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Discrete signals

I Discrete and finite time index n = 0, 1, . . . ,N � 1 = [0,N � 1].

I Discrete signal x is a function mapping [0,N � 1] to real value x(n)

x : [0,N � 1] ! R

I The values that the signal takes at time index n is x(n)

I Sometimes it will make sense to talk about complex signals

x : [0,N � 1] ! C

I The values x(t) = x
R

(t) + j x
I

(t) are complex numbers

I Space of signals = space of N-dimensional vectors RN or CN
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Deltas (impulses, spikes)

I The discrete delta function �(n) is a spike at (initial) time n = 0

�(n) =

⇢
1 if n = 0
0 else
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Delta function x(n) = �(n)

I The shifted delta function �(n � n0) has a spike at time n = n0

�(n�n0) =

⇢
1 if n = n0
0 else
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Shifted delta function x(n) = �(n � 3)

I This is not a new definition, just a time shift
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Constants and square pulses

I A constant function x(n) has the same value c for all n

x(n) = c , for all n
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Constant function x(n) = 1

I A square pulse of width M, u
M

(n), equals one for the first M values

u
M

(n) =

⇢
1 if 0  n < M
0 if M  n
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Square pulse x(n) = u4(n)

I Can consider shifted pulses u
M

(n � n0), with n0 < N �M
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Units: Sampling time and signal duration

I Sampling time T
s

) Time elapsed between indexes n and n + 1

) Sampling frequency f
s

:= 1/T
s

I Time index n represents actual time t = nT
s
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Square pulse of duration 1s observed during 2s at a sampling rate T

s

= 125ms

I Signal duration T = NT
s

) Time length of signal

) The last sample is “held” during T
s

time units
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Discrete cosines and sines

I For a signal of duration N define (assume N is even):

) Discrete cosine of discrete frequency k ) x(n) = cos(2⇡kn/N)

) Discrete sine of discrete frequency k ) x(n) = sin(2⇡kn/N)
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Cosine x(n) = cos(2⇡kn/N) and sine x(n) = sin(2⇡kn/N). Frequency k = 2 and number of samples N = 32.

I Frequency k is discrete. I.e., k = 0, 1, 2, . . .

) Have an integer number of complete oscillations
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Cosines of di↵erent frequencies (1 of 2)

I Discrete frequency k = 0 is a constant

I Discrete frequency k = 1 is a complete oscillation

I Frequency k = 2 is two oscillations, for k = 3 three oscillations ...
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Frequency k = 0. Number of samples N = 32
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Frequency k = 1. Number of samples N = 32
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Frequency k = 3. Number of samples N = 32
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Cosines of di↵erent frequencies (2 of 2)

I Frequency k represents k complete oscillations

I Although for large k the oscillations may be di�cult to see
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Frequency k = 15. Number of samples N = 32
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Frequency k = 16. Number of samples N = 32

I Do note that we can’t have more than N/2 oscillations

) Indeed 1 ! �1 ! 1,! �1, . . .

) Frequency N/2 is the last one with physical meaning

I Larger frequencies replicate frequencies between k = 0 and k = N/2
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Duplicated frequencies

I Frequencies k and N � k represent the same cosine
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Frequency N � k = 30. Number of samples N = 32

I Actually, if k + l = Ṅ, cosines of frequencies k and l are equivalent

I Not true for sines, but almost. The signals have opposite signs
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Discrete frequencies and actual frequencies

I What is the discrete frequency k of a cosine of frequency f0?

I Depends on sampling time T
s

, frequency f
s

= 1
T

s

, duration T = NT
s

I Period of discrete cosine of frequency k is T/k (k oscillations)

I Thus, regular frequency of said cosine is ) f0 =
k

T
=

k

NT
s

=
k

N
f
s

I A cosine of frequency f0 has discrete frequency k = (f0/fs)N

I Only frequencies up to N/2 $ f
s

/2 have physical meaning

I Sampling frequency f
s

) Cosines up to frequency f0 = f
s

/2
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Use of units example

I Generate N = 32 samples of an A note with sampling frequency f
s

= 1, 760Hz

I The frequency of an A note is f0 = 440Hz. This entails a discrete frequency

k =
f0
f
s

N =
440Hz

1, 760Hz
32 = 8
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The A note observed during T = NT

s

= 18.2ms with a sampling rate f

s

= 1, 760Hz

I Alternatively ) x(n) = cos
h
2⇡kn/N

i
= cos

h
2⇡(f0/fs)Nn/N

i

I Which simplifies to ) x(n) = cos
h
2⇡(f0/fs)n

i
= cos

h
2⇡f0(nTs

)
i
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Noninteger frequencies

I The frequency k need not be integer but it’s not a discrete cosine

) Sampled cosine ) x(n) = cos(2⇡kn/N)

) Sampled sine ) x(n) = sin(2⇡kn/N)

I Discrete sine and cosine have complete oscillations

I Sampled sine and cosine may have incomplete oscillations

I Discrete sine and cosine are used to define Fourier transforms (later)
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Inner products and energy
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Inner product

I Given two signals x and y define the inner product of x and y as

hx , yi :=
N�1X

n=0

x(n)y

⇤
(n)

=

N�1X

n=0

x

R

(n)y

R

(n) +

N�1X

n=0

x

I

(n)y

I

(n) + j

N�1X

n=0

x

I

(n)y

R

(n)� j

N�1X

n=0

x

R

(n)y

I

(n)

I Inner product between vectors x and y , just with di↵erent notation

I Inner product is a linear operations ) hx , y + zi = hx , yi+ hx , zi
I Reversing order equals conjugation ) hy , xi = hx , yi⇤
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Inner product interpretation

I Signal inner product has same intuition as vector inner product

) Inner product hx , yi is the projection of y on x

) The value of hx , yi is how much of y falls in x direction

I E.g., if hx , yi = 0 the signals are orthogonal. They are “unrelated”

x

y

hx , yi > 0

x

y

hx , yi > 0

x

y

hx , yi = 0

x

y

hx , yi < 0

x

y

hx , yi < 0
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Norm and energy

I Following the algebra analogies, define the norm of signal x as

kxk :=


N�1X

n=0

|x(n)|2
�1/2

=


N�1X

n=0

|x
R

(n)|2 +
N�1X

n=0

|x
I

(n)|2
�1/2

I More important, define the energy of the signal as the norm squared

kxk2 :=
N�1X

n=0

|x(n)|2 =
N�1X

n=0

|x
R

(n)|2 +
N�1X

n=0

|x
I

(n)|2

I For complex numbers x(n)x⇤(n) = |x
R

(n)|2 + |x
I

(n)|2 = |x(n)|2

I Thus, we can write the energy as ) kxk2 = hx , xi

Signal and Information Processing Discrete signals 17

Cauchy Schwarz inequality

I The largest an inner product can be is when the vectors are collinear

�kxk kyk  hx , yi  kxk kyk

I Or in terms of energy ) hx , yi2  kxk2 kyk2

I If you are the sort of person that prefers explicit expressions

N�1X

n=0

x(n)y⇤(n) 

N�1X

n=0

|x(n)|2
�

N�1X

n=0

|y(n)|2
�

I The equalities hold if and only if x and y are collinear
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Example: Square pulse of unit energy

I The unit energy square pulse is the signal u
M

(n) that takes values

u
M

(n) =
1p
M

if 0  n < M

u
M

(n) = 0 if M  n
t

u
M

(n)

1/
p
M

M � 1 N � 1

I To compute energy of the pulse we just evaluate the definition

k u
M

k2 :=
N�1X

n=0

| u
M

(n)|2 =
M�1X

n=0

���(1/
p
M)

���
2

=
M

M
= 1

I Indeed, the unit energy square pulse has unit energy

I If the height of the pulse is 1 instead of 1/
p
M, the energy is M.
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Shifted pulses

I To shift a pulse we modify the argument ) u
M

(n � K )

) The pulse is now centered at K (n = K is as n = 0 before)

t

u
M

(n)

1/
p
M

M � 1 K K + M � 1 N � 1

I Inner product of two pulses with disjoint support (K � M)

hu
M

(n),u
M

(n � K )i :=
N�1X

n=0

u
M

(n) u
M

(n � K ) = 0

I The signals are orthogonal, and indeed, “unrelated” to each other
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Overlapping shifted pulses

I
Inner product of two pulses with overlapping support (K < M)

hu
M

(n),u
M

(n � K)i :=
N�1X

n=0

u
M

(n) u
M

(n � K)

I
The signals overlap between K and M � 1. Thus

hu
M

(n),u
M

(n � K)i =

M�1X

n=K

⇣
1/

p
M

⌘⇣
1/

p
M

⌘
=

M � K

M

= 1� K

M

t

u
M

(n)

1/
p
M

K M � 1 K + M � 1 N � 1

I
Inner product is proportional to the relative overlap

) which is, indeed, how much the signals are “related” to each other
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Discrete complex exponentials

Discrete signals

Inner products and energy

Discrete complex exponentials
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Discrete Complex exponentials

I Discrete complex exponential of discrete frequency k and duration N

e
kN

(n) =
1p
N

e j2⇡kn/N =
1p
N

exp(j2⇡kn/N)

I The complex exponential is explicitly given by

e j2⇡kn/N = cos(2⇡kn/N) + j sin(2⇡kn/N)

I Real part is a discrete cosine and imaginary part a discrete sine
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⌘
, with k = 2 and N = 32
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Im
⇣
e

j2⇡kn/N
⌘
, with k = 2 and N = 32
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Properties

[P1] For frequency k = 0, the exponential e

kN

(n) = e0N(n) is a constant

e

kN

(n) =

1p
N

=

1p
N

1

[P2] For frequency k = N, the exponential e

kN

(n) = e

NN

(n) is a constant

e

NN

(n) =

e

j2⇡Nn/N

p
N

=

(e

j2⇡
)

n

p
N

=

(1)

n

p
N

=

1p
N

I
Actually, true for any frequency k 2 ˙

N (multiple of N)

[P3] For k = N/2, the exponential e

kN

(n) = e

N/2N(n) = (�1)

n/
p
N

e

N/2N(n) =
e

j2⇡(N/2)n/N

p
N

=

(e

j⇡
)

n

p
N

=

(�1)

n

p
N

I
The fastest possible oscillation with N samples

That ej2⇡ = 1 follows from e

j⇡ = �1, which follows from e

j⇡ + 1 = 0. The latter

relates the five most important constants in mathematics and proves god’s existence.
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Equivalent frequencies

Theorem
If k � l = N the signals e

kN

(n) and e
lN

(n) coincide for all n, i.e.,

e
kN

(n) =
e j2⇡kn/Np

N
=

e j2⇡ln/Np
N

= e
lN

(n)

I Exponentials with frequencies k and l are equivalent if k � l = N
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Canonical frequency sets

ARI

I Exponentials with frequencies that are N apart are equivalent

�N, �N + 1, . . . , �1
0, 1, . . . , N � 1
N, N + 1, . . . , 2N � 1

I Su�ce to look at N consecutive frequencies, e.g., k = 0, 1, . . .N � 1

I Another canonical choice is to make k = 0 the center frequency

�N/2 + 1, . . . , �1, 0, . . . , N/2
N/2 + 1, . . . , N � 1, N, . . . , 3N/2

I With N even (as usual) use N/2 positive and N/2� 1 negative

I From one canonical set to the other ) Chop and shift

Signal and Information Processing Discrete signals 26

Proof of equivalence

Proof.

I We prove by showing that e
kN

(n)/e
lN

(n) = 1. Indeed,

e
kN

(n)

e
lN

(n)
=

e j2⇡kn/N

e�j2⇡ln/N
= e j2⇡(k�l)n/N

I But since we have that k � l = N the above simplifies to

e
kN

(n)

e
lN

(n)
= e j2⇡Nn/N =

⇥
e j2⇡

⇤
n

= 1n = 1
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Orthogonality

Theorem
Complex exponentials with nonequivalent frequencies are orthogonal. I.e.

he
kN

, e
lN

i = 0

when k � l < N. E.g., when k = 0, . . .N � 1, or k = �N/2+ 1, . . . ,N/2.

I Signals of canonical sets are “unrelated.” Di↵erent rates of change

I Also note that the energy is ke
kN

k2 = he
kN

, e
kN

i = 1

I Exponentials with frequencies k = 0, 1, . . . ,N � 1 are orthonormal

he
kN

, e
lN

i = �(l � k)

I They are an orthonormal basis of signal space with N samples
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Proof of orthogonality

Proof.

I
Use definitions of inner product and discrete complex exponential to write

he
kN

, e
lN

i =
N�1X

n=0

e

kN

(n)e

⇤
lN

(n) =

N�1X

n=0

e

j2⇡kn/N

p
N

e

�j2⇡ln/N

p
N

I
Regroup terms to write as geometric series

he
kN

, e
lN

i = 1

N

N�1X

n=0

e

j2⇡(k�l)n/N
=

1

N

N�1X

n=0

h
e

j2⇡(k�l)/N
i
n

I
Geometric series with basis a sums to

P
N�1
n=0 a

n

= (1� a

N

)/(1� a). Thus,

he
kN

, e
lN

i = 1

N

1�
h
e

j2⇡(k�l)/N
i
N

1� e

j2⇡(k�l)/N
=

1

N

1� 1

1� e

j2⇡(k�l)/N
= 0

I
Completed proof by noting

h
e

j2⇡(k�l)/N
i
N

= e

j2⇡(k�l)
=

h
e

j2⇡
i(k�l)

= 1
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Canonical frequency sets

ARI

I Exponentials with frequencies that are N apart are equivalent

�N, �N + 1, . . . , �1
0, 1, . . . , N � 1
N, N + 1, . . . , 2N � 1

I Su�ce to look at N consecutive frequencies, e.g., k = 0, 1, . . .N � 1

I Another canonical choice is to make k = 0 the center frequency

�N/2 + 1, . . . , �1, 0, . . . , N/2
N/2 + 1, . . . , N � 1, N, . . . , 3N/2

I With N even (as usual) use N/2 positive and N/2� 1 negative

I From one canonical set to the other ) Chop and shift
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Conjugate frequencies

Theorem
Opposite frequencies k and �k yield conjugate signals: e�kN

= e⇤
kN

(n)

Proof.

I Just use the definitions to write the chain of equalities

e�kN

(n) =
e j2⇡(�k)n/N

p
N

=
e�j2⇡kn/N

p
N

=


e j2⇡kn/Np

N

�⇤
= e⇤

kN

(n)

I Opposite frequencies ) Same real part. Opposite imaginary part

) The cosine is the same, the sine changes sign
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Physical meaning

I Of the N canonical frequencies, only N/2 + 1 are distinct.

0, 1, . . . , N/2� 1 N/2
�1, . . . , �N/2 + 1

N � 1, . . . , N/2 + 1

I Frequencies 0 and N/2 have no counterpart. Others have conjugates

I Canonical set �N/2 + 1, . . . ,�1, 0, 1, . . . ,N/2 easier to interpret

I Reasonable ) Can’t have more than N/2 oscillations in N samples

I With sampling frequency f
s

and signal duration T = NT
s

= N/f
s

) Discrete frequency k ) frequency f0 =
k

T
=

k

NT
s

=
k

N
f
s

I Frequencies from 0 to N/2 $ f
s

/2 have physical meaning

) Negative frequencies are conjugates of the positive frequencies
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Complex exponentials for N = 2 and N = 4

I When N = 2 only k = 0 and k = 1 represent distinct signals
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I The signals are real, they have no imaginary parts

I When N = 4, k = 0, 1, 2 are distinct. k = �1 is conjugate of k = 1
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I Can also use k = 3 as canonical instead of k = �1 – conjugate of k = 1
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Complex exponentials for N = 8

I Frequencies from k = 1 to k = 4 represent distinct signals
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I Frequencies k = �1 to k = �3 are conjugate signals of k = 1 to k = 3

0 1 2 3 4 5 6 7
�1

�0.5

0

0.5

1

k = 1

0 1 2 3 4 5 6 7
�1

�0.5

0

0.5

1

k = 2

0 1 2 3 4 5 6 7
�1

�0.5

0

0.5

1

k = 3

I All other frequencies represent one of the signals above
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Complex exponentials for N = 16

I There are 9 distinct frequencies and 7 conjugates (not shown). Some look like
actual oscillations. Border e↵ect of k = 0 and k = N/2 becomes less relevant

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 0

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 1

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 2

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 3

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 4

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 5

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 6

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 7

0 2 4 6 8 10 12 14
�1

�0.5

0

0.5

1

k = 8

Signal and Information Processing Discrete signals 35

Discrete Fourier transform

Alejandro Ribeiro
Dept. of Electrical and Systems Engineering

University of Pennsylvania
aribeiro@seas.upenn.edu

http://www.seas.upenn.edu/users/

~

aribeiro/

January 21, 2015

Signal and Information Processing Discrete Fourier transform 1



Discrete Fourier transform

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT
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Definition of discrete Fourier transform (DFT)

I Signal x of duration N with elements x(n) for n = 0, . . . ,N � 1

I X is the discrete Fourier transform (DFT) of x if for all k 2 Z

X (k) :=
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N =
1p
N

N�1X

n=0

x(n) exp(�j2⇡kn/N)

I We write X = F(x). All values of X depend on all values of x

I The argument k of the DFT is referred to as frequency

I DFT is complex even if signal is real ) X (k) = XR(k) + jXI (k)

) It is customary to focus on magnitude

���X (k)
��� =

h
X 2
R(k) + X 2

I (k)
i1/2

=
h
X (k)X ⇤(k)

i1/2
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DFT elements as inner products

I Discrete complex exponential (freq. k) ) e�kN(n) =
1p
N
e�j2⇡kn/N

I Can rewrite DFT as ) X (k) =
N�1X

n=0

x(n)e�kN(n) =
N�1X

n=0

x(n)e⇤kN(n)

I And from the definition of inner product ) X (k) = hx , ekNi

I DFT element X (k) ) inner product of x(n) with ekN(n)

) Projection of x(n) onto complex exponential of frequency k

) How much of the signal x is an oscillation of frequency k

Signal and Information Processing Discrete Fourier transform 4

DFT of a square pulse (derivation)

I The unit energy square pulse is the signal uM(n) that takes values

uM (n) =
1p
M

if 0  n < M

uM (n) = 0 if M  n
t

uM (n)

1/
p
M

M � 1 N � 1

I Since only the first M�1 elements of uM(n) are not null, the DFT is

X (k) =
1p
N

N�1X

n=0

uM(n)e�j2⇡kn/N =
1p
N

M�1X

n=0

1p
M

e�j2⇡kn/N

I X (k) = sum of first M components of exponential of frequency �k

I Can reduce to simpler expression but who cares? ) It’s just a sum
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DFT of a square pulse (illustration)

I Square pulse of length M = 2 and overall signal duration N = 32

X (k) =
1p
N

1X

n=0

1p
2
e

�j2⇡kn/N =
1p
2N

⇣
1 + e

�j2⇡k/N
⌘

I E.g., X (k) =
2p
2N

at k = 0,±N, . . . and X (k) = 0 at k = 0,±3N/2, . . .

�32�28�24�20�16�12 �8 �4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.05

0.10

0.15

0.20

0.25

Frequency index k = �32,�31, . . . , 64 = [�32, 64]

Modulus |X (k)| of the DFT of square pulse, duration N = 32, pulse length M = 2

I This DFT is periodic with period N ) true in general
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Periodicity of the DFT

I Consider frequencies k and k + N. The DFT at k + N is

X (k + N) :=
1p
N

N�1X

n=0

x(n)e�j2⇡(k+N)n/N

I Complex exponentials of freqs. k and k + N are equivalent. Then

X (k + N) :=
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N = X (k)

I DFT values N apart are equivalent ) DFT has period N

I Su�ces to look at N consecutive frequencies ) canonical sets

) Computation ) k 2 [0,N � 1]

) Interpretation ) k 2 [�N/2,N/2] (actually, N + 1 freqs.)

) Related by chop and shift ) [�N/2,�1] ⇠ [N/2,N � 1]

Signal and Information Processing Discrete Fourier transform 7

Canonical set k 2 [0,N � 1]

I DFT of the square pulse highlighting frequencies k 2 [0,N � 1]

�32�28�24�20�16�12 �8 �4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.05

0.10

0.15

0.20

0.25

Frequency index k = �32,�31, . . . , 64 = [�32, 64]

Modulus |X (k)| of the DFT of square pulse, duration N = 32, pulse length M = 2

I Frequencies larger than N/2 have no clear physical meaning
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Canonical set k 2 [�N/2,N/2]

I DFT of the square pulse highlighting frequencies k 2 [�N/2,N/2]

I Negative freq. �k has the same interpretation as positive freq. k

I One redundant element ) X (�N/2) = X (N/2). Just convenient

�32�28�24�20�16�12 �8 �4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

0.05

0.10

0.15

0.20

0.25

Frequency index k = �32,�31, . . . , 64 = [�32, 64]

Modulus |X (k)| of the DFT of square pulse, duration N = 32, pulse length M = 2

I Obtain frequencies k 2 [�N/2,�1] from frequencies [N/2,N � 1]
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Pulses of di↵erent length

I The DFT X gives information on how fast the signal x changes

�128 �96 �64 �32 0 32 64 96 128
0

0.02

0.04

0.06

0.08

0.10

Frequency index k = �128,�127, . . . , 128 = [�128, 128]

DFT modulus of square pulse, duration N = 256, pulse length M = 2

�128 �96 �64 �32 0 32 64 96 128
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Frequency index k = �128,�127, . . . , 128 = [�128, 128]

DFT modulus of square pulse, duration N = 256, pulse length M = 4

I For length M = 2 have
weight at high frequencies

I Length M = 4 concentrates
weight at lower frequencies

I Pulse of length M = 2
changes more than a pulse
of length M = 4
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More DFTs of pulses of di↵erent length

I The lengthier the pulse the less it changes ) DFT concentrates at zero freq.

�128 �96 �64 �32 0 32 64 96 128
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Frequency index k = �128,�127, . . . , 128 = [�128, 128]

DFT modulus of square pulse, duration N = 256, pulse length M = 4

�128 �96 �64 �32 0 32 64 96 128
0

0.04

0.08

0.12

0.16

0.20

0.24

0.28

Frequency index k = �128,�127, . . . , 128 = [�128, 128]

DFT modulus of square pulse, duration N = 256, pulse length M = 16

�128 �96 �64 �32 0 32 64 96 128
0

0.03

0.06

0.09

0.12

0.15

0.18

Frequency index k = �128,�127, . . . , 128 = [�128, 128]

DFT modules of square pulse, duration N = 256, pulse length M = 8

�128 �96 �64 �32 0 32 64 96 128
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Frequency index k = �128,�127, . . . , 128 = [�128, 128]

DFT modulus of square pulse, duration N = 256, pulse length M = 32
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DFT of a delta function

I The delta function is �(0) = 1 and �(n) = 0, else. Then, the DFT is

X (k) =
1p
N

N�1X

n=0

�(n)e�j2⇡kn/N =
1p
N
�(0)e�j2⇡k0/N =

1p
N

0 2 4 6 8 10 12 14
0

0.5

1

Time index n = 0, 1, . . . , 15 = [0, 15]

Delta function x(n) = �(n)

) )
DFT

0 2 4 6 8 10 12 14
0

1/
p

N

Frequency index k = 0, 1, . . . , 15 = [0, 15]

DFT of delta function X (k) = 1/
p

N

I Only the N values k 2 [0, 15] shown. DFT defined for all k but periodic

I Observe that the energy is conserved kXk2 = k�k2 = 1
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DFT of a shifted delta function

I For shifted delta �(n0 � n0) = 1 and �(n � n0) = 0 otherwise. Thus

X (k) =
1p
N

N�1X

n=0

�(n � n0)e
�j2⇡kn/N =

1p
N

�(n0 � n0)e
�j2⇡kn0/N

I Of course �(n0 � n0) = �(0) = 1, implying that

X (k) =
1p
N

e

�j2⇡kn0/N = e�n0N(k)

I Complex exponential of frequency �n0 (below, N = 16 and n0 = 1)

0 2 4 6 8 10 12 14
0

0.5

1

Time index n = 0, 1, . . . , 15 = [0, 15]

Shifted delta function x(n) = �(n � n0)

) )
DFT

�4 �2 0 2 4 6 8 10 12 14 16
-1/

p
N

0

1/
p

N

Frequency index k = 0, 1, . . . , 15 = [0, 15]

DFT X (k) = 1p
N

e�j2⇡kn0/N = e�n0N
(k)
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DFT of a complex exponential

I Complex exponential of freq. k0 ) x(n) =
1p
N

e

j2⇡k0n/N = ek0N(n)

I Use inner product form of DFT definition ) X (k) = hek0N , ekNi

I Orthonormality of complex exponentials ) hek0N , ekNi = �(k � k0)

�4 �2 0 2 4 6 8 10 12 14 16
-1/

p
N

0

1/
p

N

Time index n = 0, 1, . . . , 15 = [0, 15]

Complex exponential x(n) = 1p
N

ej2⇡k0n/N = ek0N
(n)

) )
DFT

0 2 4 6 8 10 12 14
0

0.5

1

Frequency index n = 0, 1, . . . , 15 = [0, 15]

DFT is shifted delta function X (k) = �(k � k0)

I DFT of exponential ek0N(n) is shifted delta X (k) = �(k � k0)
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DFT of a constant

I Constant function x(n) = 1/
p
N (it has unit energy) and k = 0

) Complex exponential with frequency k0 = 0 ) x(n) = e0N

I Use inner product form of DFT definition ) X (k) = he0N , ekNi

I Complex exponential orthonormality ) he0N , ekNi = �(k � 0) = �(k)

0 2 4 6 8 10 12 14
0

1/
p

N

Time index n = 0, 1, . . . , 15 = [0, 15]

Constant function x(n) = 1/
p

N

) )
DFT

0 2 4 6 8 10 12 14
0

0.5

1

Frequency index k = 0, 1, . . . , 15 = [0, 15]

DFT of constant is delta function X (k) = �(k)

I DFT of constant x(n) = 1/
p
N is delta function X (k) = �(k)
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Observations

I DFT of a signal captures its rate of change

I Signals that change faster have more DFT weight at high frequencies

I DFT conserves energy (all have unit energy in our examples)

I Energy of DFT X = F(x) is the same as energy of the signal x

I Indeed, an important property we will show

I Duality of signal - transform pairs (signals and DFTs come in pairs)

I DFT of delta is a constant. DFT of constant is a delta

I DFT of exponential is shifted delta. DFT of shifted delta is exponential

I Indeed, a fact that follows from the form of the inverse DFT
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Units of the DFT

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT
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Units

I Sampling time Ts , sampling frequency fs , signal duration T = NTs

I Discrete frequency k ) k oscillations in time NTs = Period NTs/k

I Discrete frequency k equivalent to real frequency fk =
k

NTs
= k

fs
N

I In particular, k = N/2 equivalent to ) fN/2 =
N/2fs
N

=
fs
2

I Set of frequencies k 2 [�N/2,N/2] equivalent to real frequencies ...

