem

The FT, DTFT, and DFT $X = \mathcal{F}(x)$ of a real signal x (one with $Im(x) \equiv 0$) are conjugate symmetric

 $X(-f) = X^*(f)$

Only the positive half of the spectrum carries information

Theorem (Parseval)

The energy of a signal x and its FT, DTFT, or DFT $X = \mathcal{F}(x)$ are the same, i.e.,

 $\left\|x\right\|^2 = \left\|X\right\|^2$

Energy definitions are different for different signal spaces

For the FT
$$\Rightarrow \int_{-\infty}^{\infty} |x(t)|^2 dt = ||x||^2 = ||X||^2 = \int_{-\infty}^{\infty} |X(f)|^2 df$$

• For the DTFT
$$\Rightarrow \sum_{n=-\infty}^{\infty} |x(n)|^2 = ||x||^2 = ||X||^2 = \int_{-f_s/2}^{f_s/2} |X(f)|^2 df$$

• For the DFT
$$\Rightarrow \sum_{n=0}^{N-1} |x(n)|^2 = ||x||^2 = ||X||^2 = \sum_{k=-N/2+1}^{N/2} |X(k)|^2$$

A time shift of τ units in the time domain is equivalent to multiplication by a complex exponential of frequency $-\tau$ in the frequency domain

$$x_{\tau} = x(t-\tau) \qquad \Longleftrightarrow \qquad X_{\tau}(f) = e^{-j2\pi f \tau} X(f)$$

Theorem

A multiplication by a complex exponential of frequency g in the time domain is equivalent to a shift of g units in the frequency domain

$$x_g = e^{j2\pi gt} x(t) \qquad \Longleftrightarrow \qquad X_g(f) = X(f-g)$$

- Theorems are duals of each other. True for FT and DTFT
- ▶ For DFT we need to define circular shifts. Not covered in this course

- Let x and h be continuous time signals
- Convolution of x with h is the signal y = x * h with values

$$[x * h](t) = y(t) = \int_{-\infty}^{\infty} x(u)h(t-u) \, du$$

- Let x and h be discrete time signals
- Convolution of x with h is the signal y = x * h with values

$$[x * h](n) = y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

 \blacktriangleright Convolution in time domain \equiv to multiplication in frequency domain

Theorem (Convolution theorem)

Given signals x and y with transforms $X = \mathcal{F}(x)$ and $Y = \mathcal{F}(y)$. The FT $Z = \mathcal{F}(z)$ of the convolved signal z = x * y is the product Z = XY

$$z = x * y \iff Z = XY$$

- ▶ True for FT and DTFT. For DFT need to define circular convolution
- The dual is also true
- Convolution in frequency domain \equiv to multiplication in time domain

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

• The sampled signal x_s is a discrete time signal with values

 $x_s(n) = x(nT_s)$

- Creates discrete time signal x_s from continuous time signal x
- Equivalently, we represent sampling as multiplication by a Dirac train $x_{\delta}(t) = x(t) \times T_s \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$
- Dirac train lives in continuous time. Compare FT of x_{δ} to FT of x

▶ Multiplication \Leftrightarrow Convolution . Thus spectrum $X_{\delta} = \mathcal{F}(x_{\delta})$ is

$$X_{\delta} = X * \mathcal{F}\bigg[T_s \sum_{n=-\infty}^{\infty} \delta(t - nT_s)\bigg]$$

• Fourier transform of the Dirac train (T_s) is another Dirac train (f_s)

$$X_{\delta} = X * T_{s} \sum_{n=-\infty}^{\infty} \delta(f - kf_{s}) = \sum_{n=-\infty}^{\infty} X * \delta(f - kf_{s})$$

