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Continuous time, discrete time, discrete signals

I We have studied continuous time, discrete time, and discrete signals

I Complex exponentials (CE), discrete time CE, and discrete CE

I And also the Fourier transform (FT), the DTFT, and the DFT

I For which we respectively studied the iFT, iDTFT and the iDFT

I Different versions of related concepts

⇒ Let’s take time to summarize

⇒ And to emphasize analogies and differences
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Signals

I Continuous time (CT) t ∈ R ⇒ Continuous time signals

x : R→ C

I Discrete time (DT) n ∈ Z ⇒ Discrete time signals

x : Z→ C

I Discrete and finite n ∈ [0,N − 1] ⇒ Discrete signals

x : [0,N − 1]→ C

I From discrete signals we go to ...

... infinity ⇒ discrete time signals (extend borders)

... and beyond ⇒ continuos time signal (fill in spaces, dense)
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Inner products and energy

I Inner product in continuous time ⇒ 〈x , y〉 :=

∫ ∞
−∞

x(t)y∗(t)dt

I Inner product in discrete time ⇒ 〈x , y〉 :=
∞∑

n=−∞
x(n)y∗(n)

I Inner product of discrete signals ⇒ 〈x , y〉 :=
N−1∑
n=0

x(n)y∗(n)

I How much signals x and y are like each other

I Unrelated signals = orthogonality ⇒ 〈x , y〉 = 0

I Energy, same definition works for all ⇒ ‖x‖2 = 〈x , x〉

I Inner product may not exist and energy may be infinite (CT and DT)
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Continuous time complex exponentials

I Continuous time complex exponential ef ⇒ ef (t) = e j2πft

⇒ Signal is dense and extend to plus and minus infinity

−0.4 −0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
(
e j2πft

)
, Im

(
e j2πft

)
,

I Frequency f = 2Hz shown. Time t in seconds
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Discrete time complex exponentials

I Discrete time complex exponential efTs ⇒ efTs (n) = e j2πfnTs

⇒ Sample continuous time CE with sampling frequency fs = 1/Ts

⇒ Signal extend to plus and minus infinity but is not dense

−0.4 −0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
(
e j2πfnTs

)
, Im

(
e j2πfnTs

)

I Frequency f = 2Hz. Sampling freq. fs = 64Hz. Time t in seconds.
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Discrete complex exponentials

I Discrete complex exponential ⇒
√
NekN(n) = e j2πkn/N = e j2πfnTs

⇒ Discrete time CE observed during N samples = NTs time units

⇒ Defined for frequencies of the form f = (k/N)fs only

⇒ Exactly k oscillations during observation period N ⇔ T

−0.4 −0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
(
e j2πfnTs

)
, Im

(
e j2πfnTs

)

I Frequency f = 2Hz. Sampling freq. fs = 64Hz. Time t in seconds

I Observation time T = 1s ⇒ number samples N = Tfs = 64.

I Discrete frequency k = N(f /fs) = 2
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Orthogonality of complex exponentials

I Discrete complex exponentials are a set of N orthonormal signals

〈ekN , elN〉 = δ(k − l)

I We restrict k and l to interval of length N. E.g., [−N/2 + 1,N/2]

I CE with freqs. N apart are equivalent. Opposites are conjugates

I Discrete time complex exponentials are (sort of) orthogonal

〈efTs , egTs 〉 = δ(f − g)

I Continuous time delta ⇒ Involves a limit. Generalized function

I Same is true in continuous time ⇒ 〈ef , eg 〉 = δ(f − g)
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Fourier transforms

I Fourier transform (FT) of continuous time signal x is the function

X (f ) :=

∫ ∞
−∞

x(t)e−j2πf t dt

I The discrete time (DT)FT of discrete time signal x is the function

X (f ) := Ts

∞∑
n=−∞

x(n)e−j2πf nTs

I The discrete (D)FT of discrete signal x is the function

X (k) :=
1√
N

N−1∑
n=0

x(n)e−j2πkn/N =
1√
N

N−1∑
n=0

x(n)e−j2πf nTs

I Discrete frequency k equivalent to real f = k/NTs = kfs/N

I DFT is undefined for frequencies that are not f = kfs/N for some k
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Fourier transforms as inner products