) That lie between �fs/2 and fs/2

) Are spaced by fs/N (di↵erence between frequencies fk and fk+1)

I Interval width given by sampling frequency. Resolution given by N
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Units in DFT of a discrete complex exponential

I Complex exponential of frequency f0 = k0fs/N

) Discrete frequency k0 and DFT ) X (k) = �(k � k0)

I But frequency k0 corresponds to frequency f0 ) X (f ) = �(f � f0)

k0 1 2 N
2-1-2- N2

1

k0

k0 fs
N

2fs
N

fs
2- fsN- 2fsN- fs2

1

f0 = k0
fs
N

I True only when frequency f0 = (k0/N)fs is a multiple of fs/N
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Units in DFT of a square pulse

I Square pulse of length T0 = 4s observed during a total of T = 32s.

I Sampled every Ts = 125ms ) Sample frequency fs = 8Hz

I Total number of samples ) N = T/Ts = 256

I Maximum frequency k = N/2 = 128 $ fk = fN/2 = fs/2 = 4Hz

I Fequency resolution fs/N = 8Hz/256 = 0.03125Hz

�128 �96 �64 �32 0 32 64 96 128
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Discrete frequency k 2 [�128, 128]

Discrete index, duration N = 256, pulse length M = 32

-4Hz -3Hz -2Hz -1Hz 0 1Hz 2Hz 3Hz 4Hz
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Frequencies are 0,±fs/N,±2fs/N, . . . ,±fs/2

Sampling frequency fs = 8Hz, duration T = 32s, length T = 4s
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Units in DFT of a square pulse

I Interval between freqs. ) fs/N = 8Hz/256 = 1/32 = 0.03125Hz

) 32 equally spaced frees for each 1Hz interval = 8 every 0.125 Hz.

-0.750Hz -0.625Hz -0.500Hz -0.375Hz -0.250Hz -0.125 0 0.125Hz 0.250Hz 0.375Hz 0.500Hz 0.625Hz 0.750Hz
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Frequencies 0,±0.03125Hz,±0.06250Hz, . . . ,±0.750Hz

Sampling frequency fs = 8Hz, duration T = 32s, length T = 4s

I Zeros of DFT are at frequencies 0.250Hz, 0.500 Hz, 0.750 Hz, . . .

) Thus, zeros are at frequencies are 1/T0, 2/T0, 3/T0, . . .

I Most (a lot) of the DFT energy is between freqs. �1/T0 and 1/T0
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DFT inverse

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT
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Definition of DFT inverse

I Given a Fourier transform X , the inverse (i)DFT x = F�1(X ) is

x(n) :=
1p
N

N�1X

k=0

X (k)e j2⇡kn/N =
1p
N

N�1X

k=0

X (k) exp(j2⇡kn/N)

I Same as DFT but for sign in the exponent (also, sum over k , not n)

I Any summation over N consecutive frequencies works as well. E.g.,

x(n) =
1p
N

N/2X

k=�N/2+1

X (k)e j2⇡kn/N

I Because for a DFT X we know that it must be X (k + N) = X (k)
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iDFT is, indeed, the inverse of the DFT

Theorem
The inverse DFT of the DFT of x is the signal x ) F�1[F(x)] = x

I Every signal x can be written as a sum of complex exponentials

x(n) =
1p
N

N�1X

k=0

X (k)e j2⇡kn/N =
1p
N

N/2X

k=�N/2+1

X (k)e j2⇡kn/N

I Coe�cient multiplying e j2⇡kn/N is X (k) = kth element of DFT of x

X (k) :=
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N
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Proof of DFT inverse formula

Proof.

I Let X = F(x) be the DFT of x . Let x̃ = F�1(X ) be the iDFT of X .

) We want to show that x̃ ⌘ x

I From the definition of the iDFT of X ) x̃(ñ) =
1p
N

N�1X

k=0

X (k)e j2⇡kñ/N

I From the definition of the DFT of x ) X (k) :=
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

I Substituting expression for X (k) into expression for x̃(ñ) yields

x̃(ñ) =
1p
N

N�1X

k=0


1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

�
e

j2⇡kñ/N
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Proof of DFT inverse formula

Proof.

I Exchange summation order to sum first over k and then over n

x̃(ñ) =
N�1X

n=0

x(n)

 N�1X

k=0

1p
N

e

j2⇡kñ/N 1p
N

e

�j2⇡kn/N

�

I Pulled x(n) out because it doesn’t depend on k

I Innermost sum is the inner product between eñN and enN . Orthonormality:

N�1X

k=0

1p
N

e

j2⇡kñ/N 1p
N

e

�j2⇡kn/N = �(ñ � n)

I Reducing to ) x̃(ñ) =
N�1X

n=0

x(n)�(ñ � n) = x(ñ)

I Last equation is true because only term n = ñ is not null in the sum
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Inverse DFT as inner product

I Discrete complex exponential (freq. n) ) enN(k) =
1p
N
e j2⇡kn/N

I Rewrite iDFT as ) x(n) =
N�1X

k=0

X (k)enN(k) =
N�1X

k=0

X (k)e⇤�nN(k)

I And from the definition of inner product ) x(n) = hX , enNi

I iDFT element X (k) ) inner product of X (k) with e�nN(k)

I Di↵erent from DFT, this is not the most useful interpretation
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Inverse DFT as successive approximations

I Signal as sum of exponentials ) x(n) =
1p
N

N/2X

k=�N/2+1

X (k)e j2⇡kn/N

I Expand the sum inside out from k = 0 to k = ±1, to k = ±2, . . .

x(n) = X (0) ej2⇡0n/N constant

+ X (1) ej2⇡1n/N + X (�1) e�j2⇡1n/N single oscillation

+ X (2) ej2⇡2n/N + X (�2) e�j2⇡2n/N double oscillation

...
...

...
...

...

+ X

✓
N

2
� 1

◆
ej2⇡(

N
2 �1)n/N + X

✓
�
N

2
+ 1

◆
e�j2⇡( N

2 �1)n/N
✓
N

2
� 1

◆
– oscillation

+ X

✓
N

2

◆
ej2⇡(

N
2 )n/N

N

2
– oscillation

I Start with slow variations and progress on to add faster variations
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequency k = 0 only (DC component)

0 32 64 96 128 160 192 224
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Discrete time index n 2 [0, 255]

Pulse reconstruction with k=0 frequencies (N = 256, M = 128)

I Bound to be not very good ) Just the average signal value
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies k = 0, k = ±1, and k = ±2

0 32 64 96 128 160 192 224
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Discrete time index n 2 [0, 255]

Pulse reconstruction with k=2 frequencies (N = 256, M = 128)

I Not too bad, sort of looks like a pulse ) only 3 frequencies

Signal and Information Processing Discrete Fourier transform 30

Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies up to k = 4

0 32 64 96 128 160 192 224
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Discrete time index n 2 [0, 255]

Pulse reconstruction with k=4 frequencies (N = 256, M = 128)

I Starts to look like a good approximation
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies up to k = 8

0 32 64 96 128 160 192 224
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Discrete time index n 2 [0, 255]

Pulse reconstruction with k=8 frequencies (N = 256, M = 128)

I Good approximation of the N = 256 values with 9 DFT coe�cients
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Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies up to k = 16

0 32 64 96 128 160 192 224
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Discrete time index n 2 [0, 255]

Pulse reconstruction with k=16 frequencies (N = 256, M = 128)

I Compression ) Store k +1 = 17 DFT values instead of N = 128 samples

Signal and Information Processing Discrete Fourier transform 33

Reconstruction of square pulse

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with frequencies up to k = 32

0 32 64 96 128 160 192 224
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Discrete time index n 2 [0, 255]

Pulse reconstruction with k=32 frequencies (N = 256, M = 128)

I Can tradeo↵ less compression for better signal accuracy
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Spectrum (re)shaping

(1) Start with a signal x with elements x(n). Compute DFT X as

X (k) :=
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

(2) (Re)shape spectrum ) Transform DFT X into DFT Y

(3) With DFT Y available, recover signal y with inverse DFT

y(n) :=
1p
N

N�1X

k=0

Y (k)e j2⇡kn/N

x
F

X
SS

Y
F�1

y
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Spectrum reshaping to remove noise

I An application of spectrum reshaping is to clean a noisy signal

I Signal with some underlying trend (good) and some noise (bad)

0 16 32 48 64 80 96 112
-1.0

-0.5

0

0.5

1.0

1.5

2.0

Discrete time index n 2 [0, 128]

Original signal x(n). It moves randomly, but not that much

I Which is which? ) Not clear ) Let’s look at the spectrum (DFT)
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Spectrum reshaping to remove noise

I An application of spectrum reshaping is to clean a noisy signal

I Now the trend (spikes) is clearly separated from the noise (the floor)

�64 �56 �48 �40 �32 �24 �16 �8 0 8 16 24 32 40 48 56 64
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Frequency index k 2 [�64, 64]

DFT X (k) of original signal

I How do we remove the noise? ) Reshape the spectrum
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Spectrum reshaping to remove noise

I An application of spectrum reshaping is to clean a noisy signal

I Remove freqs. larger than 8 ) Y (k) = 0 for k > 8, Y (k) = X (k) else

�64 �56 �48 �40 �32 �24 �16 �8 0 8 16 24 32 40 48 56 64
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Frequency index k 2 [�64, 64]

DFT Y (k) of signal with reshaped spectrum

I How do we recover the trend? ) Inverse DFT
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Spectrum reshaping to remove noise

I An application of spectrum reshaping is to clean a noisy signal

I Inverse DFT of reshaped specturm Y (k) yields cleaned signal y(n)

0 16 32 48 64 80 96 112
-1.0

-0.5

0

0.5

1.0

1.5

2.0

Discrete time index n 2 [0, 128]

Signal y(n) reconstructed from cleaned spectrum

I The trend now is clearly visible. Noise has been removed
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Properties of the DFT

Discrete Fourier transform (DFT), definitions and examples

Units of the DFT

DFT inverse

Properties of the DFT
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Three important properties of DFTs

I DFTs of real signals (no imaginary part) are conjugate symmetric

X (�k) = X ⇤(k)

I Signals of unit energy have transforms of unit energy

I More generically, the DFT preserves energy (Parseval’s theorem)

N�1X

n=0

|x(n)|2 = kxk2 = kXk2 =
N�1X

k=0

|X (k)|2

I The DFT operator is a linear operator

F(ax + by) = aF(x) + bF(y)
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Symmetry

Theorem
The DFT X = F(x) of a real signal x is conjugate symmetric

X (�k) = X ⇤(k)

I Can recover all DFT components from those with freqs. k 2 [0,N/2]

I What about components with freqs. k 2 [�N/2,�1]?

) Conjugates of those with freqs k 2 [0,N/2]

I Other elements are equivalent to one in [�N/2,N/2] (periodicity)
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Proof of symmetry property

Proof.

I Write the DFT X (�k) using its definition

X (�k) =
1p
N

N�1X

n=0

x(n)e�j2⇡(�k)n/N

I When the signal is real, its conjugate is itself ) x(n) = x

⇤(n)

I Conjugating a complex exponential ) changing the exponent’s sign

I Can then rewrite ) X (�k) =
1p
N

N�1X

n=0

x

⇤(n)
⇣
e

�j2⇡kn/N
⌘⇤

I Sum and multiplication can change order with conjugation

X (�k) =


1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

�⇤

= X

⇤(k)
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Energy conservation

Theorem (Parseval)

Let X = F(x) be the DFT of signal x. The energies of x and X are the
same, i.e.,

N�1X

n=0

|x(n)|2 = kxk2 = kXk2 =
N�1X

k=0

|X (k)|2

I In energy of DFT, any set of consecutive freqs. would do. E.g.,

kXk2 =
N�1X

k=0

|X (k)|2 =
N/2X

k=�N/2+1

|X (k)|2
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Proof of Parseval’s Theorem

Proof.

I From the definition of the energy of X ) kXk2 =
N�1X

k=0

X (k)X ⇤(k)

I From the definition of the DFT of x ) X (k) :=
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

I Substitute expression for X (k) into one for kXk2 (observe conjugation)

kXk2 =
N�1X

k=0


1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

�
1p
N

N�1X

ñ=0

x

⇤(ñ)e+j2⇡kñ/N

�
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Proof of Parseval’s Theorem

Proof.

I Distribute product and exchange order of summations ) sum over k first

kXk2 =
N�1X

n=0

N�1X

ñ=0

x(n)x⇤(ñ)

 N�1X

k=0

1p
N

e

�j2⇡kn/N 1p
N

e

+j2⇡kñ/N

�

I Pulled x(n) and x

⇤(ñ) out because they don’t depend on k

I Innermost sum is the inner product between eñN and enN . Orthonormality:

N�1X

k=0

1p
N

e

�j2⇡kn/N 1p
N

e

+j2⇡kñ/N = heñN , enNi = �(ñ � n)

I Thus ) kXk2 =
N�1X

n=0

N�1X

ñ=0

x(n)x⇤(ñ)�(ñ � n) =
N�1X

n=0

x(n)x⇤(n) = kxk2

I True because only terms n = ñ are not null in the sum
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Linearity

Theorem
The DFT of a linear combination of signals is the linear combination of
the respective DFTs of the individual signals,

F(ax + by) = aF(x) + bF(y).

I In particular...

) Adding signals (z = x + y) ) Adding DFTs (Z = X + Y )

) Scaling signals(y = ax) ) Scaling DFTs (Y = aX )
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Proof of Linearity

Proof.

I Let Z := F(ax + by). From the definition of the DFT we have

Z (k) =
1p
N

N�1X

n=0

h
ax(n) + by(n)

i
e�j2⇡kn/N

I Expand the product, reorder terms, identify the DFTs of x and y

Z (k) =
ap
N

N�1X

n=0

x(n)e�j2⇡kn/N +
bp
N

N�1X

n=0

y(n)e�j2⇡kn/N

I First sum is DFT X = F(x). Second sum is DFT Y = F(y)

Z (k) = aX (k) + bY (k)
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DFT of a discrete cosine

I DFT of discrete cosine of freq. k0 ) x(n) =
1p
N

cos(2⇡k0n/N)

I Can write cosine as a sum of discrete complex exponentials

x(n) =
1

2
p
N

h
e j2⇡k0n/N + e�j2⇡k0n/N

i
=

1

2

h
ek0N(n) + e�k0N(n)

i

I From linearity of DFTs ) X = F(x) =
1

2

h
F(ek0N) + F(e�k0N)

i

I DFT of complex exponential ekN is delta function �(k � k0). Then

X (k) =
1

2

h
�(k � k0) + �(k + k0)

i

I A pair of deltas at positive and negative frequency k0
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DFT of a discrete sine

I DFT of discrete sine of freq. k0 ) x(n) =
1p
N

sin(2⇡k0n/N)

I Can write sine as a di↵erence of discrete complex exponentials

x(n) =
1

2j
p
N

h
e j2⇡k0n/N�e�j2⇡k0n/N

i
=

�j

2

h
ek0N(n)�e�k0N(n)

i

I From linearity of DFTs ) X = F(x) =
j

2

h
F(e�k0N)� F(ek0N)

i

I DFT of complex exponential ekN is delta function �(k � k0). Then

X (k) =
j

2

h
�(k + k0)��(k � k0)

i

I Pair of opposite complex deltas at positive and negative frequency k0
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DFT of discrete cosine and discrete sine

I Cosine has real part only (top). Sine has imaginary part only (bottom)

k

1/2

k0 N/2

1/2

�k0�N/2 kk0 N/2�k0�N/2

kk0 N/2�k0�N/2 k

-1/2

k0

N/2

1/2

�k0�N/2

I Cosine is symmetric around k = 0. Sine is antisymmetric around k = 0.
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DFT of discrete cosine and discrete sine (more)

I Real and imaginary parts are di↵erent but the moduli are the same

k

1/2

k0 N/2

1/2

�k0�N/2 k

1/2

k0 N/2

1/2

�k0�N/2

I Cosine and sine are essentially the same signal (shifted versions)

) The moduli of their DFTs are identical

) Phase di↵erence captured by phase of complex number X (±k0)
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Signal and Information Processing Fourier transforms 1

Discrete signals and DFT

I Fourier analysis of discrete signals x : [0,N � 1] ! C ) DFT, iDFT

I Good (and quick) computational tool

) Signal analysis ) pattern discovery, frequency components

) Signal processing ) compression, noise removal

I Two important limitations

) Time is neither discrete nor finite (not always, at least)

) Properties and interpretations are easier in continuous time

I Fourier analysis of continuous signals ) Fourier transform (FT)

Signal and Information Processing Fourier transforms 2

Continuous time signals

Continuous time signals

Fourier transform

Inverse Fourier transform

Delta function

Generalized orthogonality

Generalized Fourier transforms

Properties of the Fourier transform

Convolution
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To infinity and beyond

I We have been dealing with discrete signals x : [0,N � 1] ! C

I To infinity ) Let number of samples go to infinity

) Discrete time signal x : Z ! C
) Values x(n) for n = . . . ,�1, 0, 1, . . .

I And beyond ) Fill in the gaps between samples

) Continuous time signal x : R ! C
) Values x(t) for t any real number in (�1,+1)

I Let’s begin by studying continuous time signals
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Continuous time signals

I Continuous time variable t 2 R.
I Continuous time signal x is a function that maps t to real value x(t)

x : R ! R

I The values that the signal takes at time t is x(t)

I It will make sense to talk about complex signals (as in discrete case)

x : R ! C

I where the values x(t) = xR(t) + j xI (t) are complex numbers
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Inner product

I Given two signals x and y define the inner product of x and y as

hx , yi :=
Z 1

�1
x(t)y⇤(t)dt

I Akin to inner product of discrete signals ) hx , yi =
NX

n=0

x(n)y(n)

xy

hx , yi > 0

x

y

hx , yi > 0

x

y

hx , yi = 0

x

y

hx , yi < 0

xy

hx , yi < 0

I But we have infinite number of components. To infinity and beyond

I Intuition holds ) hx , yi is how much of y falls in x direction

I E.g., if hx , yi = 0 the signals are orthogonal. They are “unrelated”
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Norm and energy

I As for regular (finite dimensional) signals define the norm of signal x

kxk :=

 Z 1

�1
|x(t)|2dt

�1/2
=

 Z 1

�1
|xR(t)|2dt+

Z 1

�1
|xI (t)|2dt

�1/2

I More important, define the energy of the signal as the norm squared

kxk2 :=
Z 1

�1
|x(t)|2dt =

Z 1

�1
|xR(t)|2dt +

Z 1

�1
|xI (t)|2dt

I For complex numbers x(t)x⇤(t) = |xR(t)|2 + |xI (t)|2 = |x(t)|2

I Thus, we can write the energy as ) kxk2 = hx , xi

I Energy might be infinite. When energy is finite we write kxk2 < 1
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Cauchy Schwarz inequality

I The largest an inner product can be is when the vectors are collinear

�kxk kyk  hx , yi  kxk kyk

I Or in terms of energy ) hx , yi2  kxk2 kyk2

I If you are the sort of person that prefers explicit expressions

Z 1

�1
x(t)y⇤(t)dt 

 Z 1

�1
|x(t)|2dt

� Z 1

�1
|y(t)|2dt

�

I The equalities hold if and only if x and y are collinear
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Example: Square pulse

I The square pulse is the signal uT (t) that takes values

uT (t) = 1 for � T

2
 t <

T

2
uT (t) = 0 otherwise

t

uT (t)

�T/2

1

T/2

I To compute energy of the pulse we just evaluate the definition

k uT (t)k2 :=
Z 1

�1
| uT (t)(t)|2dt =

Z T/2

�T/2
|1|2 dt = T

I Energy proportional to pulse duration (duh!)

I Can normalize energy dividing by
p
T . But we rather not.
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Shifted pulses (1 of 2)

I To shift a pulse we modify the argument ) uT (t � ⌧)

) The pulse is now centered at ⌧ (t = ⌧ is as t = 0 before)

t�T/2

1

T/2 ⌧ � T/2 ⌧ + T/2⌧

I Inner product of two pulses with disjoint support (⌧ > T )

huT (t),uT (t � ⌧)i :=
Z 1

�1
uT (t) uT (t � ⌧) = 0

I The signals are orthogonal, and indeed, “unrelated” to each other
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Shifted pulses (2 of 2)

I
Inner product of two pulses with overlapping support (⌧ > T )

huT (t),uT (t � ⌧)i :=
Z 1

�1
uT (t) uT (t � ⌧)

I
The signals overlap between ⌧ � T/2 and T/2. Thus

huT (t),uT (t � ⌧)i =
Z T/2

⌧�T/2

(1)(1)dt =

T

2

�
✓
⌧ � T

2

◆
= T � ⌧

t�T/2

1

T/2⌧ � T/2 ⌧ + T/2⌧

I
Inner product is proportional to the relative overlap

) which is, indeed, how much the signals are “related” to each other

Signal and Information Processing Fourier transforms 11

Complex exponentials

I Inner product and energy are indefinite integrals ) need not exist

I Complex exponential of frequency f is ef with ef (t) = e j2⇡ft

I Since they have unit modulus (|ef (t)| = |e j2⇡ft | = 1), their energy is

kef k2 :=
Z 1

�1
|ef (t)|2dt =

Z 1

�1
1dt = 1

I Inner product of complex exponentials not defined (“keeps oscillating”)

hef , eg i :=
Z 1

�1
ef (t)e

⇤
g (t)dt =

Z 1

�1
e

j2⇡ft
e

�j2⇡gt
dt =

Z 1

�1
e

j2⇡(f�g)t
dt ) @

I This is a problem because we can’t talk about orthogonality

) Still, a complex exponential is much more like itself than another
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Fourier transform

Continuous time signals

Fourier transform

Inverse Fourier transform

Delta function

Generalized orthogonality

Generalized Fourier transforms

Properties of the Fourier transform

Convolution
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Definition of Fourier transform

I The Fourier transform of x is the function X : R ! C with values

X (f ) :=

Z 1

�1
x(t)e�j2⇡f tdt

I We write X = F(x). All values of X depend on all values of x

I Integral need not exist ) Not all signals have a Fourier transform

I The argument f of the Fourier transform is referred to as frequency

I Or, define ef with values ef (t) = e j2⇡f t to write as inner product

X (f ) = hx , ef i =
Z 1

�1
x(t)e⇤f (t)dt

I Both, time and frequency are real ) domain is infinite and dense

) This is an analytical tool, not a computational tool (as the DFT)
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Example: Fourier transform of a square pulse

I Since pulse is not null only when T/2  t  T/2 we reduce X (f ) to

X (f ) :=

Z 1

�1
uT (t)e

�j2⇡f tdt =

Z T/2

�T/2
e�j2⇡f tdt

I For f 6= 0, the primitive of e�j2⇡f t is (�1/j2⇡f )e�j2⇡f t , which yields

X (f ) =


�e�j2⇡f T/2

j2⇡f
� �e+j2⇡f T/2

j2⇡f

�
=

sin(⇡f T )

⇡f

I Where we used e j⇡f T � e�j⇡f T = 2j sin(⇡f T )

I For f = 0 we have e�j2⇡f t = 1 and X (f ) reduces to ) X (f ) = T
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The sinc function

I Transform is important enough to justify definition of sinc function

sinc(u) =
sin(u)

u
for u 6= 0

sinc(u) = 1 for u = 0

I Value at origin, sinc(0) = 1, makes the function continuous

I With this definition and f 6= 0 we can write the pulse transform as

X (f ) =
sin(⇡f T )

⇡f
= T

sin(⇡f T )

⇡f T
= T sinc(⇡f T )

I Which is also true for f = 0 because X (0) = T sinc(⇡0T ) = T
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The pulse and its transform

I Fourier transform of pulse of width T is sinc with null crossings
k

T

t

uT (t)

�T/2

1

T/2

F

� 3
T

� 2
T

� 1
T

1
T

2
T

3
T

T

f

X (f )

I Most of the Fourier Transform energy is between �1/T and 1/T

Z 1/T

�1/T

���X (f )
���
2
df =

Z 1/T

�1/T

���T sinc(⇡fT )
���
2
df ⇡ 0.90T = 0.90k uT (t)k2
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Pulses of di↵erent width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

time t (in seconds)

Square pulse of length T=0.5

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±2,±4, . . .

I Consistent with interpretation that shorter pulses are faster varying
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Pulses of di↵erent width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0
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0.5

1.0

time t (in seconds)

Square pulse of length T=1

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±1,±2, . . .

I Consistent with interpretation that shorter pulses are faster varying
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Pulses of di↵erent width

I Transforms of wider pulses are more concentrated around f = 0

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0

0.5

1.0

time t (in seconds)

Square pulse of length T=2

-2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

0
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1.0

1.5

2.0

frequency f (in hertz)

Transform, zero crossings at f = ±0.5,±1.0, . . .

