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Announcements 

Canvas / Piazza 
• Anyone not registered with Canvas or Piazza? 
• If not - email me 
• Canvas access usually takes ~1 day from official course 

registration 
• Take the “Initial Assessment Quiz” if you haven’t done so 

already 
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Homework 

HW #1 
• Currently posted to Canvas (demo on how to access)  
• Due by midnight on 9/11 
• Upload to Canvas as a word document - include answers, 

code, plots 
• Make sure the assignment is formatted reasonably  

 
Reading HW #1 
• Finish by 9/11 
• Fair game for lab quiz  
• Demo on how to access 



ENGR 105 Lecture 03 4 

First lab quiz 

Lab quiz #1 
• Wednesday 9/11 
• No Googling, looking up answers, or using Matlab (only 

have Canvas open in the browser window) 
• Fair game: lecture slides up to 9/9, Ch.1 and Ch.2 of 

Essential Matlab, article “All I really need to know about pair 
programming I learned in kindergarten” 
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Linear algebra primer 

ax by c+ =

y mx b= +

You are likely familiar with canonical linear 
equations of the form:  

-100 0 100-200

-100

0

100

200

x

y

m = 1.2 
b = -10 
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Linear algebra primer 

What is the solution to two linear equations with 
two independent variables? 

1 1 1a x b y c+ =

2 2 2a x b y c+ =

(1) 

(2) 
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Linear algebra primer 

For a simple system you can use substitution or 
elimination! 

1 1

1

c b yx
a
−

= (3) solving for x in (1) 

1 1
2 2 2

1

c b ya b y c
a

§ ·−
+ =¨ ¸

© ¹
(4) substitute (3) into (2)  
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Linear algebra primer 

2 1
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1
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=

−

(5) solve for y 



ENGR 105 Lecture 03 9 

Linear algebra primer 

(6) substitute (5) into 
(1) or (2)  

2 1
2

1
1 1 1

2 1
2

1

a cc
aa x b ca bb
a

§ ·−¨ ¸
¨ ¸+ =
¨ ¸−¨ ¸
© ¹

2 1
2

1
1 1

2 11
2

1

1
a cc
ax c b a ba b
a

ª º§ ·−« »¨ ¸
« »¨ ¸= −
« »¨ ¸−¨ ¸« »© ¹¬ ¼

(7) solve for x 
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Linear algebra primer 

There is a simpler way - matrices.... 

1 1 1a x b y c+ =

2 2 2a x b y c+ =

1 1 1

2 2 2

a b cx
a b cy
ª º ª ºª º

× =« » « »« »
¬ ¼¬ ¼ ¬ ¼

...can be represented as... 
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Linear algebra primer 

More generally, for any linear system of n 
variables with n equations 

11 1 12 2 1 1... na x a x a b+ + + =

21 1 22 2 2 2... na x a x a b+ + + =

1 1 2 2 ...n n nn na x a x a b+ + + =

. 

. 

. 
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Linear algebra primer 

...can be represented as... 

11 1 1 1
. . . .

. . . .

1

...

. ... . . .

...

n

n nn n n

a a x b

a a x b

ª º ª º ª º
« » « » « »
« » « » « »× =
« » « » « »
« » « » « »¬ ¼ ¬ ¼ ¬ ¼

AX B=

...or... 
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Linear algebra primer 

1 1A AX A B− −=

1IX A B−=

1X A B−=

Multiply by the 
inverse of A 

Resolve to X 

Finding solutions to linear sets of equations is “easy” in Matlab 

Solution to X 
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Opening a new script / M-file 

Command line method 
• ex. edit newScript 
 
From the toolbar 
• Demo 
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Running a script / interrupting a script 

How to execute scripts / M-files 
• F5 (demo) 
• Run the script from the command window (demo) 
• Left click (demo) 
 
Interrupt a loop 
• “ctrl+c” (demo) 
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Methods previously mentioned 
• Accessing MATLAB help from “view product 

documentation” 
• The Google method 
 
Alternative methods 
• Help from the command line  
   (demo) 
• Highlight and press “F1”  
   (demo) 

Accessing MATLAB help 
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Opening existing or user defined 
functions 

Several methods are available to run a script: 
• “ctrl+d” (demo) 
• Be wary of modifying existing scripts/functions - 
unless intentional 
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A detailed look at memory 

• Each of the memory locations in the computer can be 
thought of as storing a finite sequence of binary digits or 
bits. 
• Each of these storage locations has a particular size say 8 

bits or 16 bits or 32 or 64 bits. 
• A group of 8 bits is referred to as a byte. 

Address 7 6 5 4 3 2 1 0 

1071 0 1 0 1 1 1 0 0 

1072 1 0 1 1 0 1 0 0 

1073 0 0 0 1 1 0 0 1 

1074 1 1 1 1 1 0 1 1 
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Representing numbers in binary 

• We can represent any non-negative integer we want in 
binary using standard place value convention where the 
exponents is now 2 instead of 10 as it is for regular 
decimal numbers 

Address 27 26 25 24 23 22 21 20 

1071 0 1 0 1 1 1 0 0 

1072 1 0 1 1 0 1 0 0 

1073 0 0 0 1 1 0 0 1 

1074 1 1 1 1 1 0 1 1 

10112= 8 + 2 + 1 = 1110 
 
1100102= 32 + 16 + 2 = 5010 
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Overflow 

• Note that in a computer system the size of a memory 
location is fixed when it is allocated at 8, 16, 32, 64 etc. 
bits 

• This limits the range of values that can be stored in that 
location. For example an 8 bit storage location can only 
store unsigned integers between 0 and 255. 