I Recall definitions of inner products and complex exponentials

I Write the FT of x as ⇒ X (f ) = 〈x , ef 〉 =

∫ ∞
−∞

x(t)e∗f (t) dt

I Write DTFT of x as ⇒ X (f ) = 〈x , ef Ts 〉 = Ts

∞∑
n=−∞

x(n)e∗fTs
(n)

I Write the DFT of x as ⇒ X (k) = 〈x , ekN〉 =
N−1∑
n=0

x(n)e∗kN(n)

I All three transforms written as inner products in respective spaces
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Different formalizations of the same concept

I Inner products with frequency f (f = kfs/N) complex exponentials

I It follows that they are different formalizations of the same concept

⇒ They are projections of x onto oscillations of frequency f

⇒ They measure how much x resembles oscillation of frequency f

I Integrals, indefinite sums, sums ⇒ Inherent differences in signals

I FT and DTFT are analysis tools. DFT is a computational tool
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Input and output spaces

I Input and output spaces for FTs are continuous

I For DTFTs, discrete inputs, continuous and periodic outputs (odd)

I For DFTs, input and outputs are discrete and periodic or finite

Input space Output space

Fourier transform Continuous

Continuous

DTFT Discrete Periodic

Continuous

DFT Discrete Periodic

Periodic Discrete

I Observe the duality between sampling and periodicity or finiteness
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The DTFT as proxy for the FT (1 of 3)

I Filter ⇒ multiply in frequency by H ⇒ convolve in time with h

Xf = HX ⇐⇒ xf = x ∗ h

I Sample filtered signal Xf ⇒ Periodize filtered spectrum Xf

xs(n) = xf (nTs) ⇐⇒ Xs(f ) =
∞∑

k=−∞

Xf (f − kfs)

I Distortion (information loss) occurs during filtering step

⇒ Frequency ⇒ Loss above fs/2 + some distortion if H not perfect

⇒ Time ⇒ Convolution with h
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The DTFT as proxy for the FT (2 of 3)

I Filtering (chop) induces convolution. Sampling induces periodization

x

conv. ⇒ x ∗ h

xf

sample ⇒ Ts

xs

FT

FT

DTFT

X

filter ⇒ HX

Xf

period ⇒ ± fs

Xs

I Small distortion ⇒ Make fs so that X (f ) ≈ 0 for f /∈ [−fs/2, fs/2]
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The DTFT as proxy for the FT (3 of 3)

I Continuous time signal x with FT X ⇒ Not necessarily bandlimited

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

x(t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

X (f )

I Continuous time filtered signal xf ⇒ filtering smoothes (distorts) x

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

xf (t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xf (f )

I Sampled signal xs obtained from filtered xf ⇒ No further distortion

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )
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The DFT as proxy for the DTFT (1 of 3)

I Filter ⇒ multiply by window wN ⇒ convolve in frequency with WN

xw (n) = x(n)× wN(n) ⇐⇒ Xw (f ) = Xs(f ) ∗WN(f )

I Sample windowed spectrum Xw ⇒ Periodize windowed signal xw

xd(n) =
∞∑

k=−∞

xw (n − kN) ⇐⇒ Xd

(
kfs
N

)
= Ts

√
N Xw (k)

I Distortion (information loss) occurs during windowing step

⇒ Frequency sampling is with no loss of information
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The DFT as proxy for the DTFT (2 of 3)

I Window (chop) induces convolution. Sampling induces periodization

xs

window ⇒ xwN

xw

periodize ⇒ N

xd

DTFT

DTFT

DFT

Xs

conv ⇒ X ∗W

Xw

sample ⇒ fs/N

Xd

I Small distortion ⇒ Make N so that x(n) ≈ 0 for n /∈ [0,N − 1]
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The DFT as proxy for the DTFT (3 of 3)

I Discrete time signal xs with DTFT Xs ⇒ Not necessarily finite

-NTs NTs 2NTs
n

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )

I Discrete time windowed signal xw ⇒ windowing smoothes (distorts) Xs

-NTs NTs 2NTs
t

xw (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xw (f )

I Discrete DFT XD samples windowed DTFT Xw ⇒ No further distortion

-NTs NTs 2NTs
t

xd (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xd (f )
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Bandlimited and finite (periodic) signals

I If signal is bandlimited and sampled at frequency fs ≥W

⇒ The DTFT and the FT coincide in the interval [−fs/2, fs/2]

I If signal is finite, and windowed with N larger than its length

⇒ DFT and DTFT coincide at the sampled frequencies f = kfs/N

I What happens when signal is bandlimited and finite?