I Consistent with interpretation that shorter pulses are faster varying
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The Fourier transform and the DFT

I Let’s compute a Fourier transform by approximating the integral
I Use samples spaced by Ts time units

X (f ) =

Z 1

�1
x(t)e

�j2⇡f t
dt ⇡ Ts

1X

�1
x(nTs)e

�j2⇡f nTs

I Still not computable ) consider only N samples from 0 to N � 1

X (f ) ⇡ Ts

N�1X

k=0

x(nTs)e
�j2⇡f nTs

I This is true for all frequencies. Consider frequencies f = (k/N)fs

X

✓
k

N

fs

◆
⇡ Ts

N�1X

k=0

x(nTs)e
�j2⇡(k/N)fs nTs

= Ts

N�1X

k=0

x(nTs)e
�j2⇡kn/N

I Definition of the DFT of a discrete signal (up to constants)
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DFT as approximation of Fourier transform

I Define x̃ with x̃(n) = x(nTs). The DFT of X̃ = F(x̃) has components

˜

X (k) =

1p
N

N�1X

k=0

x̃(n)e

�j2⇡kn/N
=

1p
N

N�1X

k=0

x(nTs)e
�j2⇡kn/N

=

1

Ts

p
N

X

✓
k

N

fs

◆

x Fourier transform

DFTsample ) Ts

sample )
fs

N

X̃
x̃

X

I Can then aproximate Fourier transform as ) X

✓
k

N
fs

◆
⇡ Ts

p
NX̃ (k)

I Approximation becomes equality at infinity an beyond (N ! 1, Ts ! 0)
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Fourier transform of a complex exponential

I Complex exponential of frequency f0 ) ef0(t) = e j2⇡f0t

I Use inner product form to write the components of X = F(ef0) as

X (f ) = hx , ef i = hef0 , ef i

I We’ve seen that hef0 , ef i = 1 if f = f0 and oscillates (@) if f 6= f0

I The complex exponential does not have a Fourier transform

) Happens because energy of complex exponentials is not finite

I Truncate to T/2  t  T/2 ) multiply by square pulse uT (t)

ẽf0T (t) := ef0(t) uT (t) = e j2⇡f0t uT (t)
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Fourier transform of a complex exponential

I Truncated exponential not null only when T/2  t  T/2 (pulse)

I Then, the Fourier transform X̃T (f ) := F(ẽf0T ) is given by

˜

X (f ) :=

Z 1

�1
e

j2⇡f0t uT (t)e

�j2⇡f t
dt =

Z T/2

�T/2

e

j2⇡f0t
e

�j2⇡f t
dt =

Z T/2

�T/2

e

�j2⇡(f�f0)t
dt

I Same as pulse transform, except for frequency shift in exponent

I For f 6= f0, primitive of e�j2⇡f t is (�1/j2⇡(f � f0))e�j2⇡(f�f0)t . Thus

˜

X (f ) =


�e

�j2⇡(f�f0)T/2

j2⇡(f � f0)
� �e

+j2⇡(f�f0)T/2

j2⇡(f � f0)

�
=

sin(⇡(f � f0)T )

⇡(f � f0)

I For f = f0 we have e�j2⇡(f�f0)t = 1 and X̃ (f ) reduces to ) X̃ (f ) = T
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(⇡(f � f0)T )

�1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T ! 1 truncated exponential approaches exponential

) And shifted sinc becomes infinitely tall ) delta function
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(⇡(f � f0)T )

�1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T ! 1 truncated exponential approaches exponential

) And shifted sinc becomes infinitely tall ) delta function
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Shifted sinc

I Fourier transform of truncated complex exponential is shifted sinc

X̃ (f ) = T sinc(⇡(f � f0)T )

�1 0 1 2 3

0

0.5

1.0

1.5

2.0

frequency f (in hertz)

Transform, (centered at frequency f0 = 1)

I As T ! 1 truncated exponential approaches exponential

) And shifted sinc becomes infinitely tall ) delta function
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Inverse Fourier transform

I Given a transform X , the inverse Fourier transform is defined as

x(t) :=

Z 1

�1
X (f )e j2⇡f t df

I We denote the inverse transform as x = F�1(X )

I Sign in the exponent changes with respect to Fourier transform

I Can write as inner product ) x(t) = hX , e�ti (e�t(f ) = e�j2⇡ft)

I As in the case of the iDFT, this is not the most useful interpretation
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Indeed, the inverse of the Fourier transform

Theorem
The inverse Fourier transform x̃ of the Fourier transform X of a given
signal x is the given signal x

x̃ = F�1(X ) = F�1[F(x)] = x

I Signals with Fourier transforms can be written as sums of oscillations

x(t) =

Z 1

�1
X (f )e j2⇡ft df ⇡ (�f )

1X

n=1
X (fn)e

j2⇡fnt

I This is conceptual, not literal (as was the case in discrete signals)
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Frequency decomposition of a signal

I X (f ) determines the density of frequency f in the signal x(t)

x(t) ⇡
1X

n=1
(�f )X (fn)e

j2⇡fnt

I It represents relative contribution (as opposed to absolute)

f

X (f )

f

X (f )

I Signal on left accumulates mass at low frequencies (changes slowly)

I Signal on right accumulates mass at high frequencies (changes fast)
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Proof of inverse Fourier transform

Proof.

I
We want to show ) x̃ = F�1

(X ) = F�1
[F(x)] = x . Use definitions

I
From definition of inverse transform of X ) x̃(

˜

t) :=

Z 1

�1
X (f )e

j2⇡f t̃
df

I
From definition of transform of x ) X (f ) :=

Z 1

�1
x(t)e

�j2⇡f t
dt

I
Substituting expression for X (f ) into expression for x̃(

˜

t) yields

x̃(

˜

t) =

Z 1

�1

 Z 1

�1
x(t)e

�j2⇡f t
dt

�
e

j2⇡f t̃
df

I
Repeating steps done for DFT and iDFT with integrals instead of sums
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Proof of inverse Fourier transform

Proof.

I
Exchange integration order to integrate first over f and then over t

x̃(

˜

t) =

Z 1

�1
x(t)

 Z 1

�1
e

j2⇡f t̃
e

�j2⇡f t
df

�
dt

I
Pulled x(t) out because it doesn’t depend on k

I
Innermost integral is the inner product between et̃ and et .

Z 1

�1
e

j2⇡f t̃
e

�j2⇡f t
df = het̃ , eti

I
Up until now we repeated same steps we did for DFT and iDFT

I
But we encounter a problem ) het̃ , eti does not exist (infinity, oscillates)

I
To exchange integration order, all integrals have to exist. But one doesn’t

) It is mathematically incorrect to interchange the order of integration
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Proof of inverse Fourier transform

Proof.

I
Replace infinite summation boundaries with finite summation boundaries

x̃(

˜

t)

F!1
=

Z 1

�1
x(t)

 Z F/2

�F/2

e

j2⇡f t̃
e

�j2⇡f t
df

�
dt

I
Eventually, we need to take F ! 1, but not yet.

I
All integrals exist now. Innermost one is a sinc (truncated exponential)

Z F/2

�F/2

e

j2⇡f t̃
e

�j2⇡f t
df = F sinc(⇡(t � ˜

t)F )

I
Substitute sinc for innermost integral on previous expression

x̃(

˜

t)

F!1
=

Z 1

�1
x(t)


F sinc(⇡(t � ˜

t)F )

�
dt
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Proof of inverse Fourier transform

Proof.

I
take the limit formally ) x̃(

˜

t) = lim

F!1

Z 1

�1
x(t)


F sinc(⇡(t � ˜

t)F )

�
dt

I
The sinc function is centered at time t =

˜

t

I
The sinc becomes infinitely tall and thin as we take F ! 1

I
Can then take x(

˜

t) outside of the integral (only “meaningful” value)

x̃(

˜

t) = lim

F!1
x(

˜

t)

Z 1

�1
F sinc(⇡(t � ˜

t)F )dt

I
The sinc function has unit integral )

Z 1

�1
F sinc(⇡(t � ˜

t)F ) = 1

I
We then have x̃(

˜

t) = x(

˜

t) and x̃ = x as we wanted to show
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Fourier transform pairs

I Symmetry between transform and inverse ) Transform pairs

I Interpret given function z as signal. Fourier transform X = F(z) is

X (f ) =

Z 1

�1
z(t)e�j2⇡f tdt

I Conjugate z and interpet z⇤ as a transform. Inverse x = F�1(z⇤) is

x(t) =

Z 1

�1
z⇤(f )e j2⇡f t df =

 Z 1

�1
z(f )e�j2⇡f t df

�⇤

I Same integrals except for switch of integration index and argument

X (f ) = x⇤(t), when f = t

I X is transform of z and z is transform of X ⇤⌘ x⇤ ) They are a pair

) Conjugation unnecessary when signal and transform are real
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The square pulse – sinc Fourier transform pair

I Square of length T ) Sinc with zero crossings at k/T , Tsinc(⇡fT )

t

uT (t)

�T/2

1

T/2

F

F�1

� 3
T

� 2
T

� 1
T

1
T

2
T

3
T

T

f

X (f )

I Sinc with zero crossings at k/F , Tsinc(⇡Ft) ) Square of length F

� 3
F

� 2
F

� 1
F

1
F

2
F

3
F

F

t

x(t) F

F�1

f

uF (f )

�F/2

1

F/2

I Transform of sinc pulse is di�cult to compute through direct operation
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

�(t) := lim
F!1

Fsinc(⇡Ft)

I Limit is �(t) = 1 for t = 0

I But does not exist for other t

) Oscillates between ±1/⇡t
� 1

F
1
F

F

2F

3F

4F

t

Fsinc(⇡Ft)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

�(t) := lim
F!1

Fsinc(⇡Ft)

I Limit is �(t) = 1 for t = 0

I But does not exist for other t

) Oscillates between ±1/⇡t
� 1

F
1
F

F

2F

3F

4F

t

Fsinc(⇡Ft)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

�(t) := lim
F!1

Fsinc(⇡Ft)

I Limit is �(t) = 1 for t = 0

I But does not exist for other t

) Oscillates between ±1/⇡t
� 1

F
1
F

F

2F

3F

4F

t

Fsinc(⇡Ft)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

�(t) := lim
F!1

Fsinc(⇡Ft)

I Limit is �(t) = 1 for t = 0

I But does not exist for other t

) Oscillates between ±1/⇡t
� 1

F
1
F

F

2F

3F

4F

t

Fsinc(⇡Ft)
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

�(t) := lim
F!1

Fsinc(⇡Ft)

I Limit is �(t) = 1 for t = 0

I But does not exist for other t

) Oscillates between ±1/⇡t
� 1

F
1
F

F

2F

3F

4F

t

Fsinc(⇡Ft)

1/t
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Sequence of progressively taller sinc pulses

I Define the continuous time delta function as the limit of a sinc pulse

�(t) := lim
F!1

Fsinc(⇡Ft)

I Limit is �(t) = 1 for t = 0

I But does not exist for other t

) Oscillates between ±1/⇡t
� 1

F
1
F

F

2F

3F

4F

t

Fsinc(⇡Ft)

1/t

I On second thought, maybe we should use a di↵erent definition

I Intuitively, we want to say that the delta function is

) Infinity for t = 0 ) �(t) = 1 for t = 0

) Null for all other t ) �(t) = 0 for t 6= 0

I But the question is what can we say mathematically? ) Integrate
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Limit of inner products

I Integrate the product of a signal with a sinc that is thin and tall

) Recovers the value of the signal at time t = 0

I Since x(0) multiplies most of sinc mass
Z 1

�1
x(t)Fsinc(⇡Ft)dt ⇡ x(0)

I Can write formally as

lim

F!1

Z 1

�1
x(t)Fsinc(⇡Ft)dt = x(0)

� 1
F

1
F

F

2F

3F

4F

t

Fsinc(⇡Ft)

x(t)

1/t

I Observe that integral is the inner product of x with sinc. Then

lim

F!1
hx ,Fsinc(⇡Ft)i = x(0)

I Inner product of a signal with arbitrarily tall sinc is its value at zero
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Delta function

I Define delta function as the entity � that has this property. I.e., if

hx , �i = x(0)

I for any signal x , we say that � is a delta function

I In terms of integrals we write )
Z 1

�1
x(t)�(t)dt = x(0)

I Is the delta function a function? ) Of course not

I We say that � is a distribution or generalized function

I Abstract entity without meaning until we pass through an integral

) Can’t observe directly, but can observe its e↵ect on other signals

I Can define orthogonality and transforms of complex exponentials
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Orthogonality of complex exponentials

I Consider complex exponentials of frequencies f and g

) Frequency f ) ef (t) = e j2⇡ft . Frequency g ) eg (t) = e j2⇡gt

I We define their inner product hef , eg i as the delta function �(f � g)

hef , eg i = �(f � g)

I This is a definition, not a derivation. We are accepting it to be true.

I If it is a definition: Does it make sense? What’s its meaning?
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It makes sense

I Complex exponentials don’t have a mutual inner product.

I But truncated exponentials ef ,T and egT do have a mutual product

) Multiply by uT . Make signal null for t > T/2 and t < T/2

I Can write inner product of truncated signals as

hefT , egT i :=
Z T/2

�T/2

ef (t)e
⇤
g (t)dt =

Z T/2

�T/2

e

j2⇡ft
e

�j2⇡gt
dt =

Z T/2

�T/2

e

j2⇡(f�g)t
dt

I Integral above resolves to a sinc with zero crossings at k/T

hefT , egT i = T sinc

⇥
⇡(f � g)T

⇤

I As T ! 1 truncated signals approach non-truncated counterparts...

I ...and the sinc limit is our first attempt at defining �(f � g)

I Definition didn’t work. But we are looking for sense, not meaning
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What does it mean?

I Delta function is not observable directly, only after integration

I For an arbitrary given signal X (f ) we must have

Z 1

�1
X (f )hefT , egT idf =

Z 1

�1
X (f )�(f � g)df = X (g)

I Equivalently, we can write in terms of integrals

Z 1

�1

Z 1

�1
X (f )e j2⇡fte�j2⇡gt dt df = X (g)

I OK, fine, but really, stop messing and tell us what it means

) When f = g ) hef , ef i = 1. When f 6= g ) hef , eg i = 0

I Can use for intuitive reasoning, but not for mathematical derivations
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Fourier transform of complex exponential

I Again, we can define, not derive, the Fourier transform of eg

I Denote as Xg := F(eg ) the transform of eg . We define Xg as

Xg (f ) = �(f � g)

� 1
g

� 1
2g

1
2g

1
g

t

eg (t) = ej2⇡gt

F

g f

Xg (f ) = �(f � g)

I We draw delta functions with an arrow pointing to the sky
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It makes sense and it has meaning

I Does it make sense to have Xg (f ) = �(f � g)

I Yes ) Transform definition consistent with orthogonality definition

Xg (f ) = heg , ef i = �(f � g)

I Yes ) Definition is consistent with definition of inverse transform

eg (t) =

Z 1

�1
Xg (f )e

j2⇡ftdf =

Z 1

�1
�(f � g)e j2⇡ftdf = e j2⇡gt

I Making Xg (f ) = �(f � g) maintains Fourier analysis coherence

I Definition has clear, albeit, disappointingly trivial meaning

I Exponential of freq. g can be written as exponential of freq. g
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Fourier transform of a shifted delta function

I Denote as Xu the transform of the shifted delta function �(t � u)

I This one we can compute ) Complex exponential of frequency u

Xu(f ) =

Z 1

�1
�(t � u)e�j2⇡ftdt = e�j2⇡fu = e�u(f )

u t

�(t � u)
F

F�1

� 1
u

� 1
u

1
2u

1
u

f

Xu(f ) = e�j2⇡fu

I It is the inverse we need to define as a delta function centered at u
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The delta – constant transform pair

I
When frequencies are null we have constants and unshifted deltas

I
Transform of x(t) = �(t) ) X (f ) = 1. Transform of x(t) = 1 ) X (f ) = �(f )

t

�(t) F

F�1

f

X (f ) = 1

t

x(t) = 1 F

F�1

f

X (f ) = �(f )
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Fourier transform of a cosine

I To find Fourier transform of cosine write as di↵erence of exponentials

cos(2⇡gt) =
1

2

h
e j2⇡gt + e�j2⇡gt

i

I Since Fourier is a linear operator we transform each of the summands

X (f ) =
1

2

h
�(f � g) + �(f + g)

i

t

x(t) = cos(2⇡gt)
F

F�1

�g g

1/2

f

X (f ) = 1
2

⇥
�(f � g) + �(f + g)

⇤

I Pair of deltas of “height 1/2” at (opposite) frequencies ±g
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Three properties we already studied for the DFT

I Fourier transform is conjugate symmetric, linear, and conserves energy

I Transforms of real signals satisfy ) X (�k) = X ⇤(k)

I Linearity ) F(ax + by) = aF(x) + bF(y)

I Energy )
Z 1

�1

��x(t)
��2dt =

��x
��2 =

��X
��2 =

Z 1

�1

��X (f )
��2df

I Not surprising, Fourier transform and DFT are conceptually identical

I Properties follow from properties of inner products and orthogonality

I Both transforms are projections on complex exponentials (inner product)

I And both project onto sets of orthogonal signals
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Symmetry

Theorem
The Fourier transform X = F(x) of a real signal x is conjugate symmetric

X (�f ) = X ⇤(f )

I For real signals only positive half of spectrum carries information

I Conjugate symmetry implies that X (�f ) and X ⇤(f ) are such that...

) Real parts are equal ) Re (X (f )) = Re (X (�f ))

) Imaginary parts are opposites ) Im (X (f )) = Im (X (�f ))

) Moduli are equal ) |X (f )| = |X (�f )|
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Proof of symmetry property

Proof.

I
Write the Fourier transform X (�k) using its definition

X (�f ) :=

Z 1

�1
x(t)e

�j2⇡(�f )t
dt

I
When the signal is real, its conjugate is itself ) x(n) = x

⇤
(n)

I
Conjugating a complex exponential ) changing the exponent’s sign

I
Can then rewrite ) X (�f ) :=

Z 1

�1
x

⇤
(t)

⇣
e

�j2⇡f t
⌘⇤

dt

I
Integration and multiplication can change order with conjugation

X (�f ) =

 Z 1

�1
x

⇤
(t)

⇣
e

�j2⇡f t
⌘⇤

dt

�⇤

= X

⇤
(f )
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Linearity

Theorem

The Fourier transform of a linear combination of signals is the linear combination

of the respective Fourier transforms of the individual signals,

F(ax + by) = aF(x) + bF(y).

Proof.

I
Let Z := F(ax + by). From the Fourier transform definition

Z(f ) =

Z 1

�1

h
ax(t) + by(t)

i
e

�j2⇡ft
dt

I
Expand the product, reorder terms, identify transforms of x and y

Z(f ) = a

Z 1

�1
x(t)e

�j2⇡ft
dt + b

Z 1

�1
y(t)e

�j2⇡ft
dt = aX (f ) + bY (f )
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Energy conservation

Theorem (Parseval)

Let X = F(x) be the Fourier transform of signal x. The energies of x
and X are the same, i.e.,

Z 1

�1

��x(t)
��2dt =

��x
��2 =

��X
��2 =

Z 1

�1

��X (f )
��2df

I It follows that X (f ) is the energy density concentrated around f

I E.g., removing frequency component ⌘ remove corresponding energy

We omit proof as it is analogous to DFT case. Need to use finite integration

region and take limit after exchanging order of integration. Not worth

repeating.
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Shift , modulation

I Two more properties we didn’t study for DFTs

) They (sort of) hold for DFTs, but are di�cult to explain

I Time shift ) multiplication by complex exponential in frequency

I Multiplication by complex exponential in time ) Shift in frequency

I Properties are dual of each other ) inverse transform symmetry

) If one holds the other has to be true
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Time shift

I Given signal x and shift ⌧ define shifted signal x⌧ ) x⌧ = x(t � ⌧)

I Fourier transform of x is X = F(x). Transform of x⌧ is X⌧ = F(x⌧ ).

Theorem
A time shift of ⌧ units in the time domain is equivalent to multiplication
by a complex exponential of frequency �⌧ in the frequency domain

x⌧ = x(t � ⌧) () X⌧ (f ) = e�j2⇡f ⌧X (f )

I The phase of X (f ) changes, but the modulus remains the same

��X⌧ (f )
�� =

��e�j2⇡f ⌧X (f )
�� =

��e�j2⇡f ⌧
��⇥

��X (f )
�� =

��X (f )
��

I Useful in signal detection ) Don’t have to compare di↵erent shifts
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Proof of time shift property

Proof.

I Shifted signal transform ) X⌧ (f ) =

Z 1

�1
x(t � ⌧)e�j2⇡f tdt

I Change of variables u = t � ⌧ . Separate exponent in two factors

X⌧ (f ) =

Z 1

�1
x(u)e�j2⇡f (u+⌧)du =

Z 1

�1
x(u)e�j2⇡f ⌧e�j2⇡fudu

I Pull the term e�j2⇡f ⌧ out of the integral. Identify X (f )

X⌧ (f ) = e�j2⇡f ⌧

Z 1

�1
x(u)e�j2⇡fudu = e�j2⇡f ⌧X (f )
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Modulation

I For signal x and freq. g define modulated signal ) xg = e�j2⇡gtx(t)

I Fourier transform of x is X = F(x). Transform of xg is X⌧ = F(xg ).

Theorem
A multiplication by a complex exponential of frequency g in the time domain
is equivalent to a shift of g units in the frequency domain

xg = e j2⇡gtx(t) () Xg (f ) = X (f � g)

I Dual of time shift result ) Proof not really necessary

I Principle behind transmission of signals on electromagnetic spectrum
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Modulation of bandlimited signals

I Signal x has bandwidth W ) X (f ) = 0 for f /2 [�W /2,W /2]

I Multiplying by complex exponential shifts spectrum to the right

) Re-center spectrum at frequency g

x(t) xg (t)

ej2⇡gt

f

X (f )

-W/2 W/2 f

Xg (f )

g � W/2 g + W/2g

I Can recover signal x by multiplying with conjugate frequency e�j2⇡gt
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Modulation of multiple bandlimited signals

I Modulate two signals with bandwidth W using frequencies g1 and g2

) Spectrum of x recentered at g1. Spectrum of y recentered at g2

x(t) xg1 (t)

ej2⇡g1t

y(t) yg2 (t)

ej2⇡g2t

z(t) = xg1 (t) + yg2 (t)

I Sum up to construct signal z(t) = xg1(t) + yg2(t)

) Can we recover x and y from mixed signal z? ) Yes
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Spectrum of multiple modulated signals

I No spectral mixing if modulating frequencies satisfy g2 � g1 > W

f

Z(f )

g1 � W/2 g1 + W/2g1
g2 � W/2 g2 + W/2g2

I To recover x multiply by conjugate frequency e�j2⇡g1t

I And eliminated all frequencies outside the interval [�W /2,W /2]

I To recover y multiply by conjugate frequency e�j2⇡g2t

I And eliminated all frequencies outside the interval [�W /2,W /2]
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Convolution , Product

I Both, Fourier transforms and DFTs are:

) Conjugate symmetric, linear, & conserve energy

I The Fourier transform also satisfies shift and modulation theorems

) They also (sort of) hold for DFTs (although we haven’t shown)

) As they should, DFTs are close to Fourier transforms

I A sixth property of Fourier transforms, also sort of true for DFTs

) Convolution in time equivalent to multiplication in frequency
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Convolution

I Given signal x with values x(t) and signal h with values h(t)

I Convolution of x with h is the signal y = x ⇤ h with values

[x ⇤ h](t) = y(t) =

Z 1

�1
x(u)h(t � u) du

I Operation is commutative ) [x ⇤ h] ⌘ [h ⇤ x ]

[h⇤x ](t) =
Z 1

�1
h(u)x(t � u) du =

Z 1

�1
h(t � v)x(v) dv = [x ⇤h](t)

I Still, prefer to interpret roles of x and h as asymmetric ) x hits h

x
h

y = x ⇤ h
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Convolution with delta functions

I Convolution with x(t) = �(t) ) y(t) =

Z 1

�1
�(u)h(t � u) du = h(t)

I Hitting h with delta function produces convolution output y ⌘ h

tt = 0

y(t) = h(t)

x(t) = �(t)

t = s

y(t) = h(t � s)

x(t) = �(t � s)

I Convolution with delayed delta x(t) = �(t � s) (u = s in integrand)

y(t) =

Z 1

�1
�(u � s)h(t � u) du = h(t � s)

I Hitting h with delayed delta produces delayed h as output
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Convolution with scaled delta functions

I Convolution with scaled delta function x(t) = ↵�(t)

y(t) =

Z 1

�1
↵�(u)h(t � u) du = ↵

Z 1

�1
�(u)h(t � u) du = ↵h(t)

I Convolution with scaled and delayed delta x(t) = ↵�(t � s)

y(t) =

Z 1

�1
↵�(u � s)h(t � u) du = ↵

Z 1

�1
�(u � s)h(t � u) du = ↵h(t � s)

ft = 0

x(t) = ↵�(t)

y(t) = ↵h(t)
h(t)

t = s

x(t) = ↵�(t � s)

y(t) = ↵h(t � s)
h(t�s)

I Convolution with scaled and delayed delta is scaled and delayed h
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Interpretation ) Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)

y(t) =

Z 1

�1
x(u)h(t � u) du ⇡ Ts

1X

n=�1
x(un)h(t � un)

I For each un ) Scale h(t) by x(un) to produce x(un)h(t)
) Shift to time un to produce x(un)h(t � un)

I Sum over all possible un ) integrate over all u, in the limit

t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coe�cients x(u)
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Interpretation ) Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)
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Interpretation ) Scale, Shift, Sum (3S)

I Approximate convolution with Riemann sum (sampling at u = un)
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t

x(t)

t

h(t)

f

y(t)

I Linear combination of shifted versions of h with coe�cients x(u)
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Time convolution ⌘ Frequency multiplication

Theorem (Convolution theorem)

Given signals x and y with transforms X = F(x) and Y = F(y). The
Fourier transform Z = F(z) of the convolved signal z = x ⇤ y is the
product Z = XY

z = x ⇤ y () Z = XY

I Convolution in time domain ⌘ to multiplication in frequency domain

I When we convolve signals x and y in the time domain

) Their transforms are multiplied in the frequency domain

I When we multiply two transforms in the frequency domain

) The signals get convolved in the time domain
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Proof of convolution theorem

Proof.

I Use the definition of Fourier transform to write the transform of Z as

Z (f ) =

Z 1

�1
z(t)e�j2⇡ft dt

I Use the definition of convolution to write the signal z as

z(t) =

Z 1

�1
x(u)h(t � u) du

I Substitute the expression for z(t) into expression for Z (f )

Y (f ) =

Z 1

�1

✓Z 1

�1
x(u)h(t � u) du

◆
e�j2⇡ft dt
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Proof of convolution theorem

Proof.

I Rewrite the nested integral as a double integral

Y (f ) =

Z 1

�1

Z 1

�1
x(u)h(t � u)e�j2⇡ft du dt

I Make the change of variables v = t � u and write

Y (f ) =

Z 1

�1

Z 1

�1
x(u)h(v)e�j2⇡f (u+v) du dt

I Write e�j2⇡f (u+v) = e�j2⇡fue�j2⇡fv and reorder terms to obtain

Y (f ) =

✓Z 1

�1
x(u)e�j2⇡fu du

◆✓Z 1

�1
h(v)e�j2⇡fv dv

◆

I Factors on the right are the Fourier transforms X (f ) and Y (f )

Signal and Information Processing Fourier transforms 81

System equivalence

I Convolution in time equivalent to multiplication in frequency

) Is this useful in any way? ) Certainly, few facts are more useful

I Convolution theorem implies that these two systems are equivalent

x h y = x ⇤ h

X H Y = HX

F F�1 F F�1 F F�1

I The lower path for design, the upper path for implementation

Signal and Information Processing Fourier transforms 82

The signal and the noise

I There is signal and noise, but what is signal and what is noise?

I We already know answer ) Signal discernible in frequency domain

0 1 2 3 4 5 6 7
-1.0

-0.5

0

0.5

1.0

1.5

2.0

time t in miliseconds

Original signal x(t). It moves randomly, but not that much

I
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The signal and the noise

I There is signal and noise, but what is signal and what is noise?

I We already know answer ) Signal discernible in frequency domain

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Frequency f in Hertz

Fourier transform X (f ) of original signal

I Filter out all frequencies above 100Hz (and below -100Hz)
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Noise removal – Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

) Only frequencies between ±W /2 = ±100Hz are retained

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Frequency f in Hertz

Fourier transform Y (f ) = H(f )X (f ) of filtered signal

I This spectral operation does separate signal from noise
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Noise removal – Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

) Only frequencies between ±W /2 = ±100Hz are retained
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0.5

1.0

1.5

2.0

time t in miliseconds

Filtered signal y(t) with y = x ⇤ h and h = F�1(H) = F�1(uW )

I This spectral operation does separate signal from noise
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Noise removal – Low pass filter implementation

I We can implement filtering in the frequency domain

) Sample ) DFT ) Multiply by H(f ) = uW (f ) ) iDFT

x h(t) = W sinc(⇡Wt) y = x ⇤ h

X H(f ) = uW (f ) Y = HX

F F�1

I We can also implement filtering in the time domain

) Inverse transform of uW (f ) is h(t) = W sinc(⇡Wt)

) Sample (or not) ) Implement convolution with h(t)
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Discrete time signals

I To infinity, but no beyond ) Discrete but infinite time index n 2 Z.
I Discrete time signal x is a function mapping Z to complex value x(n)

x : Z ! C (values x(n) can be, often are, real)

I Sampling time Ts is implicit. Time elapsed from sample n to n + 1

I So is sampling frequency fs = 1/Ts

I E.g., a shifted delta function �(n � n0) has a spike at time n = n0

�(n�n0) =

⇢
1 if n = n0
0 else

�(n � n0)

1

n0Ts

I Signal continuous to plus and minus infinity (unlike discrete signals)
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Inner product and energy

I Given two signals x and y define the inner product of x and y as

hx , yi :=
1X

n=�1
x(n)y

⇤
(n)

I Projection of x on y . How much of x falls in y direction.

