
ENGR 105 Lecture 03

ENGR 105: Introduction to Scientific
Computing

Some Simple Linear Algebra, Interfacing with

MATLAB, Numerical Accuracy

Dr. Graham. E. Wabiszewski

ENGR 105 Lecture 03 2

Announcements

Canvas / Piazza
• Anyone not registered with Canvas or Piazza?
• If not - email me
• Canvas access usually takes ~1 day from official course

registration
• Take the “Initial Assessment Quiz” if you haven’t done so

already

ENGR 105 Lecture 03 3

Homework

HW #1
• Currently posted to Canvas (demo on how to access)
• Due by midnight on 9/11
• Upload to Canvas as a word document - include answers,

code, plots
• Make sure the assignment is formatted reasonably

Reading HW #1
• Finish by 9/11
• Fair game for lab quiz
• Demo on how to access

ENGR 105 Lecture 03 4

First lab quiz

Lab quiz #1
• Wednesday 9/11
• No Googling, looking up answers, or using Matlab (only

have Canvas open in the browser window)
• Fair game: lecture slides up to 9/9, Ch.1 and Ch.2 of

Essential Matlab, article “All I really need to know about pair
programming I learned in kindergarten”

ENGR 105 Lecture 03 5

Linear algebra primer

ax by c+ =

y mx b= +

You are likely familiar with canonical linear
equations of the form:

-100 0 100-200

-100

0

100

200

x

y

m = 1.2
b = -10

ENGR 105 Lecture 03 6

Linear algebra primer

What is the solution to two linear equations with
two independent variables?

1 1 1a x b y c+ =

2 2 2a x b y c+ =

(1)

(2)

ENGR 105 Lecture 03 7

Linear algebra primer

For a simple system you can use substitution or
elimination!

1 1

1

c b yx
a
−

= (3) solving for x in (1)

1 1
2 2 2

1

c b ya b y c
a

§ ·−
+ =¨ ¸

© ¹
(4) substitute (3) into (2)

ENGR 105 Lecture 03 8

Linear algebra primer

2 1
2

1

2 1
2

1

a cc
ay a bb
a

−
=

−

(5) solve for y

ENGR 105 Lecture 03 9

Linear algebra primer

(6) substitute (5) into
(1) or (2)

2 1
2

1
1 1 1

2 1
2

1

a cc
aa x b ca bb
a

§ ·−¨ ¸
¨ ¸+ =
¨ ¸−¨ ¸
© ¹

2 1
2

1
1 1

2 11
2

1

1
a cc
ax c b a ba b
a

ª º§ ·−« »¨ ¸
« »¨ ¸= −
« »¨ ¸−¨ ¸« »© ¹¬ ¼

(7) solve for x

ENGR 105 Lecture 03 10

Linear algebra primer

There is a simpler way - matrices....

1 1 1a x b y c+ =

2 2 2a x b y c+ =

1 1 1

2 2 2

a b cx
a b cy
ª º ª ºª º

× =« » « »« »
¬ ¼¬ ¼ ¬ ¼

...can be represented as...

ENGR 105 Lecture 03 11

Linear algebra primer

More generally, for any linear system of n
variables with n equations

11 1 12 2 1 1... na x a x a b+ + + =

21 1 22 2 2 2... na x a x a b+ + + =

1 1 2 2 ...n n nn na x a x a b+ + + =

.

.

.

ENGR 105 Lecture 03 12

Linear algebra primer

...can be represented as...

11 1 1 1
. . . .

. . . .

1

...

.

...

n

n nn n n

a a x b

a a x b

ª º ª º ª º
« » « » « »
« » « » « »× =
« » « » « »
« » « » « »¬ ¼ ¬ ¼ ¬ ¼

AX B=

...or...

ENGR 105 Lecture 03 13

Linear algebra primer

1 1A AX A B− −=

1IX A B−=

1X A B−=

Multiply by the
inverse of A

Resolve to X

Finding solutions to linear sets of equations is “easy” in Matlab

Solution to X

ENGR 105 Lecture 03 14

Opening a new script / M-file

Command line method
• ex. edit newScript

From the toolbar
• Demo

ENGR 105 Lecture 03 15

Running a script / interrupting a script

How to execute scripts / M-files
• F5 (demo)
• Run the script from the command window (demo)
• Left click (demo)

Interrupt a loop
• “ctrl+c” (demo)

ENGR 105 Lecture 03 16

Methods previously mentioned
• Accessing MATLAB help from “view product

documentation”
• The Google method

Alternative methods
• Help from the command line
 (demo)
• Highlight and press “F1”
 (demo)

Accessing MATLAB help

ENGR 105 Lecture 03 17

Opening existing or user defined
functions

Several methods are available to run a script:
• “ctrl+d” (demo)
• Be wary of modifying existing scripts/functions -
unless intentional

ENGR 105 Lecture 03 18

A detailed look at memory

• Each of the memory locations in the computer can be
thought of as storing a finite sequence of binary digits or
bits.
• Each of these storage locations has a particular size say 8

bits or 16 bits or 32 or 64 bits.
• A group of 8 bits is referred to as a byte.