⇒ Doesn’t matter. These signals don’t exist. Uncertainty principle
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Inverse Fourier transforms

I Given a transform X , the inverse Fourier transform is defined as

x(t) :=

∫ ∞
−∞

X (f )e j2πf t df

I The iDTFT x of DTFT X , is the discrete time signal with elements

x(n) =

∫ fs/2

−fs/2

X (f )e j2πf nTs df =

∫ fs

0

X (f )e j2πf nTs df

I Given a Fourier transform X , the inverse (i)DFT is defined as

x(n) :=
1√
N

N−1∑
k=0

X (k)e j2πkn/N =
1√
N

N/2∑
k=−N/2+1

X (k)e j2πkn/N

I Same as direct transform but for sign in the exponent ⇒ duality
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The inverses are inverses indeed

Theorem
The inverse FT (or inverse DTFT or inverse DFT) x̃ of the FT
(respectively, DTFT or DFT) X of a given signal x is the given signal x

x̃ = F−1(X ) = F−1[F(x)] = x

I We can recover signal from transform ⇒ equivalent representation

⇒ Neither less, nor more information. Just different interpretability

I Implies that we can write signal as a sum of complex exponentials

⇒ Literally for iDFT, conceptually for iDTFT and iFT
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Inverse DFT as sum of complex exponentials

I Signal as sum of exponentials ⇒ x(n) =
1√
N

N/2∑
k=−N/2+1

X (k)e j2πkn/N

I Expand the sum inside out from k = 0 to k = ±1, to k = ±2, . . .

x(n) = X (0) e j2π0n/N constant

+ X (1) e j2π1n/N + X (−1) e−j2π1n/N single oscillation

+ X (2) e j2π2n/N + X (−2) e−j2π2n/N double oscillation

...
...

...
...

...

+ X

(
N

2
− 1

)
e j2π( N

2
−1)n/N + X

(
−
N

2
+ 1

)
e−j2π( N

2
−1)n/N

(
N

2
− 1

)
– oscillation

+ X

(
N

2

)
e j2π( N

2 )n/N N

2
– oscillation

I Start with slow variations and progress on to add faster variations

Signal and Information Processing Signal and information processing in time 25



Properties of Fourier transforms

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

Signal and Information Processing Signal and information processing in time 26



Linearity and conjugate symmetry

Theorem
The FT, DTFT, and DFT of linear combinations of signals are linear
combinations of the respective transforms of the individual signals,

F(ax + by) = aF(x) + bF(y).

I Useful to compute transforms when considering sums of signals

Theorem
The FT, DTFT, and DFT X = F(x) of a real signal x (one with
Im(x) ≡ 0) are conjugate symmetric

X (−f ) = X ∗(f )

I Only the positive half of the spectrum carries information
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Energy conservation (Parseval’s Theorem)

Theorem (Parseval)

The energy of a signal x and its FT, DTFT, or DFT X = F(x) are the
same, i.e., ∥∥x∥∥2

=
∥∥X∥∥2

I Energy definitions are different for different signal spaces

I For the FT ⇒
∫ ∞
−∞

∣∣x(t)
∣∣2dt =

∥∥x∥∥2
=
∥∥X∥∥2

=

∫ ∞
−∞

∣∣X (f )
∣∣2df

I For the DTFT ⇒
∞∑

n=−∞

∣∣x(n)
∣∣2 =

∥∥x∥∥2
=
∥∥X∥∥2

=

∫ fs/2

−fs/2

∣∣X (f )
∣∣2df

I For the DFT ⇒
N−1∑
n=0

∣∣x(n)
∣∣2 =

∥∥x∥∥2
=
∥∥X∥∥2

=

N/2∑
k=−N/2+1

∣∣X (k)
∣∣2
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Shift and modulation

Theorem
A time shift of τ units in the time domain is equivalent to multiplication
by a complex exponential of frequency −τ in the frequency domain

xτ = x(t − τ) ⇐⇒ Xτ (f ) = e−j2πf τX (f )

Theorem
A multiplication by a complex exponential of frequency g in the time
domain is equivalent to a shift of g units in the frequency domain

xg = e j2πgtx(t) ⇐⇒ Xg (f ) = X (f − g)

I Theorems are duals of each other. True for FT and DTFT

I For DFT we need to define circular shifts. Not covered in this course
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Convolutions in continuous and discrete time