I How much x and y are like each other ) orthogonality ⌘ unrelated

I Define the energy of the signal as the inner product with itself

kxk2 := hx , yi =
1X

n=�1
|x(n)|2 =

1X

n=�1
|xR(n)|2 +

1X

n=�1
|xI (n)|2

I Sums extend to plus and minus infinity (they are series, not sums)

) Inner product may not exist. Energy may be infinite
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Energy and inner products of pulses

I Define square pulse of odd length M + 1 as signal uM+1 with values

uM+1 (n) = 1 if � M

2

 n  M

2

uM+1 (n) = 0 else M  n

uM+1(n)

1

-M2 Ts
M
2 Ts

I To compute energy of the pulse we just evaluate the definition

k uM+1 k2 :=
1X

n=�1
| uM+1 (n)|2 =

M/2X

n=�M/2

(1)2 = M + 1

I Can normalize for unit energy as we did for discrete signal case

I But we rather not, as we did for continuous time (to let M grow)

Signal and Information Processing Sampling 5

Inner product of a pulse and a shifted pulse

I Inner product of pulse uM+1(n) and shifted pulse uM+1(n � K )

D
uM+1 (n),uM+1(n � K)

E
=

1X

n=�1
uM+1(n) uM+1 (n � K)

uM+1(n)

1

-M2 Ts
M
2 Ts KTsK � M

2 Ts K + M
2 Ts

I For shifts 0  K  M + 1, signals overlap for K �M/2  n  M/2

D
uM+1 (n),uM+1(n � K)

E
=

M/2X

n=K�M/2

(1)(1) = (M + 1)� K

I Proportional to overlap ) how much pulses “are like each other”
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The discrete time Fourier transform (DTFT)

I The DTFT of discrete signal x is the function X : R ! C with values

X (f ) := Ts

1X

n=�1
x(n)e�j2⇡f nTs

I Denote as X = F(x). Argument f is continuous and called frequency

I Sum need not exist ) Not all discrete time signals have a DTFT

I Definition depends on sampling time Ts . Facilitates connections later

I Fourier transform (FT) has continuous input and continuous output

I DFT is also well matched ) It has discrete input and discrete output

I DTFT is mismatched ) It has discrete input but continuous output

) A little odd, but of little consequence
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DTFT is also an inner product

I Define ef Ts with values ef Ts (n) = Tse
j2⇡f nTs . Write as inner product

X (f ) = hx , ef Ts i = Ts

1X

n=�1
x(n)e⇤f Ts

(n)

I As in the case of the FT and the DFT, the DTFT value X (f ):

) Is the projection of x onto discrete oscillation of freq. f

) Measures how much x(n) resembles discrete oscillation of freq. f

I Conceptually identical to FT & DFT ) Why a third definition?

) All three, discrete time, discrete, and continuous signals exist

) Deep connections between FT and DTFT and DTFT and DFT

I Analytical tool (as the FT). Not a computational tool (as the DFT)
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Periodicity of DTFT

Theorem
The DFTF X = F(x) of discrete time signal x is periodic with period fs

X (f + fs) = X (f ), for all f 2 R.

I Any frequency interval of length fs contains all DTFT information

) We will use the canonical set ) f 2 [�fs/2, fs/2]

I For sampling time Ts , freqs. larger than fs/2 have no physical meaning

) Frequency �f is (more or less) the same as frequency f
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Proof of periodicity property

Proof.

I Use the DTFT definition to write X (f + fs) as

X (f + fs) = Ts

1X

n=�1
x(n)e

�j2⇡(f+fs )nTs

I Separate the complex exponential in two factors

X (f + fs) = Ts

1X

n=�1
x(n)e

�j2⇡f nTs
e

�j2⇡fs nTs

I Use fsTs = 1 in last factor ) e�j2⇡fsnTs = e�j2⇡n =
�
e j2⇡

��n = 1

I Substitute in previous expression and observe definition of DTFT

X (f + fs) = Ts

1X

n=�1
x(n)e

�j2⇡f nTs
= X (f )
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DTFT of a square pulse

I Consider square pulse of odd length M + 1

uM+1 (n) = 1 if � M

2

 n  M

2

uM+1 (n) = 0 else M  n

uM+1(n)

1

-M2 Ts
M
2 Ts

I To compute the pulse DTFT X = F(uM+1) evaluate the definition

X (f ) = Ts

1X

n=�1
uM+1(n)e

�j2⇡f nTs = Ts

M/2X

n=�M/2

e�j2⇡f nTs

I Write down the individual elements of the sum to express DTFT as

X (f )

Ts
= ej2⇡f (�M

2 )Ts + ej2⇡f (�M
2
+1)Ts + . . .+ ej2⇡f (M

2
�1)Ts + ej2⇡f (M

2 )Ts
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DTFT of a square pulse (computation, 1 of 2)

I Multiply by e j2⇡f (
1
2 )Ts and e j2⇡f (�

1
2 )Ts to write the equalities

ej2⇡f ( 1
2 )Ts

X (f )

Ts
= ej2⇡f (�M

2
+ 1

2 )Ts + ej2⇡f (�M
2
+ 3

2 )Ts + . . .+ ej2⇡f (M
2
� 1

2 )Ts + ej2⇡f (M
2
+ 1

2 )Ts

e�j2⇡f ( 1
2 )Ts

X (f )

Ts
= ej2⇡f (�M

2
� 1

2 )Ts + ej2⇡f (�M
2
+ 1

2 )Ts + . . .+ ej2⇡f (M
2
� 3

2 )Ts + ej2⇡f (M
2
� 1

2 )Ts

I First term in first row = second term in second row

I Second term in first row = third term in second row (unseen)
.

.

.

I Penultimate term in first row = last term in second row

I Subtracting second row from first row only two terms survive

) The last term in the first row and the first term in the second row
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DTFT of a square pulse (computation, 1 of 2)
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2
� 3

2 )Ts+ej2⇡f (M
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.

I Penultimate term in first row = last term in second row
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) The last term in the first row and the first term in the second row
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DTFT of a square pulse (computation, 2 of 2)

I Implementing the subtraction results in the equality

X (f )

Ts

h
e

j2⇡f
(

1
2 )

Ts � e

�j2⇡f
(

1
2 )
Ts

i
= e

j2⇡f
(

M
2
+ 1

2 )
Ts � e

j2⇡f
(

�M
2
� 1

2 )
Ts

I Complex exponentials are conjugate. Subtraction cancels real parts
I We keep imaginary parts only, which are sines

X (f )

Ts


2j sin

✓
2⇡f

✓
1

2

◆
Ts

◆�
= 2j sin

✓
2⇡f

✓
M + 1

2

◆
Ts

◆

I Solve for X (f ) and simplify terms. Pulse length T = (M + 1)Ts

X (f ) = Ts

sin
�
⇡f (M + 1)Ts

�

sin
�
⇡f Ts

� = Ts

sin
�
⇡f T

�

sin
�
⇡f Ts

�

I A slow sine over a fast sine ) not unlike a sinc pulse
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Evaluation of the DTFT of a square pulse

I Sampling freq. fs = 100Hz. Pulse length in time T = 110ms pulse

) Resulting in M + 1 = 11 nonzero samples

-150 �100 = �fs -50 = fs/2 0 -50 = fs/2 100 = fs 150

-2.0

0

2.0

4.0

6.0

8.0

10.0

12.0

frequency f in Hertz

DTFT X (f ) of a square pulse of duration T = 110ms sampled fs = 100Hz (M = 11 nonzero samples)

I DTFT is periodic, as we know it should. Focus on f 2 [�fs/2, fs/2]
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The DTFT of a square pulse and the sinc pulse

I Similar to the sinc pulse ) T

sin

�
⇡f T

�

⇡f T
= T sinc

�
⇡f T

�

I Fourier transform of unsampled pulse

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75

-2.0

0

2.0

4.0

6.0

8.0

10.0

frequency f in Hertz

DTFT X (f ) of square pulse (fs = 100Hz, T = 90ms, M = 9)

I Some di↵erence for f close to ±f2/2. Also, sinc is not periodic
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Pulses of di↵erent length

I As the pulse widens, the DTFT concentrates. Same as FT and DFT

I As pulse widens di↵erence with FT of continuous time pulse diminishes

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75
�1

0

1

2

3

DTFT X (f ) of square pulse (fs = 100Hz, T = 30ms, M = 3)

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75

0

2

4

DTFT X (f ) of square pulse (fs = 100Hz, T = 50ms, M = 5)

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75

0

5

10

DTFT X (f ) of square pulse (fs = 100Hz, T = 90ms, M = 9)

-75 -50 = fs/2 -25 0 25 -50 = fs/2 75

0

10

DTFT X (f ) of square pulse (fs = 100Hz, T = 170ms, M = 17)
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The FT and the DTFT

I Interpret signal x(n) as samples xC (nTs) of continuous signal xC (t)

I DTFT X = F(x) is Riemann sum approximation of FT XC = F(xC )

XC (f ) =

Z 1

�1
xC (t)e

�j2⇡ftdt ⇡ Ts

1X

n=�1
x(n)e�j2⇡fnTs = X (f )

I Only frequencies between ±fs/2 have meaning in DTFT ) Chop

I FT XC (f ) ) sample in time, chop in frequency ) DTFT X (f )
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The DTFT and the DFT

I Chop x to n 2 [0,N � 1] ) Discrete signal xD with DFT XD = F(xD)

I If elements discarded from x are small

X (f ) = Ts

1X

n=�1
x(n)e

�j2⇡fnTs ⇡ Ts

N�1X

n=0

xD(n)e
�j2⇡fnTs

I True for all frequencies f . Sample in frequency at f = (k/N)fs

X

✓
k

N

fs

◆
⇡ Ts

N�1X

n=0

xD(n)e
�j2⇡(k/N)fs nTs

= Ts

N�1X

n=0

xD(n)e
�j2⇡kn/N

= Ts

p
N XD(k)

I DTFT ) Chop in time, sample in frequency ) DFT
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The FT, the DTFT, and the DFT

I The DTFT bridges FT and DFT by dual sample and chopping

xC

sample ) Ts

x

chop ) [0,NTs ]

xD

FT

DTFT

DFT

XC

chop ) ±
fs

2

X

sample )
fs

N

XD

I The argument was careless though ) We will probe deeper
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Inverse discrete time Fourier transform
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The inverse (i)DTFT

I The iDTFT x of DTFT X , is the discrete time signal with elements

x(n) :=

Z fs/2

�fs/2
X (f )e j2⇡f nTs df

I We denote x = F�1(X ). Sampling time Ts (freq. fs) implicit in X

I Sign in exponent changes with respect to DTFT.

I DTFT is an indefinite sum but iDTFT is a definite integral

) DTFT mismatch. Odd, but of little consequence

I Since DTFT X is periodic, any interval of width fs does it. E.g.

x(n) =

Z fs/2

�fs/2
X (f )e j2⇡f nTs df =

Z fs

0

X (f )e j2⇡f nTs df
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Indeed, the iDTFT is the inverse of the DTFT

Theorem
The iDTFT x̃ of the DTFT X of the discrete time signal x is the signal x

x̃ = F�1(X ) = F�1[F(x)] = x .

I What a surprise. It’s getting tired. But this is the last one.

I As usual, discrete time signals can be written as sums of oscillations

x(n) =

Z fs/2

�fs/2
X (f )e j2⇡fnTs df ⇡ (�f )

N/2X

n=�N/2

X (fk)e
j2⇡fknTs

I Conceptual; cf. continuous signals. Not literal; cf. discrete signals.
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Proof of inverse Fourier transform

Proof.

I
We want to show ) x̃ = F�1

(X ) = F�1
[F(x)] = x . Use definitions

I
Definition of inverse transform of X ) x̃(ñ) :=

Z fs/2

�fs/2

X (f )e

j2⇡f ñTs
df

I
From definition of transform of x ) X (f ) := Ts

1X

n=�1
x(n)e

�j2⇡f nTs

I
Substituting expression for X (f ) into expression for x̃(ñ) yields

x̃(ñ) =

Z fs/2

�fs/2


Ts

1X

n=�1
x(n)e

�j2⇡f nTs

�
e

j2⇡f ñTs
df

I
Same as done for iDFT and iFT but with one integral and one sum
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Proof of inverse Fourier transform

Proof.

I
Exchange integration with sum ) Integrate first over f , then sum over n

x̃(ñ) = Ts

1X

n=�1
x(n)

 Z fs/2

�fs/2

e

j2⇡f ñTs
e

�j2⇡f nTs
df

�

I
Pulled x(n) out because it doesn’t depend on f

I
Up until now we repeated steps we already did for iDFT and iFT

) They worked for iDFT but didn’t for iFT ) They work here.

I
The innermost integral we have computed repeatedly ) It’s a sinc

Z fs/2

�fs/2

e

j2⇡f ñTs
e

�j2⇡f nTs
df = fssinc(⇡fs(n � ñ)Ts) = fssinc(⇡(n � ñ))

I
We used fsTs = 1 in second equality. Recall that n and ñ are discrete
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Proof of inverse Fourier transform

Proof.

I
Evaluate sinc for n = ñ ) fssinc(⇡(n � ñ)) = fs because sinc(0) = 1

I
Evaluate sinc for n 6= ñ ) fssinc(⇡(n � ñ)) = 0 because sinc(k⇡) = 0

I
Lucky for us, the innermost integral was a delta function in disguise

Z fs/2

�fs/2

e

j2⇡f ñTs
e

�j2⇡f nTs
df = fs�(n � ñ)

I
Substituting in expression for x̃(ñ), only one term in sum is not null

x̃(ñ) = Ts fs

1X

n=�1
x(n)�(n � ñ) = x(ñ)

I
Also used fsTs = 1. Since we have x̃(ñ) = x(ñ) for all ñ ) x̃ ⌘ x

Signal and Information Processing Sampling 27

From time to frequency and back

I If a discrete signal x has a DTFT X , its DTFT has an iDTFT

) The iDTFT of the DTFT X recovers original signal x

I The DTFT is a transformation without loss of information

) Can always come back from frequency domain to time domain

x X

DTFT

iDTFT

I True of DFT–iDFT and FT–iFT as well. Hadn’t need to mention yet
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The DTFT of a constant

I Discrete time constant x has value x(n) = 1 for all n. The DTFT is

X (f ) = Ts

1X

n=�1
x(n)e�j2⇡fnTs = Ts

1X

n=�1
e�j2⇡fnTs

I It does not exist. For n = 0, X (f ) ! 1, for other n oscillates

I We know how to solve this problem ) Use delta function

I Write constant as pulse limit. DTFT of pulse we saw is ratio of sines

I Then, can think of writing DTFT of constant as the limit

X (f ) = lim
M!1

Ts

M/2X

n=�M/2

e�j2⇡fnTs = lim
M!1

Ts
sin(⇡f (M + 1)Ts)

sin(⇡fTs)

I Except that it is this limit the one that does not exist
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The limit of the DTFT of a square pulse

I As M grows, DTFT grows and narrows around f = 0. And f = ±kfs

) But it doesn’t decrease for other frequencies

�fs � fs
2

fs
2

fs

T

2T

4T

f

Ts
sin(⇡f (M + 1)Ts )

sin(⇡fTs )

x(t)

Ts/sin(⇡fTs )

I But when multiplying by Y (f ) and integrating we recover Y (0)

lim
M!1

Z fs/2

�fs/2
Y (f )Ts

sin(⇡f (M + 1)Ts)

sin(⇡fTs)
df = Y (0)

I Define (already did) delta function as the entity with this property
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The Dirac train

I The delta function � is a generalized function such that for all Y

Z 1

�1
Y (f )�(f ) df = Y (0)

I We can then define the DTFT of a constant as a delta function

I Almost correct, but observe that we also have peaks at f = ±kfs
I The DTFT of a constant is then defined as

X (f ) =
k=1X

k=�1
�(f � kfs)

�4fs �3fs �2fs �fs fs 2fs 3fs 4fs f

k=1X

k=�1
�(f � kfs )

I We call this signal a train of deltas, a Dirac train, or a Dirac comb
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What it means? Does it make sense?

I Informally ) �(f ) = 1 for f = 0, f = ±fs , f = ±2fs , . . .

) �(f ) = 0 for all other f

I Mathematically, only has sense after multiplication and integration

Z 1

�1
Y (f )X (f ) df =

Z 1

�1
Y (f )

k=1X

k=�1

�(f � kfs) df =

k=1X

k=�1

Y (f � kfs)

I Recovers the values of Y (f ) at the points where the train has spikes

I In particular, the iDTFT recovers the constant

Z fs/2

�fs/2

X (f )e

j2⇡fnTs
df =

Z fs/2

�fs/2

k=1X

k=�1

�(f � kfs)e
j2⇡fnTs

df = e

j2⇡0nTs
= 1

I Definition makes sense ) Preserves consistency of DTFT analyses
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The constant - Dirac train non-pair

I DTFT of a constant is a Dirac train ) suspiciously similar

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

F

F�1

-4fs -3fs -2fs -fs 0 fs 2fs 3fs 4fs f

I Can we use duality to say the FT of a train is another train?

) Not quite. Left signal is discrete. Right signal is continuous

I Not a transform pair ) Can’t define Dirac train in discrete time

) Definition of delta functions relies on integration

I But we are on to something
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A Dirac train in the time domain

I For continuous time index t define continuous signal x as

xC (t) = Ts

1X

n=�1
�(t � nTs)

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

I This signal is a Dirac train in time. Not a discrete time constant

I Being continuous, the Dirac train has a Fourier transform XC

XC (f ) =

Z 1

�1
xC (t)e

�j2⇡ft dt =

Z 1

�1


Ts

1X

n=�1
�(t�nTs)

�
e�j2⇡ft dt

I Can be related to the DTFT of a discrete time constant
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DTFT of a constant ⌘ FT of a Dirac train

I Exchange order of sum and integration, use delta function definition

XC (f ) = Ts

1X

n=�1

 Z 1

�1
�(t � nTs)e

�j2⇡f t dt

�
= Ts

1X

n=�1
e�j2⇡f nTs

I The sum on the right is the DTFT of a constant

X (f ) = Ts

1X

n=�1
x(n)e�j2⇡fnTs = Ts

1X

n=�1
e�j2⇡f nTs

I The DTFT of a constant and the FT of a Dirac train coincide

XC (f ) = X (f ) =
1X

k=�1
�(t � kfs)

I Both are a Dirac trains in frequency with spacing fs
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The Dirac train - Dirac train FT pair

I FT of Dirac train with spacing Ts is a Dirac train with spacing fs

xC (t) =
1X

n=�1
�(t � nTs) () XC (f ) =

1X

k=�1
�(t � kfs)

I The set of Dirac trains is an invariant class with respect to the FT

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

F

F�1

-4fs -3fs -2fs -fs 0 fs 2fs 3fs 4fs f

I This is a Fourier transform pair because both are continuous signals
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Fundamentally di↵erent but equal

I Discrete time constant sampled at Ts ) DTFT ) Dirac train spaced fs

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

F

F�1

-4fs -3fs -2fs -fs 0 fs 2fs 3fs 4fs f

I Dirac train spaced every Ts ) FT ) Dirac train spaced every fs

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

F

F�1

-4fs -3fs -2fs -fs 0 fs 2fs 3fs 4fs f

I Discrete time constant fundamentally di↵erent from continuous time train

I Thus, DFTF of constant fundamentally di↵erent from FT of Dirac train

I But they coincide ) Something deeper is at play here
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Sampling

I Consider continuous time signal x and sampling time Ts (freq. fs)

I The sampled signal xs is a discrete time signal with values

xs(n) = x(nTs)

I Creates discrete time signal xs from continuous time signal x

I We’ve been doing this since first day. We want to understand it now

) Information lost from x when discarding all but samples x(nTs)?

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t

x xsSample ) Ts

x xs

Ts
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Sampling as multiplication by a Dirac train

I Equivalently, we represent sampling as multiplication by a Dirac train

x�(t) = x(t)⇥ Ts

1X

n=�1
�(t � nTs)

I Indeed, since the only value that is relevant for �(t � nTs) is x(nTs)

x�(t) = Ts

1X

n=�1
x(nTs)�(t � nTs)

I We can construct xs if given x� and construct x� if given xs

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t -4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts

t
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DTFT & FT of sampled signals coincide

Theorem
The DTFT Xs = F(xs) of the sampled signal xs and the FT X� = F(x�)
of the Dirac sampled signal x� coincide

X�(f ) = Xs(f )

I True for all freqs., not just between ±fs/2. FT X�(f ) is periodic

I We already saw this property for sampling continuous time constants

) Discrete time constant and Dirac train

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts
t -4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts

t
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DTFT & FT of sampled signals coincide (proof)

Proof.

I
Write the definition of the FT X� = F(x�) of Dirac sampled signal

X�(f ) =

Z 1

�1


Ts

1X

n=�1
x(nTs)�(t � nTs)e

�j2⇡f t

�
df

I
Exchange the order of summation and integration

X�(f ) = Ts

1X

n=�1

 Z 1

�1
x(nTs)�(t � nTs)e

�j2⇡f t
df

�

I
Multiplying by delta and integrating recovers value at spike. Thus,

X�(f ) = Ts

1X

n=�1
x(nTs)e

�j2⇡f nTs
= Ts

1X

n=�1
xs(n)e

�j2⇡f nTs
= Xs(f )

I
We use xs(n) = x(nTs) and definition of DTFT in last two equalities
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Product in time ) convolution in frequency

I When we convolve signals in time we multiply their spectra

I Duality ) When we multiply them in time we convolve their spectra

) Don’t need to prove. It has to be true because iFT is like an FT

I We obtain Dirac sampled signal x� by multiplying x with Dirac train

x�(t) = x(t)⇥ Ts

1X

n=�1
�(t � nTs)

I Spectrum X� is convolution of X = F(x) with the FT of Dirac train

X� = X ⇤ F

Ts

1X

n=�1
�(t � nTs)

�

I Fourier transform of the Dirac train (Ts) is another Dirac train (fs)
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The spectrum of the Dirac sampled signal

I Spectrum X� convolves X with a Dirac train with spacing fs

X� = X ⇤
 1X

k=�1
�(t � kfs)

�

I But convolution is a linear operation ) X� =
1X

k=�1
X ⇤ �(f � kfs)

I Convolving with shifted delta is a shift ) X�(f ) =
1X

k=�1
X (f � kfs)

Theorem
Spectrum of sampled signal is a sum of shifted versions of original spectrum

Xs(f ) = X�(f ) =
1X

k=�1
X (f � kfs)
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Spectrum periodization

I We start with the spectrum X of x and the Dirac train in frequency

I Sampling to create xs ) Multiplication with time Dirac train (Ts)

I Which in frequency domain entails convolution with Dirac train (fs)

I Which is equivalent to summing shifted copies of the spectrum X

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I FT X of continuous time signal x
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Spectrum periodization

I We start with the spectrum X of x and the Dirac train in frequency

I Sampling to create xs ) Multiplication with time Dirac train (Ts)

I Which in frequency domain entails convolution with Dirac train (fs)

I Which is equivalent to summing shifted copies of the spectrum X

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I First convolution step is to duplicate and shift spectrum to kfs
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Spectrum periodization

I We start with the spectrum X of x and the Dirac train in frequency

I Sampling to create xs ) Multiplication with time Dirac train (Ts)

I Which in frequency domain entails convolution with Dirac train (fs)

I Which is equivalent to summing shifted copies of the spectrum X

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Second convolution step is to sum all shifted copies
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Information loss

I When sampling x to xs we lose information at high frequencies

) Everything that happens above fs/2 is lost

) Freqs. close to fs/2 distorted by superposition with freqs. above fs/2

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I We say that the sampling process results in spectral aliasing

) When fs is small, severe aliasing destroys all information
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Increasing sampling time

I As we increase the sampling time, aliasing becomes less severe

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Aliasing eventually disappears ) Approximately true in general

I But exactly true for bandlimited signals.

) Signals with X (f ) = 0 for f /2 [�W /2,W /2] (bandwidth W )
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Increasing sampling time

I As we increase the sampling time, aliasing becomes less severe

-fs -fs/2 0 fs/2 fs 3fs/2 2fs f

I Aliasing eventually disappears ) Approximately true in general

I But exactly true for bandlimited signals.

) Signals with X (f ) = 0 for f /2 [�W /2,W /2] (bandwidth W )
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Increasing sampling time

I As we increase the sampling time, aliasing becomes less severe

-fs -fs/2 0 fs/2 fs 3fs/2 f

I Aliasing eventually disappears ) Approximately true in general

I But exactly true for bandlimited signals.

) Signals with X (f ) = 0 for f /2 [�W /2,W /2] (bandwidth W )
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Sampling of bandlimited signals

I We have therefore proved the following theorem

Theorem
Let x be a signal of bandwidth W . If the signal is sampled at a frequency
fs � W we have that

X�(f ) = Xs(f ) = X (f )

for all frequencies f 2 [�W /2,W /2]

I There is no loss of information ) We can recover x from x�

I Use low pass filter to remove all frequencies outside of [�W /2,W /2]
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Sampling of bandlimited signals

I Signal with bandwidth W ) X (f ) = 0 for all f /2 [�W /2,W /2]

I Upon sampling, spectrum is periodized but not aliased

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I This means that sampling entails no loss of information

) Can low pass xs to recover x.
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Non-vanishing sampling time

I That there is no loss of information is quite surprising

I We are discarding part of the signal, indeed, most of the signal

t

x(t)

Ts

t

xs (n)

I It is reasonable to expect that we don’t lose information as Ts ! 0

) But we don’t have to let the sampling time vanish

I Any sampling time Ts 
1

W
yields fs � W and no information loss
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Sampling of non-bandlimited signals

I Information in frequency components larger than fs/2 is lost

) Nothing we can do about that other than increasing fs

I Can’t capture variability faster than fs/2 with sampling time Ts

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I But aliasing is also distorting information in components below fs/2
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Prefiltering

I To avoid aliasing distortion we preprocess x with a low pass filter

I I.e., we transform x into signal xfs with spectrum Xfs = F(xfs )

Xfs (f ) = X (f )ufs (f ) ufs (f )
X Xfs = ufs (f )X (f )

I The signal xfs has bandwidth fs and can be sampled without aliasing

) Frequency components below fs/2 are retained with no distortion

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f
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Prefiltering in time domain

I Prefiltering can be implemented as convolution in the time domain

xfs = x ⇤ h

I where h is iFT of low pass filter X (f )ufs ) h(t) = fssinc(⇡fst)

h(t) = fssinc(⇡fs t) Sample ) Ts
x xfs = x ⇤ h xs

I Convolution has to be implemented in continuous time (circuits)
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Low pass filter recovery

I Bandwidth W (X (f ) = 0 for all f /2 [�W /2,W /2]). Sample at fs � W

I Can recover signal x from sampled signal xs with low pass filter

) What does exactly mean that “we use a low pass filter”?