Theorem

Sampled signal spectrum is a sum of shifted versions of original spectrum

$$X_s(f) = X_\delta(f) = \sum_{k=-\infty}^{\infty} X(f - kf_s)$$

▶ We say the spectrum of X is periodized when the signal is sampled

Spectrum periodization

Signal and Information Processing

▶ Signal with bandwidth $W \Rightarrow X(f) = 0$ for all $f \notin [-W/2, W/2]$

Upon sampling, spectrum is periodized but not aliased

> This means that sampling entails no loss of information

Prefiltering

• To avoid aliasing preprocess x into x_{f_s} with a low pass filter

$$X_{f_s}(f) = X(f) \sqcap_{f_s}(f)$$

► The signal x_{f_s} has bandwidth f_s and can be sampled without aliasing ⇒ Frequency components below $f_s/2$ retained with no distortion

> Prefiltering can be implemented as convolution in the time domain

$$x_{f_s} = x * h,$$
 $h(t) = f_s \operatorname{sinc}(\pi f_s t)$

• iFT of low pass filter with cutoff $f_s/2$ is the sinc pulse with freq. f_s

- In principle, we can recover x from x_{δ} with a low pass filter
- ► Since Dirac train can't be generated, we modulate train of pulses

$$x_p(t) = T_s \sum_{n=-\infty}^{\infty} x_s(n) p(t - nT_s)$$

▶ For narrow pulses, pulse and Dirac modulation are close, i.e, $x_p \approx x_\delta$

The spectrum of the reconstructed signal

- ► The sinc pulse $f_s sinc(\pi f_s t)$ has a flat spectrum for $f \in [-f_s/2, f_s/2]$
- ► Don't even need to use low pass filter ⇒ sinc pulse already lowpass

$$x(t) = f_s T_s \sum_{n=-\infty}^{\infty} x(nT_s) \operatorname{sinc}(\pi f_s(t - nT_s))$$

- ► The sinc pulse $f_s sinc(\pi f_s t)$ has a flat spectrum for $f \in [-f_s/2, f_s/2]$
- ► Don't even need to use low pass filter ⇒ sinc pulse already lowpass

$$x(t) = f_s T_s \sum_{n=-\infty}^{\infty} x(nT_s) \operatorname{sinc}(\pi f_s(t - nT_s))$$

- ► The sinc pulse $f_s sinc(\pi f_s t)$ has a flat spectrum for $f \in [-f_s/2, f_s/2]$
- ► Don't even need to use low pass filter ⇒ sinc pulse already lowpass

$$x(t) = f_s T_s \sum_{n=-\infty}^{\infty} x(nT_s) \operatorname{sinc}(\pi f_s(t - nT_s))$$

- ► The sinc pulse $f_s sinc(\pi f_s t)$ has a flat spectrum for $f \in [-f_s/2, f_s/2]$
- ► Don't even need to use low pass filter ⇒ sinc pulse already lowpass

$$x(t) = f_s T_s \sum_{n=-\infty}^{\infty} x(nT_s) \operatorname{sinc}(\pi f_s(t - nT_s))$$

- Sampling is a straightforward operation, but its effects are obscure ⇒ Or not. If we look at the signal in frequency effects are also clear
- Loss of information contained at frequencies $f > f_s/2$
- Aliasing distortion for frequencies $f \leq f_s/2$
- Perfect recovery of bandlimited signals
- Avoid aliasing with prefiltering
- Reconstruction distortion when modulating a train of pulses
- If we had a sixth sense for frequencies, all of this would be obvious
 - \Rightarrow But we do have that sense, or rather have grown that sense

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

- ▶ Systems are characterized by input-output $(x \rightarrow y)$ relationships
- A system is time invariant if a delayed input yields a delayed output
- If input x(n) yields output y(n) then input x(n-k) yields y(n-k)

Linear systems

• In a linear system \Rightarrow input a linear combination of inputs

 \Rightarrow Output the same linear combination of the respective outputs

▶ I.e., if input $x_1(n)$ yields output $y_1(n)$ and $x_2(n)$ yields $y_2(n)$

 \Rightarrow Input $a_1x_1(n) + a_2x_2(n)$ yields output $a_1y_1(n) + a_2y_2(n)$

▶ linear time invariant system (LTI) \Rightarrow Linear + time invariant

Theorem

A linear time invariant system is completely determined by its impulse response h. In particular, the response to input x is the signal y = x * h.