• If you try to store a larger or smaller value you will run 
into the limits 

X = uint8(78); Y = uint8(190); 

Z = X + Y; overflow problem value will 
be clipped to 255 
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Storage limits 

8 bit unsigned values 
0 – 255 

16 bit unsigned values 
0 – 65535 

32 bit unsigned values 
0 – approximately 4 billion 
(232 – 1) 
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Computer arithmetic 

• Since arithmetic operations are carried out in the 
computer using finite storage locations the results 
can be limited by range or imprecise 
• It is the programmers job to make sure that she 

allocates appropriate storage locations for the task 
at hand and uses those variables appropriately 
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Floating point representations 

“God created the integers, all the rest is the work of man” 
Leopold Kronecker 
 
• In addition to integer values (positive and negative) 

scientific computation also involves rational numbers 
like  

 0.335 and -27.890 
 
• Irrational numbers like pi and e are typically 

approximated by rational values 
 
• To do this we appeal to scientific notation and represent 

these numbers in a canonical form 
 2.1345 x 1017 
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Scientific notation 

• Note that numbers in scientific notation have the 
following components 

A sign – positive or negative 
A mantissa – ex. 2.1345 
An exponent – ex. 17 
 

• All of these pieces can be represented as integers 
This is how rational numbers are represented in the 
computer 
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Binary floating point numbers 

• Binary floating point numbers consist of a sign bit, a 
fractional field and an exponent field. Note that the 
exponent in this case is base 2 not base 10. 
• IEEE single precision numbers require 32 bits 

1 bit sign 8 bits exponent 23 bits mantissa 
• IEEE double precision numbers require 64 bits 

1 bit sign 11 bits exponent 52 bits mantissa 
• Double precision numbers have a larger range and 

precision than single precision numbers as the name 
implies so by default MATLAB represents numbers in this 
format 

       ex. -1.010110101 x 278 
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Issues with floating point arithmetic 

• Note that once again floating point numbers are 
restricted to a fixed number of bits and this has 
important consequences 
• Consider the decimal equivalent of having a 

representation where you were restricted to 2 digits after 
the decimal point 

5.43 x 106 

+ 7.43 x 104 

5.43 x 106 

+ 0.0743 x 106 

= 5.5043 x 106 
 
 

In this case when the result is stored the last two digits in 
red will be lost after rounding  

(Rounding error DEMO) 
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Issues with floating point arithmetic 

• It is important to remember that because floating point 
numbers are restricted in size every arithmetic operation 
involving floating point numbers, addition, subtraction, 
multiplication, division etc. has the potential to lose 
information 
• Hence, the results of most arithmetic operations 

involving fractions on the computer are to be viewed as 
inherently approximate 
• Take home message : Computers are not as good 

at arithmetic as you may think they are!!! 
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Numerical analysis 

• In order to get reliable results out of computations it 
is important to design ones code very carefully to 
avoid or minimize the impact of roundoff error and 
other imprecisions. 
• Good numerical codes are designed by specialists 

known as numerical analysts who do this  
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MATLAB number types 

• You can use the whos function in MATLAB to show how 
various variables are stored 
• The MATLAB types indicate the binary storage format 

uint8 – unsigned 8 bit storage location 
int64 – signed 64 bit integer storage location 
double – double precision floating point number 
single – single precision floating point number 

• There are also associated functions you can use to 
specify the storage type of a variable 
x = int32(67); creates a 32 bit integer variable 

• Note that there is a tradeoff between size in bytes and 
the capacity of the numerical format 
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Arrays and numerical types 

• When an array variable is created all of the numeric 
values in that array share the same numeric type. For 
example we can talk about an array of uint16s or an 
array of doubles. 
x = uint16([1 3 4 5 89]); make an array of 
5 uint16s 
x = single(0:0.1:100); make an array of 
single precision numbers 



ENGR 105 Lecture 03 31 

It’s all bits 

• All information in the computer is represented in the 
form of bits 
• While we have been talking about numbers, every 

other type of data, text, images, sound etc. is 
eventually broken down and represented as a series 
of numbers 
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Representing text 

• The ASCII code associates a number with every letter 
and symbol you may care to type 
• It also encodes symbols for things like newline and 

carriage return that don’t print but affect text 
• In MATLAB we can think of a string of text as an array 

of integral numbers - MATLAB represents each 
character as a 16 bit unicode value 
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Representing sound 

• Audio can be represented as an array of numbers 
representing sound samples over time 
• Since sound is a transverse wave we can think of these 

numbers as representing the displacement of the wave 
over time 
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Images 

• Images are actually 2 dimensional arrays of numeric 
values 
• Color images actually store 3 numbers at each pixel 

for the red green and blue channels of the image 
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A few useful MATLAB commands 

whos 
Lists all of the variables currently in your 
workspace and shows you their types 
 

clear 
Clears all of the variables in your workspace – you 
can also use this to clear specific variables 
 

clc 
Just clears the command window – has no effect 
on the workspace 
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