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I Can’t filter discrete time signal and have continuous time magically appear

t

xs (n)

t

x�(t)

I But we can filter the continuous time Dirac sampled signal x�(t)
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Ideal sampling – reconstruction system

I
We sample by keeping observations at nTs ) xs(n) = x(nTs)

t

x(t)

Sample ) Ts
x xs

t

xs (n)

I
To reconstruct we modulate Dirac train ) x�(t) = Ts

1X

n=�1
xs(n)�(t � nTs)

I
And low pass filter Dirac train x� ) x = x� ⇤

h
fssinc(⇡fst)

i

t

xs (n)

t

x�(t)

t

x(t)

Modulate Dirac train h(t) = fs sinc(⇡fs t)
xs x�(t) x = x� ⇤ h
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Reconstruction with a pulse train

I Dirac train is an abstract representation ) Can’t be generated

I Modulate train of (narrow) pulses

xp(t) = Ts

1X

n=�1
xs(n)p(t � nTs)

I If pulse is su�ciently narrow ) xp ⇡ x�

I E.g. p(t) =
1

T
sinc

⇣
⇡
t

T

⌘
with T ⌧ Ts -3T -T T 3T

1/T

t

p(t)

I Scale pulse by x(n), shift to t = nTs , sum all copies ) convolution?

-2Ts -Ts Ts 2Ts

1/T

t

x(t)
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Dirac train representation of pulse train

I Pulse train modulation can be represented as convolution with x�

xp = p ⇤ x�

I Indeed use definition of x� and convolution linearity to write p ⇤ x� as

xp = p ⇤

Ts

1X

n=�1
xs(n)�(t � nTs)

�
= Ts

1X

n=�1
xs(n)

h
p ⇤ �(t � nTs)

i

I Convolving with shifted delta is a shift ) xp(t) = Ts

1X

n=�1
xs(n)p(t� nTs)

-2Ts -Ts Ts 2Ts

1/T

t

xp(t)
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Spectrum of modulated pulse train

I
Convolution in time is equivalent to multiplication in frequency

I
Then, the spectrum of Xp = F(xp) is the product of P = F(p) and X�

Xp(f ) = P(f )X�(f ) = P(f )

1X

k=�1

X (f � kfs)

I
Reconstructed signal xr obtained by low pass filtering. FT Xr = F(xr ) is

Xr (f ) = P(f )X�(f ) ufs (f ) = P(f ) ufs (f )

1X

k=�1

X (f � kfs)

I
Low pass filter eliminates all frequencies outside of [�fs/2, fs/2]

Xr (f ) = P(f ) ufs (f )X (f )

Modulate train ) P(f ) Low pass ) ufs (f )
X (f )

P(f )
1X

k=�1
X (f � kfs )

P(f ) ufs (f )X (f )
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More on the spectrum of sampling and recovery

I We start with a bandlimited signal that we sample at fs = W

I Spectrum is ) X (f )

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I
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More on the spectrum of sampling and recovery

I The spectrum Xs of the sampled signal is periodization of X

) Xs(f ) =
1X

k=�1
X (f � kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I
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More on the spectrum of sampling and recovery

I To recover the signal we modulate a pulse train. Pulse FT is P(f )

) Xp(f ) = P(f )⇥
1X

k=�1
X (f � kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I
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More on the spectrum of sampling and recovery

I We finalize recovery with a low pass filter of bandwidth fs

) Xr (f ) = ufs (f )P(f )X (f � kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Good pulse for recovery ) X (f ) = 1 for f 2 [�fs/2, fs/2]
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Modulation of a sinc train

I Do we know a pulse with X (f ) = 1 for f 2 [�fs/2, fs/2] ?

) We do! ) The sinc pulse fssinc(⇡fst)
I Don’t even need to use low pass filter ) sinc pulse already lowpass

Theorem
A signal of bandwidth W  fs can be recovered from samples x(nTs) as

x(t) = fsTs

1X

n=�1
x(nTs)sinc

�
⇡fs(t � nTs)

�

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)

I Reconstruction without a Dirac train ) (mostly) implementable
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Modulation of a sinc train

I Do we know a pulse with X (f ) = 1 for f 2 [�fs/2, fs/2] ?

) We do! ) The sinc pulse fssinc(⇡fst)
I Don’t even need to use low pass filter ) sinc pulse already lowpass

Theorem
A signal of bandwidth W  fs can be recovered from samples x(nTs) as

x(t) = fsTs

1X

n=�1
x(nTs)sinc

�
⇡fs(t � nTs)

�

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)

I Reconstruction without a Dirac train ) (mostly) implementable
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Modulation of a sinc train

I Do we know a pulse with X (f ) = 1 for f 2 [�fs/2, fs/2] ?

) We do! ) The sinc pulse fssinc(⇡fst)
I Don’t even need to use low pass filter ) sinc pulse already lowpass

Theorem
A signal of bandwidth W  fs can be recovered from samples x(nTs) as

x(t) = fsTs

1X

n=�1
x(nTs)sinc

�
⇡fs(t � nTs)

�

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)

I Reconstruction without a Dirac train ) (mostly) implementable
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Modulation of a sinc train

I Do we know a pulse with X (f ) = 1 for f 2 [�fs/2, fs/2] ?

) We do! ) The sinc pulse fssinc(⇡fst)
I Don’t even need to use low pass filter ) sinc pulse already lowpass

Theorem
A signal of bandwidth W  fs can be recovered from samples x(nTs) as

x(t) = fsTs

1X

n=�1
x(nTs)sinc

�
⇡fs(t � nTs)

�

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)

I Reconstruction without a Dirac train ) (mostly) implementable
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From the FT to the DFT

Discrete time signals

Discrete time Fourier transform

Inverse discrete time Fourier transform

DTFT of a constant

Fourier transform of a Dirac train

Sampling

Discussions

Signal reconstruction

From the FT to the DFT
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The DFT as a proxy for the FT

I We use the DFT for frequency analysis of continuous time signals

I Justifiable ) They’re approximately equal for small Ts and large N

x

sample ) Ts

xs

chop ) [0,NTs ]

xD

FT

DTFT

DFT

X

chop ) ±
fs

2

Xs

sample )
fs

N

XD

I Sampling ) Can understand what is lost in the approximation
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Sampling ) From the FT to the DTFT

I Sampling in time ⌘ periodization (not “chop”) in frequency

xs(n) = x(nTs) () Xs(f ) =

1X

k=�1

X (f � kfs)

I Replicate. Shift to recenter at f = kfs . Add all shifted copies

I If signal is bandlimited ) Xs(f ) = X (f ) for all f 2 [�fs/2, fs/2]

) Spectra coincide perfectly ) No approximation

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I In general, signals are not bandlimited and we expect some distortion
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Lost in approximation

I Signal is not bandlimited ) freqs. above fs/2 not seen in DTFT

I Without prefiltering ) aliasing distorts freqs. close to fs/2

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I With prefiltering ) all freqs. below fs/2 approximated correctly

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Which means that we do use a low pass filter prior to sampling

Signal and Information Processing Sampling 78



The DTFT as proxy for the FT (1 of 3)

I Filter ) multiply in frequency by H ) convolve in time with h

Xf = HX () xf = x ⇤ h

I Sample filtered signal Xf ) Periodize filtered spectrum Xf

xs(n) = xf (nTs) () Xs(f ) =
1X

k=�1
Xf (f � kfs)

I Distortion (information loss) occurs during filtering step

) Frequency ) Loss above fs/2 + some distortion if H not perfect

) Time ) Convolution with h
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The DTFT as proxy for the FT (2 of 3)

I Continuous time signal x with FT X ) Not necessarily bandlimited

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

x(t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

X (f )

I Continuous time filtered signal xf ) filtering smoothes (distorts) x

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

xf (t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xf (f )

I Sampled signal xs obtained from filtered xf ) No further distortion

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts
t

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )

Signal and Information Processing Sampling 80

The DTFT as proxy for the FT (3 of 3)

I Filtering (chop) induces convolution. Sampling induces periodization

x

conv. ) x ⇤ h

xf

sample ) Ts

xs

FT

FT

DTFT

X

filter ) HX

Xf

period ) ± fs

Xs

I Small distortion ) Make fs so that X (f ) ⇡ 0 for f /2 [�fs/2, fs/2]
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Windowing ) From the DTFT to the DFT

I DTFT of sampled signal xs is ) Xs(f ) = Ts

1X

n=�1
x(n)e�j2⇡fnTs

I Windowed signal ) Nullify signal values outside of interval [0,N � 1]

xw (n) = xs(n), for all n 2 [0,N � 1]

I Windowed signal is xw (n) = 0 outside of window (all n /2 [0,N � 1])

I DTFT of windowed signal xw is ) Xs(f ) = Ts

N�1X

n=0

x(n)e�j2⇡fnTs
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Spectrum after windowing

I Windowing equivalent to multiplication with square pulse

I More generically ) define a window signal wN as one for which

wN(n) = 0 for all n /2 [0,N � 1]

I Rewrite discrete time windowed signal as ) xw (n) = x(n)⇥ wN(n)

I Since multiplication in time is equivalent to convolution in frequency

Xw (f ) = Xs(f ) ⇤WN(f )

I Multiplicative distortion given by DTFT of window function

I If xs is already finite ) No distortion (dual of bandlimited)
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Frequency sampling

I DTFT of windowed signal xw is ) Xs(f ) = Ts

N�1X

n=0

x(n)e�j2⇡f nTs

I Reinterpret xw as discrete signal xD (null vs undefined outside [0,N � 1])

I Signal xD has a DFT (finite) ) XD(f ) =
1p
N

N�1X

n=0

xD(n)e
�j2⇡kn/N

I Comparing expressions ) Xs

✓
k

N
fs

◆
= Ts

p
N XD(k)

I Sample in time ⌘ periodize in frequency ) Dual property holds?

) Yes. The iDFT is a periodic operation

) We have xD(n + N) = xD(N) because e j2⇡k(n+N)/N = e j2⇡kn/N
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The DFT as proxy for the DTFT (1 of 2)

I Window (chop) induces convolution. Sampling induces periodization

xs

window ) xwN

xw

periodize ) N

xD

DTFT

DTFT

DFT

Xs

conv ) X ⇤ W

Xw

sample ) fs/N

XD

I Small distortion ) Make N so that x(n) ⇡ 0 for n /2 [0,N � 1]
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The DFT as proxy for the DTFT (2 of 2)

I Discrete time signal xs with DTFT Xs ) Not necessarily finite

-NTs NTs 2NTs
n

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )

I Discrete time windowed signal xw ) windowing smoothes (distorts) Xs

-NTs NTs 2NTs
t

xw (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xw (f )

I Discrete DFT XD samples windowed DTFT Xw ) No further distortion

-NTs NTs 2NTs
t

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

XD (f )

Signal and Information Processing Sampling 86

Linear time invariant systems

Alejandro Ribeiro
Dept. of Electrical and Systems Engineering

University of Pennsylvania
aribeiro@seas.upenn.edu

http://www.seas.upenn.edu/users/

~

aribeiro/

February 27, 2015

Signal and Information Processing Sampling 1



Linear time invariant systems

Linear time invariant systems

Finite impulse response filter design
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Fourier transform and convolution

I Fourier transform enables signal and information processing

) Patterns and properties easier to discern on frequency domain

I Also enables analysis and deign of linear time invariant (LTI) systems

) Not altogether unrelated to pattern discernibility

I Two properties of LTI systems

) Characterized by their (impulse) response to a delta input

) Responses to other inputs are convolutions with impulse response

I Equivalent properties in the frequency domain

) Characterized by frequency response = F(impulse response)

) Output spectrum = input spectrum ⇥ frequency response
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Systems

I A system is characterized by an input (x(n)) output (y(n)) relation

I This relation is between functions, not values

I Each output value y(n) depends on all input values x(n)

x(n)
System

y(n)

n

x(n)

n

y(n)

I We can, alternatively, consider continuous time systems. The same.

Signal and Information Processing Sampling 4

Time invariant systems

I A system is time invariant if a delayed input yields a delayed output

I If input x(n) yields output y(n) then input x(n � k) yields y(n � k)

I Think of output when input is applied k time units later

x(n � k)
System

y(n � k)

n

x(n)

n

y(n)

n

x(n � k)

n

y(n � k)

Signal and Information Processing Sampling 5

Linear systems

I In a linear system ) input a linear combination of inputs

) Output the same linear combination of the respective outputs

I I.e., if input x1(n) yields output y1(n) and x2(n) yields y2(n)

) Input a1x1(n) + a2x2(n) yields output a1y1(n) + a2y2(n)

a1x1(n) + a2x2(n)
System

a1y1(n) + a2y2(n)

n

x1(n)

n

y1(n)

n

x2(n)

n

y2(n)

n

a1x1(n) + a2x2(n)

n

a1y1(n) + a2y2(n)
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Linear time invariant systems

I Linear + time invariant system = linear time invariant system (LTI)

I Also called a LTI filter, or a linear filter, or simply a filter

I The impulse response is the output when input is a delta function

) Input is x(n) = �(n) (discrete time, �(0) = 1)

) Output is y(n) = h(n) = impulse response

�(n)
System

h(n)

n

�(n)

n

h(n)
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Scale and shifted impulse responses

I Since the system is time invariant (shift)

) Input �(n � k) ) Induces output response h(n � k)

I Since the system is linear (scale)

) input x(k)�(n � k) ) Output x(k)h(n � k)

I Since the system is linear (sum)

) x(k1)�(n � k1) + x(k2)�(n � k2) ) x(k1)h(n � k1) + x(k2)h(n � k2)

�(n)
System

h(n)

n

�(n)

n

h(n)
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Scale and shifted impulse responses

I Since the system is time invariant (shift)

) Input �(n � k) ) Induces output response h(n � k)

I Since the system is linear (scale)

) input x(k)�(n � k) ) Output x(k)h(n � k)

I Since the system is linear (sum)

) x(k1)�(n � k1) + x(k2)�(n � k2) ) x(k1)h(n � k1) + x(k2)h(n � k2)

�(n � k)
System

h(n � k)

n

�(n � k)

n

h(n � k)
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Scale and shifted impulse responses

I Since the system is time invariant (shift)

) Input �(n � k) ) Induces output response h(n � k)

I Since the system is linear (scale)

) input x(k)�(n � k) ) Output x(k)h(n � k)

I Since the system is linear (sum)

) x(k1)�(n � k1) + x(k2)�(n � k2) ) x(k1)h(n � k1) + x(k2)h(n � k2)

�(n � k)
System

h(n � k)

n

x(k)�(n � k)

n

x(k)h(n � k)
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Scale and shifted impulse responses

I Since the system is time invariant (shift)

) Input �(n � k) ) Induces output response h(n � k)

I Since the system is linear (scale)

) input x(k)�(n � k) ) Output x(k)h(n � k)

I Since the system is linear (sum)

) x(k1)�(n � k1) + x(k2)�(n � k2) ) x(k1)h(n � k1) + x(k2)h(n � k2)

�(n � k)
System

h(n � k)

n

x(k1)�(n � k1) + x(k2)�(n � k2)

n

x(k1)h(n � k1) + x(k2)h(n � k2)
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Output of a linear time invariant system

I Shift, Scale, and Sum ) Is this a Convolution? ) Of course

I Can write any signal x as ) x(n) =
+1X

k=�1
x(k)�(n � k)

I Thus, output of LTI with impulse response h to input x is given by

y(n) =
+1X

k=�1
x(k)h(n � k)

I The above sum is the convolution of x and h ) y = x ⇤ h
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Output of a linear time invariant system

Theorem
A linear time invariant system is completely determined by its impulse
response h. In particular, the response to input x is the signal y = x ⇤ h.

I Innocent looking restrictions ) Linearity + time invariance

) Induce very strong structure (anything but innocent)

x(n)
h(n)

(x ⇤ h)(n) =
1X

�1
x(k)h(t � k)

I Can derive exact same result for continuous time systems
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Frequency response

I Frequency response = transform of impulse response ) H = F(h)

Corollary

A linear time invariant system is completely determined by its frequency
response H. In particular, the response to input X is the signal Y = HX.

X (f )
H(f )

Y (f ) = H(f )X (f )

I Design in frequency ) Implement in time

) Have done this already, but now we know its true for any LTI
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Causality

I A causal filter is one with h(n) = 0 for all negative n < 0

) Otherwise, we would respond to spike before seeing spike

I In general ) y(n) =
+1X

k=�1
x(k)h(n � k) =

nX

k=�1
x(k)h(n � k)

I The value y(n) is only a↵ected by past inputs x(k), with k  n

I If filter is not causal but h(n) = 0 for all n < N

) Make it causal with a delay ) h̃(n) = h(n � N)

I Frequency response of delayed filter ) H̃(f ) = H(f )e j2⇡fN

) Qualitatively the same filter
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Finite impulse response

I A causal finite impulse response filter (FIR) is one for which

h(n) = 0 for all n � N

I We say the filter is of length N; only N values in h(n) are not null

I Can write output at time n as

y(n) = h(0)x(n) + h(1)x(n � 1) + . . . h(N � 1)x(n � N + 1)

I Running input vector xN(n) = [x(n); x(n � 1); . . . ; x(n � N + 1)]

I FIR filter vector response h = [h(0), h(1), . . . , h(N � 1)]

I Can then write output at time n as ) y(n) = h

T
xN
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Finite impulse response filter design

Linear time invariant systems

Finite impulse response filter design
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Filter design and implementation

I We want to utilize a LTI system to process discrete time signal x(n)

) E.g., to smooth out the signal x(n) shown below

x(n)
h(n) , H(f )

y(n)

n

x(n)

n

y(n)

I All LTIs are completely determined by their impulse responses h

) Design h and implement filter as time convolution ) y = x ⇤ h

I All LTIs are completely determined by their frequency responses h

) Design H and implement filter as spectral product ) Y = HX
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Frequency design and time implementation

I Time and frequency representations are equivalent

x(n) h(n) y(n) = (x ⇤ h)(n)

X (f ) H(f ) Y (f ) = H(f )X (f )

F F�1 F F�1 F F�1

I Identify pattern transformation in frequency domain ) Design H

I Use inverse DTFT to compute impulse response ) h = F�1(H)

I Implement convolution in time ) y(n) = (x ⇤ h)(n)
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Causality and infinite response

I Impulse response h = F�1(H) is typically not causal and infinite

) E.g., Low pass filter with cuto↵ freq. W /2 ) H(f ) = uW (f )

h(n) =

Z fs/2

�fs/2
H(f )e j2⇡fnTs df = W sinc(⇡WnTs)

f

H(f ) = uF (f )

�W/2

1

W/2

F�1

- 3
W

- 2
W

- 1
W

1
W

2
W

3
W

F

t

h(n)

I Multiply by window (chop) for finite response with N nonzero coe↵s.

I Delay h(n) to obtain a causal filter with h(n) = 0 for n  0
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FIR filter design

I Transform h(n) into finite impulse response

hw (n) = h(n)w(n)

I Window w(n) = 0 for n /2 [Nmin,Nmax]

I Filter length N = Nmax � Nmin + 1

I Transform hw (n) into causal response

hw (n) =) hw (n � Nmin)

I Choose borders Nmin and Nmax to retain
highest values of h(n)

I Often, around n = 0. But not always

- 3
W

- 2
W

- 1
W

1
W

2
W

3
W

F

t

hw (n)

- 3
W

- 2
W

- 1
W

1
W

2
W

3
W

F

t

hw (n � Nmin)
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Spectral e↵ects of windowing and delaying

I Multiplication in time domain ) Convolution in frequency domain

I As a result, instead of filtering with H(f ), we filter with

Hw = H ⇤W

I Choose windows with spectrum W = F(w) close to delta function

I Time delay ) Multiplication with complex exponential in frequency

Hw (f ) =) Hw (f )e
j2⇡fNminTs

I Irrelevant, as it should, we just shifted the response
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FIR filter design methodology

I Procedure to design time coe�cients of a FIR filter

(1) Spectral analysis to determine filter frequency response H(f )

(2) Inverse DFT (not DTFT) to determine impulse response h(n)

(3) Determine nr. of coe�cients N and coe�cient range [Nmin,Nmax]

(4) Select window w(n) ) Alters spectrum to Hw = H ⇤W

(5) Shift impulse response by Nmin time steps to make filter causal

I How to we use FIR filter coe�cients h(n) to implement the filter?
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FIR implementation

I The output y(n) of the FIR filter is given by the convolution value

y(n) =
1X

k=�1
x(k)h(n � k)

I Since h is finite and causal, only N nonzero terms. Make k = n � l

y(n) =
nX

k=n�(N�1)

x(k)h(n � k)=
N�1X

l=0

h(l)x(n � l)

I Easier to visualize when written in expanded form

y(n) = h(0) x(n) + h(1) x(n � 1) + . . .+ h(N � 1) x(n � N + 1)

I The expression above can be implemented with a shift register
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Shift registers

I Upon arrival of signal value x(n) we compute output value y(n) by

) Delay (shift) units to shift elements of signal x

) Product (scale) units to multiply with filter coe�cients x(n)

) Sum units to aggregate the products h(k)x(n � k)

x(n)
Ts

x(n�1)
Ts

x(n � 2)
Ts

x(n � 3)
Ts

x(n�N+1)

h(0)

h(0)x(n)

h(1)

h(1)x(n � 1)

h(2)

h(2)x(n � 2)

h(3)

h(3)x(n � 3)

h(N�1)

h(N)x(n�N+1)

I Shift register can be implemented in hardware (or software)
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Voice recognition ) Spectral design

I For a given word to be recognized we compare the spectra X̄ and X

) X̄ ) Average spectrum magnitude of word to be recognized

) X ) Recorded spectrum during execution time

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6
0

0.1

0.2

0.3

0.4

0.5

frequency (KHz)

Average spectrum of spoken word “one”

I Made coparison with inner product ) XT X̄

I Equivalent to using X̄ to filter X ) Y (f ) = H(f )X (f ) with H(f ) = X̄
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Voice recognition ) Filter design

(2) Impulse response h(n) ) Inverse DFT of X̄

(4) Window to keep N = 1, 000 largest consecutive taps

�0.15 �0.1 � 5 · 10�2 0 5 · 10�2 0.1 0.15

�0.5

0

0.5
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Signals and information

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation
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Continuous time, discrete time, discrete signals

I We have studied continuous time, discrete time, and discrete signals

I Complex exponentials (CE), discrete time CE, and discrete CE

I And also the Fourier transform (FT), the DTFT, and the DFT

I For which we respectively studied the iFT, iDTFT and the iDFT

I Di↵erent versions of related concepts

) Let’s take time to summarize

) And to emphasize analogies and di↵erences
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Signals

I Continuous time (CT) t 2 R ) Continuous time signals

x : R ! C

I Discrete time (DT) n 2 Z ) Discrete time signals

x : Z ! C

I Discrete and finite n 2 [0,N � 1] ) Discrete signals

x : [0,N � 1] ! C

I From discrete signals we go to ...

... infinity ) discrete time signals (extend borders)

... and beyond ) continuos time signal (fill in spaces, dense)
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Inner products and energy

I Inner product in continuous time ) hx , yi :=
Z 1

�1
x(t)y⇤(t)dt

I Inner product in discrete time ) hx , yi :=
1X

n=�1
x(n)y⇤(n)

I Inner product of discrete signals ) hx , yi :=
N�1X

n=0

x(n)y⇤(n)

I How much signals x and y are like each other

I Unrelated signals = orthogonality ) hx , yi = 0

I Energy, same definition works for all ) kxk2 = hx , xi

I Inner product may not exist and energy may be infinite (CT and DT)
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Continuous time complex exponentials

I Continuous time complex exponential ef ) ef (t) = e j2⇡ft

) Signal is dense and extend to plus and minus infinity

�0.4 �0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
�
ej2⇡ft

�
, Im

�
ej2⇡ft

�
,

I Frequency f = 2Hz shown. Time t in seconds
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Discrete time complex exponentials

I Discrete time complex exponential efTs ) efTs (n) = e j2⇡fnTs

) Sample continuous time CE with sampling frequency fs = 1/Ts

) Signal extend to plus and minus infinity but is not dense

�0.4 �0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
�
ej2⇡fnTs

�
, Im

�
ej2⇡fnTs

�

I Frequency f = 2Hz. Sampling freq. fs = 64Hz. Time t in seconds.
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Discrete complex exponentials

I Discrete complex exponential )
p
NekN(n) = e j2⇡kn/N = e j2⇡fnTs

) Discrete time CE observed during N samples = NTs time units

) Defined for frequencies of the form f = (k/N)fs only

) Exactly k oscillations during observation period N , T

�0.4 �0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 t

Re
�
ej2⇡fnTs

�
, Im

�
ej2⇡fnTs

�

I Frequency f = 2Hz. Sampling freq. fs = 64Hz. Time t in seconds

I Observation time T = 1s ) number samples N = Tfs = 64.