I Let x and h be continuous time signals

I Convolution of x with h is the signal y = x ∗ h with values

[x ∗ h](t) = y(t) =

∫ ∞
−∞

x(u)h(t − u) du

I Let x and h be discrete time signals

I Convolution of x with h is the signal y = x ∗ h with values

[x ∗ h](n) = y(n) =
∞∑

k=−∞

x(k)h(n − k)
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Multiplication and convolution

I Convolution in time domain ≡ to multiplication in frequency domain

Theorem (Convolution theorem)

Given signals x and y with transforms X = F(x) and Y = F(y). The
FT Z = F(z) of the convolved signal z = x ∗ y is the product Z = XY

z = x ∗ y ⇐⇒ Z = XY

I True for FT and DTFT. For DFT need to define circular convolution

I The dual is also true

I Convolution in frequency domain ≡ to multiplication in time domain
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Sampling

I The sampled signal xs is a discrete time signal with values

xs(n) = x(nTs)

I Creates discrete time signal xs from continuous time signal x

I Equivalently, we represent sampling as multiplication by a Dirac train

xδ(t) = x(t)× Ts

∞∑
n=−∞

δ(t − nTs)

I Dirac train lives in continuous time. Compare FT of xδ to FT of x

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t -4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts

t
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Spectral effect of sampling

I Multiplication ⇔ Convolution . Thus spectrum Xδ = F(xδ) is

Xδ = X ∗ F
[
Ts

∞∑
n=−∞

δ(t − nTs)

]
I Fourier transform of the Dirac train (Ts) is another Dirac train (fs)

Xδ = X ∗ Ts

∞∑
n=−∞

δ(f − kfs) =
∞∑

n=−∞
X ∗ δ(f − kfs)

Theorem
Sampled signal spectrum is a sum of shifted versions of original spectrum

Xs(f ) = Xδ(f ) =
∞∑

k=−∞

X (f − kfs)

I We say the spectrum of X is periodized when the signal is sampled
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Spectrum periodization

I Start with the spectrum X of x and the Dirac train in frequency

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I First convolution step is to duplicate and shift spectrum to kfs

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I Second convolution step is to sum all shifted copies

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Loose all info. above fs/2. And some below to aliasing distortion
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Sampling of bandlimited signals

I Signal with bandwidth W ⇒ X (f ) = 0 for all f /∈ [−W /2,W /2]

I Upon sampling, spectrum is periodized but not aliased

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I This means that sampling entails no loss of information
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Prefiltering

I To avoid aliasing preprocess x into xfs with a low pass filter

Xfs (f ) = X (f )ufs (f )

I The signal xfs has bandwidth fs and can be sampled without aliasing

⇒ Frequency components below fs/2 retained with no distortion

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Prefiltering can be implemented as convolution in the time domain

xfs = x ∗ h, h(t) = fssinc(πfst)

I iFT of low pass filter with cutoff fs/2 is the sinc pulse with freq. fs
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Reconstruction

I In principle, we can recover x from xδ with a low pass filter

I Since Dirac train can’t be generated, we modulate train of pulses

xp(t) = Ts

∞∑
n=−∞

xs(n)p(t − nTs)

I For narrow pulses, pulse and Dirac modulation are close, i.e, xp ≈ xδ

-2Ts -Ts Ts 2Ts

1/T

t

x(t)
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The spectrum of the reconstructed signal

I Spectrum Xs of sampled signal ⇒ Xs(f ) =
∞∑

k=−∞

X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Spectrum Xp of pulse train ⇒ Xp(f ) = P(f )×
∞∑

k=−∞

X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Reconstructed spectrum Xr ⇒ Xr (f ) = ufs (f )P(f )X (f − kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Good pulse for recovery ⇒ X (f ) = 1 for f ∈ [−fs/2, fs/2]
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Modulation of a sinc train

I The sinc pulse fssinc(πfst) has a flat spectrum for f ∈ [−fs/2, fs/2]

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(πfst) has a flat spectrum for f ∈ [−fs/2, fs/2]

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(πfst) has a flat spectrum for f ∈ [−fs/2, fs/2]

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(πfst) has a flat spectrum for f ∈ [−fs/2, fs/2]

I Don’t even need to use low pass filter ⇒ sinc pulse already lowpass

Theorem
A signal of bandwidth W ≤ fs can be recovered from samples x(nTs) as

x(t) = fsTs

∞∑
n=−∞

x(nTs)sinc
(
πfs(t − nTs)