Address 7 6 5 4 3 2 1 0

1071 0 1 0 1 1 1 0 0

1072 1 0 1 1 0 1 0 0

1073 0 0 0 1 1 0 0 1

1074 1 1 1 1 1 0 1 1

ENGR 105 Lecture 03 19

Representing numbers in binary

• We can represent any non-negative integer we want in
binary using standard place value convention where the
exponents is now 2 instead of 10 as it is for regular
decimal numbers

Address 27 26 25 24 23 22 21 20

1071 0 1 0 1 1 1 0 0

1072 1 0 1 1 0 1 0 0

1073 0 0 0 1 1 0 0 1

1074 1 1 1 1 1 0 1 1

10112= 8 + 2 + 1 = 1110

1100102= 32 + 16 + 2 = 5010

ENGR 105 Lecture 03 20

Overflow

• Note that in a computer system the size of a memory
location is fixed when it is allocated at 8, 16, 32, 64 etc.
bits

• This limits the range of values that can be stored in that
location. For example an 8 bit storage location can only
store unsigned integers between 0 and 255.

• If you try to store a larger or smaller value you will run
into the limits

X = uint8(78); Y = uint8(190);

Z = X + Y; overflow problem value will
be clipped to 255

ENGR 105 Lecture 03 21

Storage limits

8 bit unsigned values
0 – 255

16 bit unsigned values
0 – 65535

32 bit unsigned values
0 – approximately 4 billion
(232 – 1)

ENGR 105 Lecture 03 22

Computer arithmetic

• Since arithmetic operations are carried out in the
computer using finite storage locations the results
can be limited by range or imprecise
• It is the programmers job to make sure that she

allocates appropriate storage locations for the task
at hand and uses those variables appropriately

ENGR 105 Lecture 03 23

Floating point representations

“God created the integers, all the rest is the work of man”
Leopold Kronecker

• In addition to integer values (positive and negative)

scientific computation also involves rational numbers
like

 0.335 and -27.890

• Irrational numbers like pi and e are typically

approximated by rational values

• To do this we appeal to scientific notation and represent

these numbers in a canonical form
 2.1345 x 1017

ENGR 105 Lecture 03 24

Scientific notation

• Note that numbers in scientific notation have the
following components

A sign – positive or negative
A mantissa – ex. 2.1345
An exponent – ex. 17

• All of these pieces can be represented as integers
This is how rational numbers are represented in the
computer

ENGR 105 Lecture 03 25

Binary floating point numbers

• Binary floating point numbers consist of a sign bit, a
fractional field and an exponent field. Note that the
exponent in this case is base 2 not base 10.
• IEEE single precision numbers require 32 bits

1 bit sign 8 bits exponent 23 bits mantissa
• IEEE double precision numbers require 64 bits

1 bit sign 11 bits exponent 52 bits mantissa
• Double precision numbers have a larger range and

precision than single precision numbers as the name
implies so by default MATLAB represents numbers in this
format

 ex. -1.010110101 x 278

ENGR 105 Lecture 03 26

Issues with floating point arithmetic

• Note that once again floating point numbers are
restricted to a fixed number of bits and this has
important consequences
• Consider the decimal equivalent of having a

representation where you were restricted to 2 digits after
the decimal point

5.43 x 106

+ 7.43 x 104

5.43 x 106

+ 0.0743 x 106

= 5.5043 x 106

In this case when the result is stored the last two digits in
red will be lost after rounding

(Rounding error DEMO)

ENGR 105 Lecture 03 27

Issues with floating point arithmetic

• It is important to remember that because floating point
numbers are restricted in size every arithmetic operation
involving floating point numbers, addition, subtraction,
multiplication, division etc. has the potential to lose
information
• Hence, the results of most arithmetic operations

involving fractions on the computer are to be viewed as
inherently approximate
• Take home message : Computers are not as good

at arithmetic as you may think they are!!!

ENGR 105 Lecture 03 28

Numerical analysis

• In order to get reliable results out of computations it
is important to design ones code very carefully to
avoid or minimize the impact of roundoff error and
other imprecisions.
• Good numerical codes are designed by specialists

known as numerical analysts who do this

ENGR 105 Lecture 03 29

MATLAB number types

• You can use the whos function in MATLAB to show how
various variables are stored
• The MATLAB types indicate the binary storage format

uint8 – unsigned 8 bit storage location
int64 – signed 64 bit integer storage location
double – double precision floating point number
single – single precision floating point number

• There are also associated functions you can use to
specify the storage type of a variable
x = int32(67); creates a 32 bit integer variable

• Note that there is a tradeoff between size in bytes and
the capacity of the numerical format

ENGR 105 Lecture 03 30

Arrays and numerical types

• When an array variable is created all of the numeric
values in that array share the same numeric type. For
example we can talk about an array of uint16s or an
array of doubles.
x = uint16([1 3 4 5 89]); make an array of
5 uint16s
x = single(0:0.1:100); make an array of
single precision numbers

ENGR 105 Lecture 03 31

It’s all bits

• All information in the computer is represented in the
form of bits
• While we have been talking about numbers, every

other type of data, text, images, sound etc. is
eventually broken down and represented as a series
of numbers

ENGR 105 Lecture 03 32

Representing text

• The ASCII code associates a number with every letter
and symbol you may care to type
• It also encodes symbols for things like newline and

carriage return that don’t print but affect text
• In MATLAB we can think of a string of text as an array

of integral numbers - MATLAB represents each
character as a 16 bit unicode value

ENGR 105 Lecture 03 33

Representing sound

• Audio can be represented as an array of numbers
representing sound samples over time
• Since sound is a transverse wave we can think of these

numbers as representing the displacement of the wave
over time

ENGR 105 Lecture 03 34

Images

• Images are actually 2 dimensional arrays of numeric
values
• Color images actually store 3 numbers at each pixel

for the red green and blue channels of the image

ENGR 105 Lecture 03 35

A few useful MATLAB commands

whos
Lists all of the variables currently in your
workspace and shows you their types

clear
Clears all of the variables in your workspace – you
can also use this to clear specific variables

clc
Just clears the command window – has no effect
on the workspace

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