I Discrete frequency k = N(f /fs) = 2
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Orthogonality of complex exponentials

I Discrete complex exponentials are a set of N orthonormal signals

hekN , elNi = �(k � l)

I We restrict k and l to interval of length N. E.g., [�N/2 + 1,N/2]

I CE with freqs. N apart are equivalent. Opposites are conjugates

I Discrete time complex exponentials are (sort of) orthogonal

hefTs , egTs i = �(f � g)

I Continuous time delta ) Involves a limit. Generalized function

I Same is true in continuous time ) hef , eg i = �(f � g)
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Fourier transforms

I Fourier transform (FT) of continuous time signal x is the function

X (f ) :=

Z 1

�1
x(t)e�j2⇡f t dt

I The discrete time (DT)FT of discrete time signal x is the function

X (f ) := Ts

1X

n=�1
x(n)e�j2⇡f nTs

I The discrete (D)FT of discrete signal x is the function

X (k) :=
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N =
1p
N

N�1X

n=0

x(n)e�j2⇡f nTs

I Discrete frequency k equivalent to real f = k/NTs = kfs/N

I DFT is undefined for frequencies that are not f = kfs/N for some k
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Fourier transforms as inner products

I Recall definitions of inner products and complex exponentials

I Write the FT of x as ) X (f ) = hx , ef i =
Z 1

�1
x(t)e⇤f (t) dt

I Write DTFT of x as ) X (f ) = hx , ef Ts i = Ts

1X

n=�1
x(n)e⇤fTs

(n)

I Write the DFT of x as ) X (k) = hx , ekNi =
1X

n=�1
x(n)e⇤kN(n)

I All three transforms written as inner products in respective spaces
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Di↵erent formalizations of the same concept

I Inner products with frequency f (f = kfs/N) complex exponentials

I It follows that they are di↵erent formalizations of the same concept

) They are projections of x onto oscillations of frequency f

) They measure how much x resembles oscillation of frequency f

I Integrals, indefinite sums, sums ) Inherent di↵erences in signals

I FT and DTFT are analysis tools. DFT is a computational tool
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Input and output spaces

I Input and output spaces for FTs are continuous

I For DTFTs, discrete inputs, continuous and periodic outputs (odd)

I For DFTs, input and outputs are discrete and periodic or finite

Input space Output space

Fourier transform Continuous

Continuous

DTFT Discrete Periodic

Continuous

DFT Discrete Periodic

Periodic Discrete

I Observe the duality between sampling and periodicity or finiteness
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The DTFT as proxy for the FT (1 of 3)

I Filter ) multiply in frequency by H ) convolve in time with h

Xf = HX () xf = x ⇤ h

I Sample filtered signal Xf ) Periodize filtered spectrum Xf

xs(n) = xf (nTs) () Xs(f ) =
1X

k=�1
Xf (f � kfs)

I Distortion (information loss) occurs during filtering step

) Frequency ) Loss above fs/2 + some distortion if H not perfect

) Time ) Convolution with h
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The DTFT as proxy for the FT (2 of 3)

I Filtering (chop) induces convolution. Sampling induces periodization

x

conv. ) x ⇤ h

xf

sample ) Ts

xs

FT

FT

DTFT

X

filter ) HX

Xf

period ) ± fs

Xs

I Small distortion ) Make fs so that X (f ) ⇡ 0 for f /2 [�fs/2, fs/2]
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The DTFT as proxy for the FT (3 of 3)

I Continuous time signal x with FT X ) Not necessarily bandlimited

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts t

x(t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

X (f )

I Continuous time filtered signal xf ) filtering smoothes (distorts) x

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts t

xf (t)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xf (f )

I Sampled signal xs obtained from filtered xf ) No further distortion

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts t

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )
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The DFT as proxy for the DTFT (1 of 3)

I Filter ) multiply by window wN ) convolve in frequency with WN

xw (n) = x(n)⇥ wN(n) () Xw (f ) = Xs(f ) ⇤WN(f )

I Sample windowed spectrum Xw ) Periodize windowed signal xw

xd(n) =
1X

k=�1
xw (n � kN) () Xd

✓
kfs
N

◆
= Ts

p
N Xw (k)

I Distortion (information loss) occurs during windowing step

) Frequency sampling is with no loss of information
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The DFT as proxy for the DTFT (2 of 3)

I Window (chop) induces convolution. Sampling induces periodization

xs

window ) xwN

xw

periodize ) N

xd

DTFT

DTFT

DFT

Xs

conv ) X ⇤ W

Xw

sample ) fs/N

Xd

I Small distortion ) Make N so that x(n) ⇡ 0 for n /2 [0,N � 1]
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The DFT as proxy for the DTFT (3 of 3)

I Discrete time signal xs with DTFT Xs ) Not necessarily finite

-NTs NTs 2NTs
n

xs (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xs (f )

I Discrete time windowed signal xw ) windowing smoothes (distorts) Xs

-NTs NTs 2NTs
t

xw (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xw (f )

I Discrete DFT XD samples windowed DTFT Xw ) No further distortion

-NTs NTs 2NTs
t

xd (n)

-3fs/2 -fs -fs/2 fs/2 fs 3fs/2 f

Xd (f )
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Bandlimited and finite (periodic) signals

I If signal is bandlimited and sampled at frequency fs � W

) The DTFT and the FT coincide in the interval [�fs/2, fs/2]

I If signal is finite, and windowed with N larger than its length

) DFT and DTFT coincide at the sampled frequencies f = kfs/N

I What happens when signal is bandlimited and finite?

) Doesn’t matter. These signals don’t exist. Uncertainty principle
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Inverse Fourier transforms

I Given a transform X , the inverse Fourier transform is defined as

x(t) :=

Z 1

�1
X (f )e j2⇡f t df

I The iDTFT x of DTFT X , is the discrete time signal with elements

x(n) =

Z fs/2

�fs/2
X (f )e j2⇡f nTs df =

Z fs

0
X (f )e j2⇡f nTs df

I Given a Fourier transform X , the inverse (i)DFT is defined as

x(n) :=
1p
N

N�1X

k=0

X (k)e j2⇡kn/N =
1p
N

N/2X

k=�N/2+1

X (k)e j2⇡kn/N

I Same as direct transform but for sign in the exponent ) duality
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The inverses are inverses indeed

Theorem
The inverse FT (or inverse DTFT or inverse DFT) x̃ of the FT
(respectively, DTFT or DFT) X of a given signal x is the given signal x

x̃ = F�1(X ) = F�1[F(x)] = x

I We can recover signal from transform ) equivalent representation

) Neither less, nor more information. Just di↵erent interpretability

I Implies that we can write signal as a sum of complex exponentials

) Literally for iDFT, conceptually for iDTFT and iFT
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Inverse DFT as sum of complex exponentials

I Signal as sum of exponentials ) x(n) =
1p
N

N/2X

k=�N/2+1

X (k)e j2⇡kn/N

I Expand the sum inside out from k = 0 to k = ±1, to k = ±2, . . .

x(n) = X (0) ej2⇡0n/N constant

+ X (1) ej2⇡1n/N + X (�1) e�j2⇡1n/N single oscillation

+ X (2) ej2⇡2n/N + X (�2) e�j2⇡2n/N double oscillation

...
...

...
...

...

+ X

✓
N

2
� 1

◆
ej2⇡(

N
2 �1)n/N + X

✓
�
N

2
+ 1

◆
e�j2⇡( N

2 �1)n/N
✓
N

2
� 1

◆
– oscillation

+ X

✓
N

2

◆
ej2⇡(

N
2 )n/N

N

2
– oscillation

I Start with slow variations and progress on to add faster variations
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Linearity and conjugate symmetry

Theorem
The FT, DTFT, and DFT of linear combinations of signals are linear
combinations of the respective transforms of the individual signals,

F(ax + by) = aF(x) + bF(y).

I Useful to compute transforms when considering sums of signals

Theorem
The FT, DTFT, and DFT X = F(x) of a real signal x (one with
Im(x) ⌘ 0) are conjugate symmetric

X (�f ) = X ⇤(f )

I Only the positive half of the spectrum carries information
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Energy conservation (Parseval’s Theorem)

Theorem (Parseval)

The energy of a signal x and its FT, DTFT, or DFT X = F(x) are the
same, i.e., ��x

��2 =
��X

��2

I Energy definitions are di↵erent for di↵erent signal spaces

I For the FT )
Z 1

�1

��x(t)
��2dt =

��x
��2

=
��X

��2
=

Z 1

�1

��X (f )
��2df

I For the DTFT )
1X

n=�1

��x(n)
��2 =

��x
��2

=
��X

��2
=

Z fs/2

�fs/2

��X (f )
��2df

I For the DFT )
N�1X

n=0

��x(n)
��2 =

��x
��2

=
��X

��2
=

N/2X

k=�N/2+1

��X (k)
��2

Signal and Information Processing Signal and information processing in time 28



Shift and modulation

Theorem
A time shift of ⌧ units in the time domain is equivalent to multiplication
by a complex exponential of frequency �⌧ in the frequency domain

x⌧ = x(t � ⌧) () X⌧ (f ) = e�j2⇡f ⌧X (f )

Theorem
A multiplication by a complex exponential of frequency g in the time
domain is equivalent to a shift of g units in the frequency domain

xg = e j2⇡gtx(t) () Xg (f ) = X (f � g)

I Theorems are duals of each other. True for FT and DTFT

I For DFT we need to define circular shifts. Not covered in this course
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Convolutions in continuous and discrete time

I Let x and h be continuous time signals

I Convolution of x with h is the signal y = x ⇤ h with values

[x ⇤ h](t) = y(t) =

Z 1

�1
x(u)h(t � u) du

I Let x and h be discrete time signals

I Convolution of x with h is the signal y = x ⇤ h with values

[x ⇤ h](n) = y(n) =
1X

k=�1
x(k)h(n � k)
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Multiplication and convolution

I Convolution in time domain ⌘ to multiplication in frequency domain

Theorem (Convolution theorem)

Given signals x and y with transforms X = F(x) and Y = F(y). The
FT Z = F(z) of the convolved signal z = x ⇤ y is the product Z = XY

z = x ⇤ y () Z = XY

I True for FT and DTFT. For DFT need to define circular convolution

I The dual is also true

I Convolution in frequency domain ⌘ to multiplication in time domain
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Sampling

I The sampled signal xs is a discrete time signal with values

xs(n) = x(nTs)

I Creates discrete time signal xs from continuous time signal x

I Equivalently, we represent sampling as multiplication by a Dirac train

x�(t) = x(t)⇥ Ts

1X

n=�1
�(t � nTs)

I Dirac train lives in continuous time. Compare FT of x� to FT of x

-4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts t -4Ts -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts 4Ts t
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Spectral e↵ect of sampling

I Multiplication , Convolution . Thus spectrum X� = F(x�) is

X� = X ⇤ F

Ts

1X

n=�1
�(t � nTs)

�

I Fourier transform of the Dirac train (Ts) is another Dirac train (fs)

X� = X ⇤ Ts

1X

n=�1
�(f � kfs) =

1X

n=�1
X ⇤ �(f � kfs)

Theorem
Sampled signal spectrum is a sum of shifted versions of original spectrum

Xs(f ) = X�(f ) =
1X

k=�1
X (f � kfs)

I We say the spectrum of X is periodized when the signal is sampled
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Spectrum periodization

I Start with the spectrum X of x and the Dirac train in frequency

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I First convolution step is to duplicate and shift spectrum to kfs

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2 f

I Second convolution step is to sum all shifted copies

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Loose all info. above fs/2. And some below to aliasing distortion
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Sampling of bandlimited signals

I Signal with bandwidth W ) X (f ) = 0 for all f /2 [�W /2,W /2]

I Upon sampling, spectrum is periodized but not aliased

f

X (f )

-W/2 W/2 f

Xs (f )

fs 2fs-fs

I This means that sampling entails no loss of information
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Prefiltering

I To avoid aliasing preprocess x into xfs with a low pass filter

Xfs (f ) = X (f )ufs (f )

I The signal xfs has bandwidth fs and can be sampled without aliasing

) Frequency components below fs/2 retained with no distortion

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Prefiltering can be implemented as convolution in the time domain

xfs = x ⇤ h, h(t) = fssinc(⇡fst)

I iFT of low pass filter with cuto↵ fs/2 is the sinc pulse with freq. fs
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Reconstruction

I In principle, we can recover x from x� with a low pass filter

I Since Dirac train can’t be generated, we modulate train of pulses

xp(t) = Ts

1X

n=�1
xs(n)p(t � nTs)

I For narrow pulses, pulse and Dirac modulation are close, i.e, xp ⇡ x�

-2Ts -Ts Ts 2Ts

1/T

t

x(t)

Signal and Information Processing Signal and information processing in time 38

The spectrum of the reconstructed signal

I Spectrum Xs of sampled signal ) Xs(f ) =
1X

k=�1

X (f � kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Spectrum Xp of pulse train ) Xp(f ) = P(f )⇥
1X

k=�1

X (f � kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Reconstructed spectrum Xr ) Xr (f ) = ufs (f )P(f )X (f � kfs)

-3fs/2 -fs -fs/2 0 fs/2 fs 3fs/2 2fs 5fs/2f

I Good pulse for recovery ) X (f ) = 1 for f 2 [�fs/2, fs/2]
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Modulation of a sinc train

I The sinc pulse fssinc(⇡fst) has a flat spectrum for f 2 [�fs/2, fs/2]

I Don’t even need to use low pass filter ) sinc pulse already lowpass

Theorem
A signal of bandwidth W  fs can be recovered from samples x(nTs) as

x(t) = fsTs

1X

n=�1
x(nTs)sinc

�
⇡fs(t � nTs)

�

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(⇡fst) has a flat spectrum for f 2 [�fs/2, fs/2]

I Don’t even need to use low pass filter ) sinc pulse already lowpass

Theorem
A signal of bandwidth W  fs can be recovered from samples x(nTs) as

x(t) = fsTs

1X

n=�1
x(nTs)sinc

�
⇡fs(t � nTs)

�

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(⇡fst) has a flat spectrum for f 2 [�fs/2, fs/2]

I Don’t even need to use low pass filter ) sinc pulse already lowpass

Theorem
A signal of bandwidth W  fs can be recovered from samples x(nTs) as

x(t) = fsTs

1X

n=�1
x(nTs)sinc

�
⇡fs(t � nTs)

�

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Modulation of a sinc train

I The sinc pulse fssinc(⇡fst) has a flat spectrum for f 2 [�fs/2, fs/2]

I Don’t even need to use low pass filter ) sinc pulse already lowpass

Theorem
A signal of bandwidth W  fs can be recovered from samples x(nTs) as

x(t) = fsTs

1X

n=�1
x(nTs)sinc

�
⇡fs(t � nTs)

�

-4Ts -3Ts -2Ts -Ts Ts 2Ts 3Ts 4Ts

1/T

t

x(t)
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Philosophical digression

I Sampling is a straightforward operation, but its e↵ects are obscure

) Or not. If we look at the signal in frequency e↵ects are also clear

I Loss of information contained at frequencies f > fs/2

I Aliasing distortion for frequencies f  fs/2

I Perfect recovery of bandlimited signals

I Avoid aliasing with profiteering

I Reconstruction distortion when modulating a train of pulses

I If we had a sixth sense for frequencies, all of this would be obvious

) But we do have that sense, or rather have grown that sense

Signal and Information Processing Signal and information processing in time 44

Linear time invariant systems

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation

Signal and Information Processing Signal and information processing in time 45

Time invariant systems

I Systems are characterized by input-output (x ! y) relationships

I A system is time invariant if a delayed input yields a delayed output

I If input x(n) yields output y(n) then input x(n � k) yields y(n � k)

x(n � k)
System

y(n � k)

n

x(n)

n

y(n)

n

x(n � k)

n

y(n � k)
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Linear systems

I In a linear system ) input a linear combination of inputs

) Output the same linear combination of the respective outputs

I I.e., if input x1(n) yields output y1(n) and x2(n) yields y2(n)

) Input a1x1(n) + a2x2(n) yields output a1y1(n) + a2y2(n)

a1x1(n) + a2x2(n)
System

a1y1(n) + a2y2(n)

n

x1(n)

n

y1(n)

n

x2(n)

n

y2(n)

n

a1x1(n) + a2x2(n)

n

a1y1(n) + a2y2(n)
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Output of a linear time invariant system

I linear time invariant system (LTI) ) Linear + time invariant

Theorem
A linear time invariant system is completely determined by its impulse
response h. In particular, the response to input x is the signal y = x ⇤ h.

x(n)
h(n)

(x ⇤ h)(n) =
1X

�1
x(k)h(t � k)

I Theorem true for discrete time and continuous time signals

) Convolutions are defined di↵erently

I For discrete signals we need to use circular convolutions
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Linear time invariant system frequency response

I Frequency response ) impulse response transform ) H = F(h)

Corollary

A linear time invariant system is completely determined by its frequency
response H. In particular, the response to input X is the signal Y = HX.

X (f )
H(f )

Y (f ) = H(f )X (f )

I What a LTI system does to a signal is obscure

) Or not. If we look at the signal in frequency the e↵ects are clear

I If we had a sixth sense for frequencies. Oh wait, we do

I It is obvious what LTI filters do ) They alter frequency components

I But they don’t mix frequency components. Each of them is separate
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Applications

I Practical applications of frequency analysis are very common

I Here are a few applications that we have covered

) Noise removal,

) Music synthesis,

) Compression,

) Modulation,

) Signal detection (voice recognition)

I There are many more we have not covered

) E.g., equalization, high-pass filtering, band-pass filtering

I In all of these applications understanding time is complicated

) But understanding frequency is straightforward
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Noise removal

I There is signal and noise, but what is signal and what is noise?

I We already know answer ) Signal discernible in frequency domain

0 1 2 3 4 5 6 7
-1.0

-0.5

0

0.5

1.0

1.5

2.0

time t in miliseconds

Original signal x(t). It moves randomly, but not that much

I
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Noise removal

I There is signal and noise, but what is signal and what is noise?

I We already know answer ) Signal discernible in frequency domain

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Frequency f in Hertz

Fourier transform X (f ) of original signal

I Filter out all frequencies above 100Hz (and below -100Hz)
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Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

) Only frequencies between ±W /2 = ±100Hz are retained

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700 800
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Frequency f in Hertz

Fourier transform Y (f ) = H(f )X (f ) of filtered signal

I This spectral operation does separate signal from noise
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Low pass filter design

I Multiply spectrum with low pass filter H(f ) = uW (f ) with W = 200Hz

) Only frequencies between ±W /2 = ±100Hz are retained

0 1 2 3 4 5 6 7
-1.0

-0.5

0

0.5

1.0

1.5

2.0

time t in miliseconds

Filtered signal y(t) with y = x ⇤ h and h = F�1(H) = F�1(uW )

I This spectral operation does separate signal from noise
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Low pass filter implementation

I We can implement filtering in the frequency domain

) Sample ) DFT ) Multiply by H(f ) = uW (f ) ) iDFT

x h(t) = W sinc(⇡Wt) y = x ⇤ h

I We can also implement filtering in the time domain

) Inverse transform of uW (f ) is h(t) = W sinc(⇡Wt)

I How is it that convolving with a sinc removes noise? ) obscure

I But is is very clear if we use our frequency sense

I Signal occupies some frequencies but noise occupies all frequencies
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Signal compression

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with 9 frequency components (k 2 [�4, 4])

0 32 64 96 128 160 192 224
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Discrete time index n 2 [0, 255]

Pulse reconstruction with k=4 frequencies (N = 256, M = 128)

I Compression ) Store 9 DFT values instead of N = 128 samples
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Signal compression

I Consider square pulse of duration N = 256 and length M = 128

I Reconstruct with k = 16 frequency components
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Pulse reconstruction with k=16 frequencies (N = 256, M = 128)

I Can tradeo↵ less compression for better signal accuracy
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Signal compression

I Generic compression ) Keep largest DFT coe�cients

) Not necessarily the lowest frequencies

I The approximation error energy is that of the coe�cients dropped

I What’s the advantage of comprising in frequency domain?

I Well, how would you compress in time domain

I Keep largest coe�cients?

) No. Close values are redundant. Small values also important

I Keep values at certain spacing?

) Maybe. Actually that’s sampling. Better think in freq. domain

I Compression is obscure but becomes clear if we use frequency sense
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Modulation of multiple bandlimited signals

I Transmit multiple bandlimited signals (W ) in a common support

) Wireless, optical fiber, coaxial cable, twisted pair

I Modulate (multiply by complex exponentials) with freqs. g1 and g2

z(t) = e j2⇡g1tx(t) + e j2⇡g2ty(t)

x(t) xg1 (t)

ej2⇡g1t

y(t) yg2 (t)

ej2⇡g2t

z(t) = xg1 (t) + yg2 (t)

I Spectrum of x recentered at g1. Spectrum of y recentered at g2
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Spectrum of multiple modulated signals

I No spectral mixing if modulating frequencies satisfy g2 � g1 > W

f

Z(f )

g1 � W/2 g1 + W/2g1
g2 � W/2 g2 + W/2g2

I To recover x multiply by conjugate frequency e�j2⇡g1t

I And eliminated all frequencies outside the interval [�W /2,W /2]

I To recover y multiply by conjugate frequency e�j2⇡g2t

I And eliminated all frequencies outside the interval [�W /2,W /2]
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Modulation analysis and design

I Can we understand modulation in time?

) Actually, yes. Use orthogonality of complex exponentials

I But still, spectral analysis is clearer. Simplifies design

I Modulation is not entirely obscure

) But it becomes clearer if we use frequency sense
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Signal detection (voice recognition)

I For a given word to be recognized we compare the spectra X̄ and X

) X̄ ) Average spectrum magnitude of word to be recognized

) X ) Recorded spectrum during execution time

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6
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frequency (KHz)

Average spectrum of spoken word “one”

I Energy
N/2X

k=�N/2+1

(Xi X̄i )
2 ) Filter X with X̄ , i.e., Y (f ) = H(f )X (f ) with H(f ) = X̄
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Voice recognition ) Filter design

I Determine impulse response h(n) as inverse DFT of spectrum X̄

I Window h(n) to keep, say, N = 1, 000 largest consecutive taps

�0.15 �0.1 � 5 · 10�2 0 5 · 10�2 0.1 0.15

�0.5

0

0.5
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Signal detection analysis and design

I Can we understand signal detection in time?

) Actually, yes. It’s called a matched filter

I But, as in modulation, spectral analysis is clearer. Simplifies design

I Signal detection is not entirely obscure

) But it becomes clearer if we use frequency sense
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Signal representation

Signals and information

Fourier transforms

Inverse Fourier transforms

Properties of Fourier transforms

Sampling and reconstruction

Linear time invariant systems

Applications

Signal representation
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It’s all oh so simple

I Once and again, things are invisible or obscure in time domain

) But they become, visible and clear in the frequency domain

I Even when clear in time, they are easier to understand in frequency

I Literally a new sense to view things that are otherwise invisible

“On ne voit bien qu’avec le coeur.
L’essentiel est invisible pour les yeux.”

The Little Prince

I One sees clearly only with the frequency
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Signal representation

I Why a new sense? ) We can write signals as sums of shifted deltas

x(n) =
NX

k=1

x(k)�(k � n)

I Conceptually, the same as writing signals as sums of oscillations

x(n) =
NX

k=1

X (k)e�j2⇡kn/N

I Only di↵erence is that we sense time but we don’t sense frequency

I We say we change the signal representation or we change the basis

I It all hinges in our ability to represent the signal in a di↵erent domain
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Moving forward

I If something is obscure in time but also obscure in frequency

) Change the representation ⌘ Change the basis

I Images ) multidimensional DFT, Discrete cosine transform (DCT)

I Stochastic processes ) Principal component analysis (PCA)

) Eigenvectors of the correlation matrix

I Signals defined on graphs ) Graph signal processing

) Eigenvalues of the graph Laplacian
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Signal representation

Signal representation

Images

Two dimensional discrete signals

Two dimensional (2D) discrete Fourier transform (DFT)

Two dimensional (2D) inverse (i) discrete Fourier transform (DFT)

Energy conservation (Parseval’s theorem)

Convolution in 2 dimensions

Applications

Discrete Cosine Transform

2D Discrete Cosine Transform

JPEG image compression
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It’s all oh so simple

I Once and again, things are invisible or obscure in time domain

) But they become, visible and clear in the frequency domain

I Even when clear in time, they are easier to understand in frequency

I Literally a new sense to view things that are otherwise invisible

“On ne voit bien qu’avec le coeur.
L’essentiel est invisible pour les yeux.”

The Little Prince

I One sees clearly only with the frequency

The essential is invisible to the eyes
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Signal representation

I Why a new sense? ) We can write signals as sums of shifted deltas

x(n) =
NX

k=1

x(k)�(k � n)

I Conceptually, the same as writing signals as sums of oscillations

x(n) =
NX

k=1

X (k)e j2⇡kn/N

I Only di↵erence is that we sense time but we don’t sense frequency

I We say we change the signal representation or we change the basis

I It all hinges in our ability to represent the signal in a di↵erent domain
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Moving forward

I If something is obscure in time but also obscure in frequency

) Change the representation ⌘ Change the basis

I Images ) multidimensional DFT, Discrete cosine transform (DCT)

I Stochastic processes ) Principal component analysis (PCA)

) Eigenvectors of the correlation matrix

I Signals defined on graphs ) Graph signal processing

) Eigenvalues of the graph Laplacian
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Images

Signal representation

Images

Two dimensional discrete signals

Two dimensional (2D) discrete Fourier transform (DFT)

Two dimensional (2D) inverse (i) discrete Fourier transform (DFT)

Energy conservation (Parseval’s theorem)

Convolution in 2 dimensions

Applications

Discrete Cosine Transform

2D Discrete Cosine Transform

JPEG image compression
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Images

I A grid of pixels. Values define the luminescence of the point

) In a black an white image

I In a color image we record multiple channels for di↵erent colors

) E.g., red, green, and blue (RGB). Or Yellow Magenta Cyan blacK

I Not unlike signals we studied except that defined over two indices
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Images as signals

I An image on the left and a signal on the right

) These are just di↵erent ways of visualizing the same information
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A discrete signal with double indexing

I Can we perform DFT of image? ) Yes, vectorize the matrix

I Vectorization records nearby pixels far away ) 2D signal processing
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Two dimensional discrete signals

Signal representation

Images

Two dimensional discrete signals

Two dimensional (2D) discrete Fourier transform (DFT)

Two dimensional (2D) inverse (i) discrete Fourier transform (DFT)

Energy conservation (Parseval’s theorem)

Convolution in 2 dimensions

Applications

Discrete Cosine Transform

2D Discrete Cosine Transform

JPEG image compression
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Two dimensional discrete signals

I Two dimensional (2D) discrete signal indexed by two indices (m, n)

m = 0, 1, . . . ,M � 1 = [0,M � 1]

n = 0, 1, . . . ,N � 1 = [0,N � 1]

I M rows and N columns. A total of MN di↵erent indices
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I 2D signal formally defined as map x : [0,M � 1]⇥ [0 : N � 1] ! R
I The value that the signal takes at indices (m, n) is x(m, n)
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Complex 2D signals

I As in one dimensional case, may want to define complex signals

x : [0,M � 1]x [0 : N � 1] ! C

I Space of M⇥ 2D signals = space of M ⇥ N matrices CMxN or RMxN
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Imaginary part

I Because, unsurprisingly, we are going to define two dimensional DFT
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Deltas in two dimensions

I 2D delta function �(m, n) is a spike at (initial) position (m, n) = 0

�(m, n) =

⇢
1 if m = n = 0
0 else
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I Shifted delta �(m �m
0

, n � n
0

) has a spike at (m, n) = (m
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, n
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⇢
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)

0 else
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x(n,m) = �(n � 1,m � 2)
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Rectangular pulses

I Rectangular pulse of N rows and M columns uM
0

N
0

is defined as

uM
0

N
0

(m, n) =

⇢
1 if m < M

0

, n < N
0

,
0 else
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m
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x(n,m) = u
24

(n,m)

I If M
0

= N
0

, rectangular pulse is said square. Denote uN
0

N
0

= uN
0

I Can consider shifted pulses uMN(m �m
0

, n � n
0

)

) Shifts must satisfy m
0

< M �M
0

and n
0

< N � N
0
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Symmetric Gaussian pulses

I A 2D Gaussian pulse of mean µ and variance �2 is defined as

gµ�(n,m) =
1

2⇡�2

exp


�m � µ

2�2

� n � µ

2�2

�

0 4 8 12 16

0

4

8

12

16

Gaussian pulse, mean µ = 8, variance �2
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Gaussian pulse, mean µ = 8, variance �2

= 1

I An actual bell shape. The pulse is symmetric centered at (µ, µ)

I Variance �2 controls how fast the pulse decays
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Generic Gaussian pulses

I Di↵erent centers in each coordinate and di↵erent variances

I Define coordinate vector n = [m, n]T . Just a variable

I Define center vector µ = [µ
1

, µ
2

]. Center coordinates

I Define covariance matrix C =

✓
�2

11

�
12

�
12

�2

22

◆

I Diagonal controls stretch in each direction. O↵ diagonals rotation

I The 2D Gaussian pulse of mean µ and covariance C is

gµ�(n,m) =
1

2⇡�2

exp


�1

2
(n� µ)TC�1(n� µ)

�
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Generic Gaussian pulses

I A Gaussian pulse skewed in the m direction ) C =

✓
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I A Gaussian pulse skewed in the n direction ) C =
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Inner product

I Given 2D signals x and y define the inner product of x and y as

hx , yi :=
M�1X

m=0

N�1X

n=0

x(m, n)y⇤(m, n)

I It has the same properties of other inner products we encountered

) Is a linear operator ) hx , y + zi = hx , yi+ hx , zi
) Reversing order entails conjugation ) hy , xi = hx , yi⇤

I It also has the same interpretation ) How much x looks like y

) Positive = Positive correlation = same direction

) Negative = Negative correlation = opposite directions

) Null = Uncorrelated = Orthogonal = Perpendicular
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Inner product of two rectangular pulses

I The inner product of two square pulses is the number of pixels in
which both pulses are active (both are one)
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Inner product of two square pulses

I In the inner product sum hx , yi =
M�1X

m=0

N�1X

n=0

x(m, n)y⇤(m, n) only the

terms in which both pulses are not null count
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Norm and energy

I The norm of the 2D signal x is ) kxk :=

M�1X

m=0

N�1X

n=0

|x(m, n)|2
�
1/2

I We define the energy of the 2D signal x as the norm squared

kxk2 :=
M�1X

m=0

N�1X

n=0

|x(m, n)|2 =
M�1X

m=0

N�1X

n=0

|xR(m, n)|2+
M�1X

m=0

N�1X

n=0

|xI (m, n)|2

I We can write the energy as self inner product ) kxk2 = hx , xi
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Energy of a square pulse

I Rectangular pulse of N rows and M columns uM
0

N
0

is defined as

uM
0

N
0

(m, n) =

⇢
1 if m < M

0

, n < N

0

,
0 else

0 1 2 3 4 5 6 7

0

1

2

3

m

n

x(n,m) = u
24

(n,m)

I To compute energy of the pulse we just evaluate the definition

k uN k2 :=
M�1X

m=0

N�1X

n=0

| uM
0

N
0

(m, n)|2 =
M

0

�1X

m=0

N
0

�1X

n=0

12 = M
0

N
0

I The energy is the number of pixels (M
0

N
0

) in the square pulse

I Can normalize by 1/
p
M

0

N
0

to obtain pulse of unit energy
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Two dimensional (2D) DFT

Signal representation

Images

Two dimensional discrete signals

Two dimensional (2D) discrete Fourier transform (DFT)

Two dimensional (2D) inverse (i) discrete Fourier transform (DFT)

Energy conservation (Parseval’s theorem)

Convolution in 2 dimensions

Applications

Discrete Cosine Transform

2D Discrete Cosine Transform

JPEG image compression
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Definition of 2D DFT

I 2D signal x With N rows and M columns. Elements x(m, n)

I We will focus on signals with M = N. To simplify notation

I Signal X is the 2D DFT of x if its elements X (k , l) are

X (k , l) :=
1

N

N�1X

m=0

N�1X

n=0

x(m, n)e�j2⇡(km+ln)/N

I As in 1D we write X = F(x).