)

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Philosophical digression

I Sampling is a straightforward operation, but its effects are obscure

⇒ Or not. If we look at the signal in frequency effects are also clear

I Loss of information contained at frequencies f > fs/2

I Aliasing distortion for frequencies f ≤ fs/2

I Perfect recovery of bandlimited signals

I Avoid aliasing with prefiltering

I Reconstruction distortion when modulating a train of pulses

I If we had a sixth sense for frequencies, all of this would be obvious

⇒ But we do have that sense, or rather have grown that sense
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Time invariant systems

I Systems are characterized by input-output (x → y) relationships

I A system is time invariant if a delayed input yields a delayed output

I If input x(n) yields output y(n) then input x(n − k) yields y(n − k)

x(n − k)
System

y(n − k)

n

x(n)

n

y(n)

n

x(n − k)

n

y(n − k)
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Linear systems

I In a linear system ⇒ input a linear combination of inputs

⇒ Output the same linear combination of the respective outputs

I I.e., if input x1(n) yields output y1(n) and x2(n) yields y2(n)

⇒ Input a1x1(n) + a2x2(n) yields output a1y1(n) + a2y2(n)

a1x1(n) + a2x2(n)
System

a1y1(n) + a2y2(n)

n

x1(n)

n

y1(n)

n

x2(n)

n

y2(n)

n

a1x1(n) + a2x2(n)

n

a1y1(n) + a2y2(n)
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Output of a linear time invariant system

I linear time invariant system (LTI) ⇒ Linear + time invariant

Theorem
A linear time invariant system is completely determined by its impulse
response h. In particular, the response to input x is the signal y = x ∗ h.

x(n)
h(n)

(x ∗ h)(n) =
∞∑
−∞

x(k)h(t − k)

I Theorem true for discrete time and continuous time signals

⇒ Convolutions are defined differently

I For discrete signals we need to use circular convolutions
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Linear time invariant system frequency response

I Frequency response ⇒ impulse response transform ⇒ H = F(h)

Corollary

A linear time invariant system is completely determined by its frequency
response H. In particular, the response to input X is the signal Y = HX.

X (f )
H(f )

Y (f ) = H(f )X (f )

I What a LTI system does to a signal is obscure

⇒ Or not. If we look at the signal in frequency the effects are clear

I If we had a sixth sense for frequencies. Oh wait, we do

I It is obvious what LTI filters do ⇒ They alter frequency components

I But they don’t mix frequency components. Each of them is separate
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Applications
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Applications

I Practical applications of frequency analysis are very common

I Here are a few applications that we have covered

⇒ Noise removal,

⇒ Music synthesis,

⇒ Compression,

⇒ Modulation,

⇒ Signal detection (voice recognition)

I There are many more we have not covered

⇒ E.g., equalization, high-pass filtering, band-pass filtering

I In all of these applications understanding time is complicated

⇒ But understanding frequency is straightforward
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Noise removal

I There is signal and noise, but what is signal and what is noise?

I We already know answer ⇒ Signal discernible in frequency domain
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Original signal x(t). It moves randomly, but not that much

I
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Noise removal

I There is signal and noise, but what is signal and what is noise?

I We already know answer ⇒ Signal discernible in frequency domain
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Fourier transform X (f ) of original signal

I Filter out all frequencies above 100Hz (and below -100Hz)
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Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

⇒ Only frequencies between ±W /2 = ±100Hz are retained
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Fourier transform Y (f ) = H(f )X (f ) of filtered signal

I This spectral operation does separate signal from noise
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Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

⇒ Only frequencies between ±W /2 = ±100Hz are retained
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Filtered signal y(t) with y = x ∗ h and h = F−1(H) = F−1(uW )

I This spectral operation does separate signal from noise
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Low pass filter implementation

I We can implement filtering in the frequency domain

⇒ Sample ⇒ DFT ⇒ Multiply by H(f ) = uW (f ) ⇒ iDFT

x h(t) = W sinc(πWt) y = x ∗ h

I We can also implement filtering in the time domain

⇒ Inverse transform of uW (f ) is h(t) = W sinc(πWt)

I How is it that convolving with a sinc removes noise? ⇒ obscure

I But is is very clear if we use our frequency sense

I Signal occupies some frequencies but noise occupies all frequencies
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Signal compression

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with 9 frequency components (k ∈ [−4, 4])
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Pulse reconstruction with k=4 frequencies (N = 256, M = 128)

I Compression ⇒ Store 9 DFT values instead of N = 128 samples
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Signal compression

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with k = 16 frequency components
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Pulse reconstruction with k=16 frequencies (N = 256, M = 128)

I Can tradeoff less compression for better signal accuracy

Signal and Information Processing Signal and information processing in time 58



Signal compression

I Generic compression ⇒ Keep largest DFT coefficients

⇒ Not necessarily the lowest frequencies

I The approximation error energy is that of the coefficients dropped

I What’s the advantage of comprising in frequency domain?