$$x(\underline{n}) \xrightarrow{h(n)} h(n) \xrightarrow{(x * h)(n)} \sum_{-\infty}^{\infty} x(k)h(t-k)$$

► Theorem true for discrete time and continuous time signals ⇒ Convolutions are defined differently

► For discrete signals we need to use circular convolutions

Frequency response \Rightarrow impulse response transform $\Rightarrow H = \mathcal{F}(h)$

Corollary

A linear time invariant system is completely determined by its frequency response H. In particular, the response to input X is the signal Y = HX.

$$X(f) \longrightarrow H(f) \longrightarrow Y(f) = H(f)X(f)$$

- What a LTI system does to a signal is obscure
 Or not. If we look at the signal in frequency the effects are clear
- ► If we had a sixth sense for frequencies. Oh wait, we do
- It is obvious what LTI filters do \Rightarrow They alter frequency components
- ▶ But they don't mix frequency components. Each of them is separate

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

- Practical applications of frequency analysis are very common
- Here are a few applications that we have covered
 - \Rightarrow Noise removal,
 - \Rightarrow Music synthesis,
 - \Rightarrow Compression,
 - \Rightarrow Modulation,
 - \Rightarrow Signal detection (voice recognition)
- There are many more we have not covered
 - \Rightarrow E.g., equalization, high-pass filtering, band-pass filtering
- \blacktriangleright In all of these applications understanding time is complicated
 - \Rightarrow But understanding frequency is straightforward

Noise removal

- There is signal and noise, but what is signal and what is noise?
- We already know answer \Rightarrow Signal discernible in frequency domain

Original signal x(t). It moves randomly, but not that much

Noise removal

- There is signal and noise, but what is signal and what is noise?
- ► We already know answer ⇒ Signal discernible in frequency domain

Fourier transform X(f) of original signal

▶ Filter out all frequencies above 100Hz (and below -100Hz)

Multiply spectrum with low pass filter H(f) = ⊓_W(f) with W = 200Hz ⇒ Only frequencies between ±W/2 = ±100Hz are retained

Fourier transform Y(f) = H(f)X(f) of filtered signal

This spectral operation does separate signal from noise

Multiply spectrum with low pass filter H(f) = ⊓_W(f) with W = 200Hz ⇒ Only frequencies between ±W/2 = ±100Hz are retained

Filtered signal y(t) with y = x * h and $h = \mathcal{F}^{-1}(H) = \mathcal{F}^{-1}(\Box_W)$

This spectral operation does separate signal from noise

▶ We can implement filtering in the frequency domain

 $\Rightarrow \mathsf{Sample} \ \Rightarrow \mathsf{DFT} \ \Rightarrow \mathsf{Multiply} \ \mathsf{by} \ H(f) = \sqcap_W(f) \ \Rightarrow \mathsf{iDFT}$

$$x \longrightarrow h(t) = W \operatorname{sinc}(\pi W t) \longrightarrow y = x * h$$

► We can also implement filtering in the time domain ⇒ Inverse transform of $\sqcap_W(f)$ is $h(t) = W \operatorname{sinc}(\pi W t)$

- \blacktriangleright How is it that convolving with a sinc removes noise? $\ \Rightarrow$ obscure
- But is is very clear if we use our frequency sense
- Signal occupies some frequencies but noise occupies all frequencies

Signal compression

- Consider square pulse of duration N = 256 and length M = 128
- ▶ Reconstruct with 9 frequency components ($k \in [-4, 4]$)

Pulse reconstruction with k=4 frequencies (N = 256, M = 128)

• Compression \Rightarrow Store 9 DFT values instead of N = 128 samples

Signal compression

- Consider square pulse of duration N = 256 and length M = 128
- Reconstruct with k = 16 frequency components