I X may be complex even for real 2D signals x . Focus on magnitude

I Argument k is horizontal frequency and l is the vertical frequency
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The 2D DFT and the (regular, 1D) DFT

I Separate terms in the exponent and regroup factors to write

X (k , l) :=
1p
N

N�1X

m=0

"
1p
N

N�1X

n=0

x(m, n)e�j2⇡ln/N

#
e�j2⇡km/N

I For fixed m, the term between parentheses is the DFT of x(m, ·)
I We then take the DFT of the resulting DFTs with respect to m

I The 2D DFT of x is the column-wise DFT of the row-wise DFTs

I Or the row-wise DFT of the column-wise DFTs. Just the same

I Useful to know. Not a new computation
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Discrete Complex exponentials

I 2D Complex exponential of horizontal freq. k and vertical freq. l

eklN(m, n) =
1

N
e�j2⇡(km+ln)/N =

1p
N
e�j2⇡(km/N)

1p
N
e�j2⇡(ln/N)

I Separate the exponential into two factors to write

eklN(m, n) =
1p
N
e�j2⇡(km/N)

1p
N
e�j2⇡(ln/N) = ekN(m)elN(n)

I 2D complex exponential is product of two 1D complex exponentials
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How 2D complex exponentials look like

I Signal length N = 8. Total of N2 = 64 di↵erent exponentials
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I Horizontal / Vertical frequency ) Horizontal / Vertical variability

I Diagonals ) diagonal variabilty ) Directionality also important
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How 2D complex exponentials look like

I Signal length N = 16. Total of N2 = 256 di↵erent exponentials
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I Horizontal / Vertical frequency ) Horizontal / Vertical variability

I Diagonals ) diagonal variabilty ) Directionality also important
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DFT elements as inner products

I Rewrite 2D DFT using definition of 2D complex exponential

X (k, l) =
N�1X

m=0

N�1X

n=0

x(m, n)e
(�k)(�l)N(m, n) =

N�1X

m=0

N�1X

n=0

x(m, n)e⇤klN(m, n)

I From definition of inner product we have ) X (k , l) = hx , eklNi

I DFT element X (k , l) ) Inner product of x(m, n) with ekl,N(m, n)

I How much x is an oscillation of horizontal freq. k vertical freq. f

I 2D DFT contains information on rate of change as the 1D DFT

) But also in the direction of change
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2D DFT of an image

I Lenna Sjööblom, playmate November 1972, Playboy magazine.

I And yet, we wonder why engineering is tough for women. Sorry.
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I This is 256⇥ 256 image. We rarely do DFTs of full images

) Separate in 256 patches, each with 16⇥ 16 pixels

Signal and Information Processing Multidimensional Signal Processing 28

A patch and its 2D DFT

I Image patch on the left, 2D DFT coe�cients on the right
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I Signal mostly constant in vertical direction

) Large coe�cients concentrated at low vertical frequencies
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A patch and its 2D DFT

I Image patch on the left, 2D DFT coe�cients on the right
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I Signal changes diagonally from top left to bottom right

) Large coe�cients on diagonal axis from top left to bottom right
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A patch and its 2D DFT

I Image patch on the left, 2D DFT coe�cients on the right
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I Signal shows variability in many di↵erent directions (piece of the eye)

) Large coe�cients everywhere except when both freqs. are high

Signal and Information Processing Multidimensional Signal Processing 31



The DFT and variability

I The distribution of the 2D DFT coe�cients captures variability

) Most coe�cients are small on background patches

) Many coe�cients are large on hat feathers patches
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More on the the DFT and variability

I Many large coe�cients on feather patches

I Large diagonal coe�cients on hat ) Direction of variability

I Face patches vary mostly in horizontal direction
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Periodicity of complex exponentials

I We know that there are only N distinct complex exponentials

I Thus, there are only N2 distinct 2D complex exponentials

) Horizontal frequencies k and k + N are equivalent

) Vertical frequencies l and l + N are equivalent

I Canonical sets [0,N � 1]⇥ [0,N � 1] and [�N/2,N/2]⇥ [�N/2,N/2]

I 1D complex exponentials are conjugate symmetric. Thus

e
(�k)(�l)N ⌘ e⇤klN

I Flipping sign of both freqs ⌘ Conjugation of complex exponential
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Periodicity of the 2D DFT

I Consider freqs (k , l) and (k + N, l). DFT at (k + N, l) is

X (k + N, l) =
1

N

N�1X

m=0

N�1X

n=0

x(m, n)e⇤
(k+N)lN(m, n)

I Complex exponentials of freqs.(k , l) and (k + N, l) are equivalent

X (k + N, l) =
1

N

N�1X

m=0

N�1X

n=0

x(m, n)e⇤klN(m, n) = X (k , l)

I 2D DFT has period N in horizontal direction.

I Likewise, 2D DFT has period N in vertical direction

I Su�ces to look at N ⇥ N adjacent frequencies
I Canonical sets [0,N � 1]⇥ [0,N � 1] and [�N/2,N/2]⇥ [�N/2,N/2]
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Orthogonality of complex exponentials

Theorem
Complex exponentials with nonequivalent frequencies are orthogonal

heklN , e˜k˜lNi = �(k � k̃)�(l � l̃)

Proof.

I From definitions of inner product and discrete complex exponential

heklN , epqNi =
1

N

2

N�1X

m=0

N�1X

n=0

e

�j2⇡(km+ln)/N
⇣
e

�j2⇡(

˜km+

˜ln)/N)

⌘⇤

I Separate exponents and regroup factors

heklN , epqNi =
1

N

N�1X

m=0

e

�j2⇡km/N
⇣
e

�j2⇡˜km/N
⌘⇤ 1

N

N�1X

n=0

e

�j2⇡ln/N
⇣
e

�j2⇡˜ln/N
⌘⇤

I Inner products of 1D exponentials. First is �(k � k̃), second is �(l � l̃)
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Energy conservation (Parseval’s theorem)

Convolution in 2 dimensions

Applications

Discrete Cosine Transform

2D Discrete Cosine Transform

JPEG image compression
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Definition of 2D iDFT

I Given a Fourier transform X , the inverse (i)DFT x = F�1(X ) is

x(m, n) :=
1

N

N�1X

k=0

N�1X

l=0

X (k , l)e j2⇡(km+ln)/N

I Sum is over horizontal and vertical frequencies dimensions

I Recall that 2D DFT has period N in vertical and horizontal freqs.

I Any summation over M ⇥N adjacent frequencies works as well. E.g.,

x(m, n) =
1

N

N/2X

k=�N/2+1

N/2X

l=�N/2+1

X (k , l)e j2⇡(km+ln)/N
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iDFT is, indeed, the inverse of the DFT

Theorem
The 2D inverse DFT x̃ = F�1(X ) of the 2D DFT X = F(x) of any
given signal x is the original signal x

x̃ ⌘ F�1(X ) ⌘ F�1(F(x)) ⌘ x

I Every 2D signal can be written as a sum of 2D complex exponentials

x(m, n) :=
1

N

N�1X

k=0

N�1X

l=0

X (k , l)e j2⇡(km+ln)/N

I The coe�cient for horizontal frequency k and vertical frequency f is

X (k , l) :=
1

N

N�1X

m=0

N�1X

n=0

x(m, n)e�j2⇡(km+ln)/N
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Proof of DFT inverse formula

Proof.

I To show x̃ ⌘ x we prove x̃(m̃, ñ) = x(m̃, ñ) for all pairs of indices (m̃, ñ)

I From the definition of the 2D iDFT of X we write the value x̃(m̃, ñ) as

x̃(m̃, ñ) =
1

N

N�1X

k=0

N�1X

l=0

X (k, l)e j2⇡(km̃+l ñ)/N

I From the definition of the 2D DFT of x we write the DFT value X (k, l) as

X (k, l) :=
1

N

N�1X

m=0

N�1X

n=0

x(m, n)e�j2⇡(km+ln)/N

I Substituting expression for X (k, l) into expression for x̃(ñ, m̃) yields

x̃(m̃, ñ) =
1

N

N�1X

k=0

N�1X

l=0

"
1

N

N�1X

m=0

N�1X

n=0

x(m, n)e�j2⇡(km+ln)/N

#
e

j2⇡(km̃+l ñ)/N
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Proof of DFT inverse formula

Proof.

I Exchange summation order, pull out x(m, n), and distribute 1/N factors

x̃(m̃, ñ) =
N�1X

m=0

N�1X

n=0

x(m, n)

"
N�1X

k=0

N�1X

l=0

1

N

e

�j2⇡(km+ln)/N 1

N

e

j2⇡(km̃+l ñ)/N

#

I Can pull x(m, n) out because it doesn’t depend neither on k nor on l

I Innermost sum is inner product between em̃ñN and emnN . Orthonormality:

N�1X

k=0

N�1X

l=0

1

N

e

�j2⇡(km+ln)/N 1

N

e

j2⇡(km̃+l ñ)/N = hem̃ñN , emnNi = �(m̃�m)�(ñ�n)

I Reducing to ) x̃(m̃, ñ) =
M�1X

m=0

N�1X

n=0

x(m, n)�(ñ � n)�(m̃ �m) = x(m̃, ñ)

I Last equation true because only term m = m̃, n = ñ is not null in the sum
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The 2D DFT sense

I Can write image x as sum of deltas modulated by individual pixels

x(m, n) :=
1

N

N�1X

k=0

N�1X

l=0

x(m, n)�(k �m, l � n)

I Also write as sum of oscillations modulated by 2D DFT coe�cients

x(m, n) :=
1

N

N�1X

k=0

N�1X

l=0

X (k , l)e j2⇡(km+ln)/N

I These are mathematically analogous expressions.

I We can see (literally) pixels, but we can’t see 2D DFT coe�cients

I Easier to operate on the image, when written as sum of oscillations
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200 250

50

100

150

200

250

I
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200

50

100

150

200

I Reconstruction when using frequencies �1  k , l  1. Not too good
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200

50

100

150

200

I Reconstruction when using frequencies �2  k , l  2. Not bad
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200

50

100

150

200

I Using frequencies �4  k , l  4. Quite good, except for border e↵ect
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200

50

100

150

200

I Freqs. �7  k , l  7. Border e↵ect still present. Will solve later (DCT)
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Energy conservation (Parseval’s theorem)

Signal representation

Images

Two dimensional discrete signals

Two dimensional (2D) discrete Fourier transform (DFT)
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Discrete Cosine Transform

2D Discrete Cosine Transform

JPEG image compression
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Properties of the 2D DFT

I All properties of 1D DFTs have corresponding versions for 2D DFTs

) Linearity, conjugate symmetry, modulation , shift

I We will cover energy conservation (to study compression)

N�1X

m=0

N�1X

n=0

|x(m, n)|2 = kxk2 = kXk2 =
N�1X

k=0

N�1X

l=0

|X (k , l)|2

I Will also cover the 2D convolution theorem (to study linear filtering)

y = x ⇤ h () Y = HX

I Which will require defining the 2D convolution operation x ⇤ h
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Energy conservation

Theorem (Parseval)

The energies of a signal x and its 2D DFT X = F(x) are the same, i.e.,

N�1X

m=0

N�1X

n=0

|x(m, n)|2 = kxk2 = kXk2 =
N�1X

k=0

N�1X

l=0

|X (k , l)|2

I Since 2D DFT is periodic, any set of adjacent freqs. would do. E.g.,

kXk2 =
M�1X

k=0

N�1X

l=0

|X (k, l)|2 =

M/2X

k=�M/2+1

N/2X

l=�N/2+1

|X (k, l)|2

I From now on, we write
N�1X

m=0

N�1X

n=0

(·) =
X

m,n

(·) and
N�1X

k=0

N�1X

l=0

(·) =
X

k,l

(·)

I To simplify notation. We would otherwise write up to six sums
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Proof of Parseval’s Theorem

Proof.

I The energy of the 2D DFT X is ) kXk2 =
X

k,l

X (k, l)X ⇤(k, l)

I The 2D DFT of x is ) X (k, l) :=
1

N

X

m,n

x(m, n)e�j2⇡(km+ln)/N

I Substitute expression for X (k, l) into one for kXk2 (observe conjugation)

kXk2 =
X

k,l

"
1

N

X

m,n

x(m, n)e�j2⇡(km+ln)/N

�
1

N

X

m̃,ñ

x

⇤(m̃, ñ)e+j2⇡(km̃+i l ñ)/N

�#

I Distribute product, exchange sum order, pull x(m, n) and x

⇤(m̃, ñ) out

kXk2 =
X

m,n

X

m̃,ñ

x(m, n)x⇤(m̃, ñ)

X

k,l

1

N

e

�j2⇡(km+ln)/N 1

N

e

+j2⇡(km̃+i l ñ)/N

�

I Can pull out because x(m, n) and x

⇤(m̃, ñ) don’t depend on (k, l)
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Proof of Parseval’s Theorem

Proof.

I Innermost sum is inner product between em̃ñN and emnN . Orthonormality:

X

k,l

1

N

e

�j2⇡(km+ln)/N 1

N

e

j2⇡(km̃+l ñ)/N = hem̃ñN , emnNi = �(m̃ �m, ñ � n)

I Substitute �(m̃ �m, ñ � n) for innermost sum to simplify kXk2 to

=
X

m,n

X

m̃,ñ

x(m, n)x⇤(m̃, ñ)�(m̃ �m, ñ � n) =
X

m,n

x(m, n)x⇤(m, n)

I True because only terms with m = m̃ and n = ñ) are not null in the sum

I Conclude by noting that from definition of the energy of x , we have

kXk2 =
X

m,n

x(m, n)x⇤(m, n) = kxk2
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200 250

50

100

150

200

250

I Energy of approximation error ⌘ Energy of 2D DFT coe�cients dropped
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200

50

100

150

200

I Energy of reconstruction error ) 32% of image’s energy (4 coe�cients)
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200

50

100

150

200

I Energy of reconstruction error ) 9% of image’s energy (16 coe�cients)
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Reconstruction of an image

I Separate in 16⇥ 16 patches (256 total). Compute 2D DFT of each patch

I Start with low frequencies and work up to larger frequencies

50 100 150 200

50

100

150

200

I Energy of reconstruction error ) 2% of image’s energy (64 coe�cients)
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2D Convolution

I Given 2D signal x of length N ⇥ N and filter h of length M ⇥M

I Reinterpret filter h as being null for all integers outside its range

h(m, n) = 0, for all (m, n) /2 [0,M � 1]⇥ [0,M � 1]

I Convolution of x and h is the (N +M)⇥ (N +M) signal y = x ⇤ h

y(m, n) =
NX

p=0

NX

q=0

x(p, q)h(m � p, n � q)

I Hit filter h with input x to generate output y

x
h

y = x ⇤ h

M + NNM
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Padded signals

I The padded signal x̄ is an (N +M)⇥ (N +M) signal with

x̄(m, n) = x(m, n), for (m, n) 2 [0,N � 1]⇥ [0,N � 1]

x̄(m, n) = 0, else

I The padded filter h̄ is an (N +M)⇥ (N +M) signal with

h̄(m, n) = h(m, n), for (m, n) 2 [0,M � 1]⇥ [0,M � 1]

h̄(m, n) = 0, else

M + NN M + NM

Signal and Information Processing Multidimensional Signal Processing 59

2D convolution theorem

I 2D DFTs of padded signal X̄ = F(x̄) and padded filter H̄ = F(h̄)

I Regular DFT of output signal, Y = F(y)

Theorem (2D Convolution)

The convolution of padded signals in the space domain is equivalent to
the multiplication of their 2D DFTs in the frequency domain

y = x̄ ⇤ h̄ () Y = X̄ H̄

I Transformation is obscure in space but crystal clear in frequency
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Design in frequency, implement in space

I As we did in 1D, we design in frequency but implement in space

x̄ ¯h y = x̄ ⇤ ¯h

¯X ¯H Y =

¯H ¯X

F F�1 F F�1 F F�1

I Convolution doesn’t change with padding ) y = x̄ ⇤ h̄ = x ⇤ h
I 2D DFTs do change, but not by much when M ⌧ N

I Instead of padding x and h we crop y to make it N ⇥ N ) ȳ

I Convolution theorem becomes approximate ) Ȳ ⇡ HX

) There are di↵erences close to the borders of the image
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Applications
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Averaging Filter

I An averaging filter is one with a square frequency response

h(m, n) =
1

M2

uM (m, n)

I The convolution y = h ⇤ x is an
average of adjacent pixels

y(m, n) =
1

M

2

M�1X

p=0

M�1X

q=0

x(m+p, n+q)

I What e↵ect does an averaging filter has when applied to an image?
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Image Blurring

I Averaging neighboring pixels has the e↵ect of blurring the image

I What is the counterpart of blurring in the frequency domain?
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Average Filter in frequency domain

I The 2D DFT of a 2D square pulse is a 2D sinc ) low pass filter

I Blurring entail removal of high frequencies (in all directions)

) Smoothes edges, which makes image appear out of focus
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Image Denoising

I Image is corrupted by white noise ) equal power at all frequencies

I Can remove noise with averaging filter ) Only low frequencies pass

) Image has low frequencies only. Noise has all frequencies
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Gaussian filter

I Or, apply 2D Gaussian filter ) 2D Gaussian pulse impulse response

h(n,m) = gµ�(n,m) =
1

2⇡�2

exp


� (m � µ)2

2�2

� (n � µ)2

2�2

�

0 4 8 12 16

0

4

8

12

16

0

4

8

12

16

0

4

8

12

16

0

0.5

1

I 2D Gaussian pulse also performs averaging with nearby pixels

I Also low pass ) 2D DFT is Gaussian pulse with inverse variance

) Decrease �2 to let more frequencies pass
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Gaussian filtering of a noisy image

I Remove noise with a Gaussian filter with variance �2 = 1

Noisy image Filtered image

I Some noise is removed. Can remove more by increasing variance �2
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Low pass filter of noisy image

I Remove noise with a Gaussian filter with variance �2 = 4

Noisy image Filtered image

I More noise removed (good), but also more blurring (not good)

Signal and Information Processing Multidimensional Signal Processing 69

Edge detection

I Detect the edges of an image ) Rapid transitions

) A rapid transition is a high frequency ) Use a high pass filter
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Gaussian Derivative Filter

I Multiply Gaussian filter frequency response by inverted pyramid

H(k , l) = Gµ�(k , l)|k + l |

I Derivative filter because freq. multiplication is derivation in space

�2 �1 0 1 2

0.1

0.2

0.3

0.4

0.5

I Very rapid variations are filtered out. They are regarded as noise

I Rapid, but now rapid variations are considered edges
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Edge Detection

I Now applying this filter to our test image:

I After filter, only high frequencies (edges) remain in image
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Image Sharpening

I We want to sharpen an image, e.g., because it’s blurry, out of focus

) We can do that by heightening the edges

I Low frequencies are still important

) Want to boost high frequencies, as opposed to detecting them

I Add a constant ↵ in frequency to let all frequencies pass

H(k , l) = (1� ↵)Gµ�(k , l)|k + l | + ↵

I In time, the constant is a delta ) we add the signal and the edges
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Image Sharpening

I Increasing sharpening makes borders more defined
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Discrete Cosine Transform
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Border e↵ects in image compression

I Patches are well approximated by a subset of 2D DFT coe�cients

I Except for borders. And still a problem if we retain most coe�cients

50 100 150 200

50

100

150

200

I Although didn’t mention, also a problem with (1D) DFTs ) Why?
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The DFT and the iDFT

I Start with real signal x : [0,N � 1] ! R. The DFT of signal x is

X (k) :=
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

I We can recover x with the iDFT transformation defined by

x̃(n) :=
1p
N

N�1X

k=0

X (k)e j2⇡kn/N

I We know that x̃(n) = x(n) for n 2 [0,N � 1] (inverse transform)

I But the iDFT is defined for all n

I Signal x̃ is periodic with period N because exponentials e j2⇡kn/N are

) We say that iDFT signal x̃ is a periodic extension of original x

Signal and Information Processing Multidimensional Signal Processing 77

The periodic extension of the iDFT

I First sample x(0) and last sample x(N � 1) can be very di↵erent

) Most likely are. Unless signal has some structure, e.g., symmetry

I This is a problem for the periodic extension

) The value x(0) = x̃(N) appears next to x(N � 1) = x̃(N � 1)

N � 1

t

x(n)

-N N 2N t

x̃(n)

I It’s tough to approximate a jump/discontinuity ) High frequency

I Never mind. We’re more than Fourier people. We’re fearless transformers
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Inverse discrete cosine transform

I Say that we have a transform X so that we can write signal x̃ as

x̃(n) :=
1p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(n + 1/2)

N

�

I Inverse discrete cosine transform (iDCT) of X ) x̃ = C�1(X )

I No complex numbers involved. Signals and transforms assumed real

I Haven’t said how to find X so that x̃(n) = x(n) for n 2 [0,N � 1]

I This is done with discrete cosine transform (DCT). We’ll see later

I Details are di↵erent but this is still x written as a sum of oscillations

) Still expect low frequency components to be most significant

) But have written cosine in a way that avoids border discontinuities
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The iDCT is an even function

I Put a mirror at N + 1/2 and compare samples in each direction

I The sample at n = N � 1 can be written in terms of iDCT as

x̃(N � 1) :=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(N � 1 + 1/2)

N

�

=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(�1/2)

N

�

I The sample at n = N can be written in terms of iDCT as

x̃(N ) :=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(N + 1/2)

N

�

=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(+1/2)

N

�

I Since cosines are even, sign is irrelevant. Thus ) x̃(N � 1) = x̃(N)
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The iDCT is an even function

I Put a mirror at N + 1/2 and compare samples in each direction

I The sample at n = N � 2 can be written in terms of iDCT as

x̃(N � 1) :=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(N � 2 + 1/2)

N

�

=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(�3/2)

N

�

I The sample at n = N + 1 can be written in terms of iDCT as

x̃(N + 1) :=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(N + 1 + 1/2)

N

�

=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(+3/2)

N

�

I Since cosines are even, sign is irrelevant. Thus ) x̃(N � 2) = x̃(N + 1)
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The iDCT is an even function

I Put a mirror at N + 1/2 and compare samples in each direction

I The sample at n = N � 3 can be written in terms of iDCT as

x̃(N � 3) :=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(N � 3 + 1/2)

N

�

=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(�5/2)

N

�

I The sample at n = N + 2 can be written in terms of iDCT as

x̃(N + 2) :=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(N + 2 + 1/2)

N

�

=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(+5/2)

N

�

I Since cosines are even, sign is irrelevant. Thus ) x̃(N � 3) = x̃(N + 2)
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The iDCT is an even function

I Put a mirror at N + 1/2 and compare samples in each direction

I The sample at n = N � 4 can be written in terms of iDCT as

x̃(N � 4) :=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(N � 4 + 1/2)

N

�

=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(�7/2)

N

�

I The sample at n = N + 2 can be written in terms of iDCT as

x̃(N + 3) :=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(N + 3 + 1/2)

N

�

=

1

p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(+7/2)

N

�

I Since cosines are even, sign is irrelevant. Thus ) x̃(N � 4) = x̃(N + 3)
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The even extension of the iDCT

I Formalize argument to prove that the iDCT yields an even extension

x̃
h
N + (n � 1)

i
= x

h
N � n

i

I Or, to better visualize the symmetry

x̃
h
(N � 1/2) + (n � 1/2)

i
= x

h
(N � 1/2)� (n � 1/2)

i

I Signal x written as sum of oscillations without border e↵ects

N � 1

t

x(n)

-N N 2N t

x̃(n)
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The discrete cosine transform (DCT)

I Still have to find out a way of computing the coe�cients X (k)

I Given a real signal x , the DCT X = C(x) is the real signal with

X (0) :=
1p
N

N�1X

n=0

x(n)cos


2⇡0(n + 1/2)

N

�

X (k) :=

r
2

N

N�1X

n=0

x(n) cos


2⇡k(n + 1/2)

N

�

I Normalization constants are di↵erent for k = 0 and k 2 [1,N � 1]

I No complex numbers involved. Signals and transforms are real
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DCT basis

I Define the elements of the DCT basis as the signals ekN with

c
0N(n) :=

1p
N

ckN(n) :=

r
2

N
cos


2⇡k(n + 1/2)

N

�

I Akin to the DFT basis defined by the N complex exponentials ekN

I With basis defined can write DCT of x as ) X (k) = hx , ckNi

I Inner product implies the usual interpretation

) X(k) is how much x(n) resembles oscillation of frequency k
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iDCT is the inverse of the DCT

Theorem
The iDCT x̃ = C�1(X ) of the DCT X = C(x) of any given signal x is the
original signal x, i.e.,

x̃ ⌘ C�1(X ) ⌘ C�1(C(x)) ⌘ x

I Equivalence means x̃(n) = x(n) for n 2 [0,N � 1].