I Well, how would you compress in time domain

I Keep largest coefficients?

⇒ No. Close values are redundant. Small values also important

I Keep values at certain spacing?

⇒ Maybe. Actually that’s sampling. Better think in freq. domain

I Compression is obscure but becomes clear if we use frequency sense
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Modulation of multiple bandlimited signals

I Transmit multiple bandlimited signals (W ) in a common support

⇒ Wireless, optical fiber, coaxial cable, twisted pair

I Modulate (multiply by complex exponentials) with freqs. g1 and g2

z(t) = e j2πg1tx(t) + e j2πg2ty(t)

x(t) xg1 (t)

e j2πg1t

y(t) yg2 (t)

e j2πg2t

z(t) = xg1 (t) + yg2 (t)

I Spectrum of x recentered at g1. Spectrum of y recentered at g2
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Spectrum of multiple modulated signals

I No spectral mixing if modulating frequencies satisfy g2 − g1 >W

f

Z(f )

g1 −W/2 g1 + W/2g1
g2 −W/2 g2 + W/2g2

I To recover x multiply by conjugate frequency e−j2πg1t

I And eliminate all frequencies outside the interval [−W /2,W /2]

I To recover y multiply by conjugate frequency e−j2πg2t

I And eliminate all frequencies outside the interval [−W /2,W /2]
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Modulation analysis and design

I Can we understand modulation in time?

⇒ Actually, yes. Use orthogonality of complex exponentials

I But still, spectral analysis is clearer. Simplifies design

I Modulation is not entirely obscure

⇒ But it becomes clearer if we use frequency sense
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Signal detection (voice recognition)

I For a given word to be recognized we compare the spectra X̄ and X

⇒ X̄ ⇒ Average spectrum magnitude of word to be recognized

⇒ X ⇒ Recorded spectrum during execution time
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N/2∑
k=−N/2+1

(Xi X̄i )
2 ⇒ Filter X with X̄ , i.e., Y (f ) = H(f )X (f ) with H(f ) = X̄

Signal and Information Processing Signal and information processing in time 63



Voice recognition ⇒ Filter design

I Determine impulse response h(n) as inverse DFT of spectrum X̄

I Window h(n) to keep, say, N = 1, 000 largest consecutive taps
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Signal detection analysis and design

I Can we understand signal detection in time?

⇒ Actually, yes. It’s called a matched filter

I But, as in modulation, spectral analysis is clearer. Simplifies design

I Signal detection is not entirely obscure

⇒ But it becomes clearer if we use frequency sense
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It’s all oh so simple

I Once and again, things are invisible or obscure in time domain

⇒ But they become, visible and clear in the frequency domain

I Even when clear in time, they are easier to understand in frequency

I Literally a new sense to view things that are otherwise invisible

“On ne voit bien qu’avec le coeur.
L’essentiel est invisible pour les yeux.”

The Little Prince

I One sees clearly only with the frequency

The essential is invisible to the eyes
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Signal representation

I Why a new sense? ⇒ We can write signals as sums of shifted deltas

x(n) =
N∑

k=1

x(k)δ(k − n)

I Conceptually, the same as writing signals as sums of oscillations

x(n) =
N∑

k=1

X (k)e j2πkn/N

I Only difference is that we sense time but we don’t sense frequency

I We say we change the signal representation or we change the basis

I It all hinges in our ability to represent the signal in a different domain
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Moving forward

I If something is obscure in time but also obscure in frequency

⇒ Change the representation ≡ Change the basis

I Images ⇒ multidimensional DFT, Discrete cosine transform (DCT)

I Stochastic processes ⇒ Principal component analysis (PCA)

⇒ Eigenvectors of the correlation matrix

I Signals defined on graphs ⇒ Graph signal processing

⇒ Eigenvalues of the graph Laplacian
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