Pulse reconstruction with k=16 frequencies (N = 256, M = 128)

Can tradeoff less compression for better signal accuracy

- ► Generic compression ⇒ Keep largest DFT coefficients
 - \Rightarrow Not necessarily the lowest frequencies
- ► The approximation error energy is that of the coefficients dropped
- What's the advantage of comprising in frequency domain?
- Well, how would you compress in time domain
- Keep largest coefficients?
 - \Rightarrow No. Close values are redundant. Small values also important
- Keep values at certain spacing?
 - \Rightarrow Maybe. Actually that's sampling. Better think in freq. domain
- Compression is obscure but becomes clear if we use frequency sense

Modulation of multiple bandlimited signals

- ► Transmit multiple bandlimited signals (W) in a common support ⇒ Wireless, optical fiber, coaxial cable, twisted pair
- Modulate (multiply by complex exponentials) with freqs. g_1 and g_2

 $z(t) = e^{j2\pi g_1 t} x(t) + e^{j2\pi g_2 t} y(t)$

• Spectrum of x recentered at g_1 . Spectrum of y recentered at g_2

▶ No spectral mixing if modulating frequencies satisfy $g_2 - g_1 > W$

- To recover x multiply by conjugate frequency $e^{-j2\pi g_1 t}$
- ▶ And eliminate all frequencies outside the interval [-W/2, W/2]
- To recover y multiply by conjugate frequency $e^{-j2\pi g_2 t}$
- And eliminate all frequencies outside the interval [-W/2, W/2]

- Can we understand modulation in time?
 - \Rightarrow Actually, yes. Use orthogonality of complex exponentials
- But still, spectral analysis is clearer. Simplifies design
- Modulation is not entirely obscure
 - \Rightarrow But it becomes clearer if we use frequency sense

Signal detection (voice recognition)

- For a given word to be recognized we compare the spectra \overline{X} and X
 - $\Rightarrow ar{X} \ \Rightarrow$ Average spectrum magnitude of word to be recognized
 - $\Rightarrow X \Rightarrow$ Recorded spectrum during execution time

Average spectrum of spoken word "one"

- Determine impulse response h(n) as inverse DFT of spectrum \bar{X}
- ▶ Window h(n) to keep, say, N = 1,000 largest consecutive taps

- ► Can we understand signal detection in time?
 - \Rightarrow Actually, yes. It's called a matched filter
- ▶ But, as in modulation, spectral analysis is clearer. Simplifies design
- Signal detection is not entirely obscure
 - \Rightarrow But it becomes clearer if we use frequency sense

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

- Once and again, things are invisible or obscure in time domain
 ⇒ But they become, visible and clear in the frequency domain
- ▶ Even when clear in time, they are easier to understand in frequency
- ► Literally a new sense to view things that are otherwise invisible

"On ne voit bien qu'avec le coeur. L'essentiel est invisible pour les yeux."

The Little Prince

 One sees clearly only with the frequency The essential is invisible to the eyes

 \blacktriangleright Why a new sense? $\ \Rightarrow$ We can write signals as sums of shifted deltas

$$x(n) = \sum_{k=1}^{N} x(k)\delta(k-n)$$

Conceptually, the same as writing signals as sums of oscillations

$$x(n) = \sum_{k=1}^{N} X(k) e^{j2\pi kn/N}$$

Only difference is that we sense time but we don't sense frequency

- ▶ We say we change the signal representation or we change the basis
- ▶ It all hinges in our ability to represent the signal in a different domain

- If something is obscure in time but also obscure in frequency
 ⇒ Change the representation ≡ Change the basis
- Images \Rightarrow multidimensional DFT, Discrete cosine transform (DCT)
- ► Stochastic processes ⇒ Principal component analysis (PCA)
 - \Rightarrow Eigenvectors of the correlation matrix
- ► Signals defined on graphs ⇒ Graph signal processing ⇒ Eigenvalues of the graph Laplacian