) Otherwise, inverse transform x̃ is an even extension of original x

I To prove theorem, use DCT definition, iDCT definition, reverse
summation order, and invoke orthogonality of the DCT basis.

I Conservation of energy (Parseval’s) also holds ) orthogonality
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2D Discrete Cosine Transform

Signal representation

Images

Two dimensional discrete signals

Two dimensional (2D) discrete Fourier transform (DFT)

Two dimensional (2D) inverse (i) discrete Fourier transform (DFT)

Energy conservation (Parseval’s theorem)

Convolution in 2 dimensions

Applications

Discrete Cosine Transform

2D Discrete Cosine Transform

JPEG image compression
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Rewriting the 1D DCT

I For 1D signal x we defined the 1D DCT X = C(x) as

X (0) :=
1p
N

N�1X

n=0

x(n)cos


2⇡0(n + 1/2)

N

�

X (k) :=

r
2

N

N�1X

n=0

x(n) cos


2⇡k(n + 1/2)

N

�

I Define normalization constants ⌫
0

= 1 and ⌫k =
p
2 for k 6= 0

X (k) :=
⌫kp
N

N�1X

n=0

x(n) cos


2⇡k(n + 1/2)

N

�

I Just a definition to make notation more compact
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Two dimensional discrete cosine transform

I Given a two dimensional signal x we define the 2D DCT X as

X (k, l) :=
⌫k⌫l
N

N�1X

n=0

N�1X

m=0

x(m, n) cos


2⇡k(m + 1/2)

N

�
cos


2⇡l(n + 1/2)

N

�

I 2D analogous of the 1D DCT. Or DCT analogous of the 2D DFT

I Can write the double sum as a pair of nested sums

X (k, l) :=
⌫k⌫l
N

N�1X

n=0

"
N�1X

m=0

x(m, n) cos


2⇡k(m + 1/2)

N

� #
cos


2⇡l(n + 1/2)

N

�

I The 2D DCT is the vertical DCT of the horizontals DCTs

I Equivalently, it is also the horizontal DCT of the vertical DCTs
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2D DCT as an inner product

I The 2D discrete cosine of horizontal freq. k and vertical freq. l is

cklN(n,m) :=
ckp
N

cos


2⇡k(m + 1/2)

N

�
clp
N

cos


2⇡l(n + 1/2)

N

�

I Use to rewrite 2D DCT as inner product ) X (k , l) = hx , ckl,Ni

I The 2D DCT element X (k , l) is the inner product of x with ckl,N

I Observe that, similar to the 2D complex exponentials, we can write

cklN(n,m) = clNclN

I Which implies orthonormality of the cklN . Because the ckN are
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Rewrite the 1D iDCT

I For given DCT X we defined the iDCT as the signal x̃ with values

x̃(n) :=
1p
N
X (0) +

r
2

N

N�1X

k=1

X (k) cos


2⇡k(n + 1/2)

N

�

I Use the same constants, ⌫
0

= 1 and ⌫k =
p
2 for k 6= 0, to write

x̃(n) :=
N�1X

k=1

⌫kp
N
X (k) cos


2⇡k(n + 1/2)

N

�

I Just a definition. To avoid writing four separate sums for 2D iDCT
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Two dimensional inverse discrete cosine transform

I Given a 2D DCT X we define the 2D iDCT x̃ as

x̃(m, n) :=
N�1X

n=0

N�1X

m=0

⌫k⌫l
N

X (k, l) cos


2⇡k(m + 1/2)

N

�
cos


2⇡l(n + 1/2)

N

�

I 2D analogous of the 1D DCT. Or DCT analogous of the 2D DFT

I The 2D iDCT is even symmetric (not periodic). In both dimensions

x̃
h
(N � 1/2) + (m � 1/2), n

i
= x

h
(N � 1/2)� (m � 1/2), n

i

x̃
h
m, (N � 1/2) + (n � 1/2)

i
= x

h
m, (N � 1/2)� (n � 1/2)

i

I Thus, we don’t have border e↵ects in the reconstruction. Later
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iDCT is the inverse of the DCT

Theorem
The iDCT x̃ = C�1(X ) of the DCT X = C(x) of any given signal x is the
original signal x, i.e.,

x̃ ⌘ C�1(X ) ⌘ C�1(C(x)) ⌘ x

I Equivalence means x̃(n) = x(n) for n 2 [0,N � 1].

) Otherwise, inverse transform x̃ is an even extension of original x

I To prove theorem, use DCT definition, iDCT definition, reverse
summation order, and invoke orthogonality of the DCT basis.

I Conservation of energy (Parseval’s) also holds ) orthogonality
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Compression with the 2D DCT and 2D iDCT

I Compute 2D DCT of 16⇥ 16 patches. Reconstruct with low frequencies

I The signal is reconstructed with small error and no border e↵ects

50 100 150 200 250

50

100

150

200

250

I
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Compression with the 2D DCT and 2D iDCT

I Compute 2D DCT of 16⇥ 16 patches. Reconstruct with low frequencies

I The signal is reconstructed with small error and no border e↵ects

50 100 150 200

50

100

150

200

I Reconstruction when using coe�cients 0  k , l  4. Not too good

I Compression factor 16 and error energy 1.59%
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Compression with the 2D DCT and 2D iDCT

I Compute 2D DCT of 16⇥ 16 patches. Reconstruct with low frequencies

I The signal is reconstructed with small error and no border e↵ects

50 100 150 200

50

100

150

200

I Reconstruction when using coe�cients 0  k , l  6. Quite good

I Compression factor 7.1 and error energy 0.81%
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Compression with the 2D DCT and 2D iDCT

I Compute 2D DCT of 16⇥ 16 patches. Reconstruct with low frequencies

I The signal is reconstructed with small error and no border e↵ects

50 100 150 200

50

100

150

200

I Reconstruction when using coe�cients 0  k , l  8. Excellent

I Compression factor 4 and error energy 0.46%
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Compression with the 2D DCT and 2D iDCT

I Compute 2D DCT of 16⇥ 16 patches. Reconstruct with low frequencies

I The signal is reconstructed with small error and no border e↵ects

50 100 150 200

50

100

150

200

I Reconstruction when using coe�cients 0  k , l  10. Flawless

I Compression factor 2.56 and error energy 0.26%
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JPEG image compression

Signal representation

Images

Two dimensional discrete signals

Two dimensional (2D) discrete Fourier transform (DFT)

Two dimensional (2D) inverse (i) discrete Fourier transform (DFT)

Energy conservation (Parseval’s theorem)

Convolution in 2 dimensions

Applications

Discrete Cosine Transform

2D Discrete Cosine Transform

JPEG image compression
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JPEG image compression

I Start with a color image ) three color channels xR , xB , xG

) Each pixel is represented by 8 bits

) Values are integers in [0,255], or, equivalently [-127,128]

I Transform into luminance y and chrominance yR and yB
I Eye more sensitive to luminance. Sample chrominances every 2 pixels

I Work with luminance and chrominance separately.

I Separate each channel in 8⇥ 8 patches ) 64 pixels per patch

I For each patch x , compute the corresponding DCT X

) Keep coe�cients associated with largest frequency components

I Low frequencies more important but high frequencies not irrelevant

) Introduce importance quantization
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Importance quantization

I For each frequency pair k , l , define the importance coe�cient Q(k , l)

I Encode each DCT frequent component as

X̂ (k , l) = round

✓
X (k , l)

Q(k , l)

◆

I If Q(k , l) ⇡ 1 there is little change ) X̂ (k , l) ⇡ X (k , l)

I If Q(k , l) is large we reduce the range of X̂ (k , l)

I Numbers with smaller range can be encoded with less bits

) Assign relatively small Q(k , l) to low frequencies

) Assign relatively large Q(k , l) to high frequencies
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Importance matrix

I The importance coe�cients Q(k , l) form the importance matrix Q

) Up to 20. Up to 50. Up to 90. More than 90.

Q =

0

BBBBBBBBBB@

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 36 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

1

CCCCCCCCCCA

I Instead of top left square, we assign importance to top left triangle

I Slight asymmetry ) More importance to horizontal frequencies

I All frequency components encoded to some extent

) High frequency components encoded only when they are large
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The discrete Fourier transform with Hermitian matrices

Stochastic signals

Principal component analisys (PCA) transform

Principal Components

Principal Component analysis for Compression

Dimensionality reduction

Face recognition

Signal and Information Processing Principal Component Analysis 2

The discrete Fourier transform, again

I It is time to write and understand the DFT in a more abstract way

I Write signal x and complex exponential ekN as vectors x and ekN

x =

0

BBB@

x(0)
x(1)
...
x(N � 1)

1

CCCA
ekN =

1p
N

0

BBB@

e j2⇡k0/N

e j2⇡k1/N

...
e j2⇡k(N�1)/N

1

CCCA

I Use vectors to write the kth DFT component as (eHkN = (e⇤kN)
T )

X (k) = e

H
kNx = hx, ekNi =

1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

I kth DFT component X (k) is the product of x with exponential eHkN
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DFT in matrix notation

I Write DFT X as a stacked vector and stack individual definitions

X =

2

6664

X (0)
X (1)
...
X (N � 1)

3

7775
=

2

6664

e

H
0Nx

e

H
1Nx

...
e

H
(N�1)Nx

3

7775
=

2

6664

e

H
0N

e

H
1N

...
e

H
(N�1)N

3

7775
x

I Define the DFT matrix F

H so that we can write X = Fx

F =

2

6664

e

H
0N

e

H
1N

...
e

H
(N�1)N

3

7775
=

1p
N

2

6664

1 1 · · · 1

1 e

�j2⇡(1)(1)/N · · · e

�j2⇡(1)(N�1)/N

...
...

. . .
...

1 e

�j2⇡(N�1)(1)/N · · · e

�j2⇡(N�1)(N�1)/N

3

7775

I The DFT of signal x is a matrix multiplication ) X = Fx
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The DFT as a matrix product

I Indeed, in case you are having trouble visualizing the matrix product

e�j2⇡(0)(0)/N · e�j2⇡(0)(n)/N · e�j2⇡(0)(N�1)/N

· · · · ·
e�j2⇡(k)(0)/N · e�j2⇡(k)(n)/N · e�j2⇡(k)(N�1)/N

· · · · ·
e�j2⇡(N�1)(0)/N · e�j2⇡(N�1)(n)/N · e�j2⇡(N�1)(N�1)/N

2

66666664

3

77777775

x(0)

·
x(n)

·
x(N � 1)

2

66666664

3

77777775

X (0)

·
X (k)

·
X (N � 1)

2

66666664

3

77777775

F =

= x

= X = Fx

e�j2⇡(k)(0)/Nx(0)

e�j2⇡(k)(n)/Nx(n)

e�j2⇡(k)(N�1)/Nx(N � 1)

I The kth DFT component X (k) is the kth row of matrix product Fx
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Some properties of the DFT matrix F

I The (k , n)th element of the matrix F is the complex exponential

((F))kn = e�j2⇡(k)(n)/N =
⇣
e�j2⇡(k)/N

⌘
(n)

I Since elements of rows are indexed powers we say F is Vandermonde

I Also observe that since e�j2⇡(k)(n)/N = e�j2⇡(n)(k)/N we have

((F))kn = e�j2⇡(k)(n)/N = e�j2⇡(n)(k)/N ((F))nk

I The DFT matrix F is symmetric ) F

T = F

I Can then write F as ) F = F

T =
h
e

⇤
0N e

⇤
1N · · · e

⇤
(N�1)N

i
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The Hermitian of the DFT matrix F

I Let FH = (F⇤)T be conjugate transpose of F. We can write F

H as

F

H =

2

6664

e

T
0N

e

T
1N

...
e

T
(N�1)N

3

7775
( F =

⇥
e

⇤
0N e

⇤
1N · · · e

⇤
(N�1)N

⇤

I We say that FH and F are Hermitians of each other (that’s why F

H)

I The nth row of FH is the nth complex exponential eTnN
I The kth column of F is the kth conjugate complex exponential e⇤kN
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The product of F and its Hermitian F

H

I The product between the DFT matrix F and its Hermitian F

H is

⇥
e

⇤
0N · · · e

⇤
kN · · · e

⇤
(N�1)N

⇤

2

66666664

e

T
0N

...
e

T
kN

...
e

T
(N�1)N

3

77777775

2

66666664

e

T
0Ne

⇤
0N · · · e

T
0Ne

⇤
kN · · · e

T
0Ne

⇤
(N�1)N

...
. . .

...
. . .

...
e

T
kNe

⇤
0N · · · e

T
kNe

⇤
kN · · · e

T
kNe

⇤
(N�1)N

...
. . .

...
. . .

...
e

T
(N�1)Ne

⇤
0N · · · e

T
(N�1)Ne

⇤
kN · · · e

T
(N�1)Ne

⇤
(N�1)N

3

77777775

= F

H
F

I The (n, k) element of product matrix is the inner product eTnNe
⇤
kN

I Orthonormality of complex exponentials ) e

T
nNe

⇤
kN = �(n � k)

) Only the diagonal elements survive in the matrix product
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The matrix F and its inverse

I The DFT matrix F and its Hermitian are inverses of each other

F

H
F =

2

6666664

1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1

3

7777775
= I

I Matrices whose inverse is its Hermitian, are said Hermitian matrices

I Have proved the following fundamental theorem. Orthonormality

Theorem
The DFT matrix F is Hermitian ) F

H
F = I
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The iDFT in matrix form

I We can retrace methodology to also write the iDFT in matrix form

I No new definitions are needed. Use vectors enN and X to write

x̃(n) = e

T
nNX =

1p
N

N�1X

k=0

X (k)e j2⇡kn/N

I Define stacked vector x̃ and stack definitions. Use expression for FH

x̃ =

2

6664

x̃(0)
x̃(1)
...
x̃(N � 1)

3

7775
=

2

6664

e

T
0NX

e

T
1NX

...
e

T
(N�1)NX

3

7775
=

2

6664

e

T
0N

e

T
1N

...
e

T
(N�1)N

3

7775
X = F

H
X

I The iDFT is, as the DFT, just a matrix product ) x̃ = F

H
X
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The iDFT in matrix form

I Again, in case you are having trouble visualizing the matrix product

ej2⇡(0)(0)/N · ej2⇡(k)(0)/N · ej2⇡(N�1)(0)/N

· · · · ·
ej2⇡(0)(n)/N · ej2⇡(k)(n)/N · ej2⇡(N�1)(n)/N

· · · · ·
ej2⇡(0)(N�1)/N · ej2⇡(k)(N�1)/N · ej2⇡(N�1)(N�1)/N

2

66666664

3

77777775

X (0)

·
X (k)

·
X (N � 1)

2

66666664

3

77777775

˜x(0)

·
˜x(n)

·
˜x(N � 1)

2

66666664

3

77777775
F

H
=

= X

= ˜x = F

H
X

ej2⇡(0)(n)/NX (0)

ej2⇡(k)(n)/NX (k)

ej2⇡(N�1)(n)/NX (N � 1)

I Can write the iDFT of X as the matrix product ) x̃ = F

H
X
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Inverse theorem, like a pro

I When we proved theorems we had monkey steps and one smart step

) That was orthonormality ) matrix F is Hermitian ) F

H
F = I

Theorem
The iDFT is, indeed, the inverse of the DFT

Proof.

I Write x̃ = F

H
X and X = Fx and exploit fact that F is Hermitian

x̃ = F

H
X = F

H
Fx = Ix = x

I Actually, this theorem would be true for any transform pair

X = Tx () x̃ = T

H
X

I As long as the transform matrix T is Hermitian ) T

H
T = I

Signal and Information Processing Principal Component Analysis 12

Energy conservation (Parseval) theorem, like a pro

Theorem
The DFT preserves energy ) kxk2 = x

H
x = X

H
X = kXk2

Proof.

I Use iDFT to write x = F

H
X and exploit fact that F is Hermitian

kXk2 = X

H
X = (Fx)H Fx = x

H
F

H
Fx = x

H
x = kxk2

I This theorem would also be true for any transform pair

X = Tx () x̃ = T

H
X

I As long as the transform matrix T is Hermitian ) T

H
T = I
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The discrete cosine transform

I Are there other useful transforms defined by Hermitian matrices T?

) Many. One we have already found is the DCT

I Define the inverse DCT matrix C

H to write the iDCT as x̃ = C

H
X

C

H =
1p
N

2

666664

1 1 · · · 1

1
p
2 cos

h
2⇡(1)((1)+1/2)

N

i
· · ·

p
2 cos

h
2⇡(N�1)((1)+1/2)

N

i

...
...

. . .
...

1
p
2 cos

h
2⇡(1)((N�1)+1/2)

N

i
· · ·

p
2 cos

h
2⇡(N�1)((N�1)+1/2)

N

i

3

777775

I It is ready to verify that C is Hermitian (the cosines are orthonormal)

I From where the inverse and energy conservation theorems follow

) Proofs hold for all Hermitians, C in particular
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Designing transformations adapted to signals

I A basic information processing theory can be built for any T

I Then, why do we specifically choose the DFT? Or the DCT?

) Oscillations represent di↵erent rates of change

) Di↵erent rates of change represent di↵erent aspects of a signal

I Not a panacea, though. E.g., FH is independent of the signal

I If we know something about signal, should use it to build better T

I A way of “knowing something” is a stochastic model of the signal

I PCA: Principal component analysis

) Use the eigenvectors of the covariance matrix to build T
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Stochastic signals

The discrete Fourier transform with Hermitian matrices

Stochastic signals

Principal component analisys (PCA) transform

Principal Components

Principal Component analysis for Compression

Dimensionality reduction

Face recognition
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Random Variables

I A random variable X models a random phenomena

) One in which many di↵erent outcomes are possible

) And one in which some outcomes may be more likely than others

I Thus, a random variable represents two things

) All possible outcomes and their respective likelihoods

��x �x µYµY � �Y µY + �Y
µZµZ � �Z µZ + �Z

x , y, z

pX (x), pY (y), pZ (y)

I Random variable X takes values around 0 and Y values around µY

I Z takes values around µZ and the values are more concentrated

Signal and Information Processing Principal Component Analysis 17

Probabilities

I Probabilities measure the likelihood of observing di↵erent outcomes

) Larger probability means an outcome that is more likely

) Or, observed more often when seeing many realizations

I Random variables represented by uppercase ) E.g., X

I Values that it can take represented by lowercase ) E.g., x

I The probability that X takes values between x and x 0 is written as

P
�
x < X  x 0

�

I Here, we describe probabilities with density functions (pdf)
) pX (x)

P
�
x < X  x 0

�
=

Z x0

x

pX (u) du

I pX (x) ⇡ How likely random variable X is to take a value around x
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Gaussian random variables

I A random variable X is Gaussian (or Normal) if its pdf os of the form

pX (x) =
1p
2⇡�

e�(x�µ)2/�2

I The mean µ determines center. The variance �2 determines width

��x �x µYµY � �Y µY + �Y
µZµZ � �Z µZ + �Z

x , y, z

pX (x), pY (y), pZ (y)

I Means satisfy 0 = µX < µY < µz . Variances are �2

X = �2µY > �2

z
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Expectation

I Expectation of random variable is an average weighted by likelihoods

E [X ] =

Z 1

�1
xpX (x) dx

I Regular average ) Sum all values and divide by number of values

I Expectation ) Weight values x by their relative likelihoods pX (x)

I For a Gaussian random variable X the expectation is the mean µ

E [X ] =

Z 1

�1
x

1p
2⇡�

e�(x�µ)2/�2

dx = µ

I Not di�cult to evaluate integral, but besides the point to do so here
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Variance

I Measure of variability around the mean weighted by likelihoods

var [X ] = E
h�
X � E [X ]

�
2

i
=

Z 1

�1

�
x � E [X ]

�
2

pX (x) dx

I Large variance ⌘ likely values are spread out around the mean

I Small variance ⌘ likely values are concentrated around the mean

I For a Gaussian random variable X the variance is the variance �2

var [X ] =

Z 1

�1

�
x � E [X ]

�
2

1p
2⇡�

e�(x�µ)2/�2

dx = �2

I Not di�cult to evaluate either. But also besides the point here
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Random signals

I A random signal X is a collection of random variables (length N)

X = [X (0), X (1), . . . , X (N � 1)]T

I Each of the random variables has its own pdf ) pX (n)(x)

I This pdf describes the likelihood of X (n) taking a value around x

I This is not a su�cient description. Joint outcomes also important

I Joint pdf p
X

(x) says how likely signal X is to be found around x

P
�
x 2 X

�
=

ZZ

X
p
X

(x) dx

I The individual pdfs pX (n)(x) are said to be marginal pdfs
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Face images

I Random signal X ) All possible images of human faces

I More manageable ) X is a collection of 400 face images

) The random variable represents all the images

) The likelihood of each of them being chosen. E.g., 1/400 each

I Random variable specified by all outcomes and respective probabilities

Signal and Information Processing Principal Component Analysis 23

Vectorization

I Do observe that the dataset consists of images ⌘ matrices
I Each image is stored in a matrix of size 112⇥ 92

Mi =

2

666664

m

1,1 m

1,2 . . . m

1,92

m

2,1 m

2,2 . . . m

2,92

...
...

. . .
...

m

112,1 m

112,2 . . . m

112,92

3

777775

I Stack columns of image Mi into the vector xi with length 10, 304

xi =
h
m

1,1, m21

, . . ., m
112,1, m1,2, m2,2, . . ., m112,2,

..., m
1,92, m2,92, . . ., m112,92

iT

I Images are matrices Mi 2 R112⇥92. Signals are vectors xi 2 R10,304
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Realizations

I Realization x is an individual face pulled from set of possible outcomes

I Three possible realizations shown

I Realizations are just regular signals. Nothing random about them
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Expectation, variance and covariance

I Signal’s expectation is the concatenation of individual expectations

E [X] =
h
E [X (0)] , E [X (1)] , . . . E [X (N � 1)]

iT
=

ZZ
xp

X

(x) dx

I Variance of nth element ) ⌃nn = var [X (n)] = E
h�
X (n)� E [X (n)]

�
2

i

I Measures variability of nth component

I Covariance between the signal components X (n) and X (m)

⌃nm = E
⇥�
X (n)� E [X (n)]

��
X (m)� E [X (m)]

�⇤
= ⌃mn

I Measures how much X (n) predicts X (m). Love, hate, and indi↵erence

) ⌃nm = 0, components are unrelated. They are orthogonal

) ⌃nm > 0 (⌃nm < 0), move in same (opposite) direction
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Covariance matrix

I Assume that E [X] = 0 so that covariances are ⌃nm = E [X (n)X (m)]

I Consider the expectation E
⇥
xx

T
⇤
of the (outer) product xxT

I We can write the outer product xxT as

xx

T
=

2

66666664

x(0)x(0) · · · x(0)x(n) · · · x(0)x(N � 1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x(n)x(0) · · · x(n)x(n) · · · x(n)x(N � 1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x(N � 1)x(0) · · · x(N � 1)x(n) · · · x(N � 1)x(N � 1)

3

77777775

I
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Covariance matrix

I Assume that E [X] = 0 so that covariances are ⌃nm = E [X (n)X (m)]

I Consider the expectation E
⇥
xx

T
⇤
of the (outer) product xxT

I Expectation E
⇥
xx

T
⇤
implies expectation of each individual element

E
h
xx

T
i
=

2

66666664

E[x(0)x(0)] · · · E[x(0)x(n)] · · · E[x(0)x(N � 1)]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

E[x(n)x(0)] · · · E[x(n)x(n)] · · · E[x(n)x(N � 1)]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

E[x(N � 1)x(0)] · · · E[x(N � 1)x(n)] · · · E[x(N � 1)x(N � 1)]

3

77777775

I
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Covariance matrix

I Assume that E [X] = 0 so that covariances are ⌃nm = E [X (n)X (m)]

I Consider the expectation E
⇥
xx

T
⇤
of the (outer) product xxT

I The (n,m) element of the matrix E
⇥
xx

T
⇤
is the covariance ⌃n,m

E
h
xx

T
i
=

2

66666664

⌃

00

· · · ⌃

0n · · · ⌃

0(N�1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⌃n0 · · · ⌃nn · · · ⌃n(N�1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⌃

(N�1)0

· · · ⌃

(N�1)n · · · ⌃

(N�1)(N�1)

3

77777775

I Define the covariance matrix of random signal X as ⌃ := E
⇥
xx

T
⇤
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Definition of covariance matrix

I When the mean is not null define the covariance matrix of X as

⌃ := E
h�
x� E [x]

��
x� E [x]

�T i

I As when null is mean, the (n,m) element of ⌃ is the covariance ⌃n,m

((⌃))nm = E
⇥�
X (n)� E [X (n)]

��
X (m)� E [X (m)]

�⇤
= ⌃nm

I The covariance matrix ⌃ is an arrangement of the covariances ⌃n,m

I The diagonal of ⌃ contains the (auto)variances ⌃nn = var [X (n)]

I Covariance matrix is symmetric ) ((⌃))n,m = ⌃nm = ⌃mn = ((⌃))mn
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Mean of face images

I All images are equally likely ) probability 1/400 for each image

I The mean face is the regular average ) E [x] =
1

400

400X

i=1

xi

I Average image looks something, sort of, like an average face
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Covariance matrix of face images

I Covariance matrix ) ⌃ =
1

400

400X

i=1

⇣
xi � E [x]

⌘⇣
xi � E [x]

⌘T

I Heat map of covariance
matrix ⌃ shown on left

I Large correlation values
around diagonal

I Large correlation values
every 112 elements (jump a
row on matrix)
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Principal component analisys (PCA) transform

The discrete Fourier transform with Hermitian matrices

Stochastic signals

Principal component analisys (PCA) transform

Principal Components

Principal Component analysis for Compression

Dimensionality reduction

Face recognition
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Eigenvectors and eigenvalues of covariance matrix

I Consider a vector with N elements ) v = [v(0), v(1), . . . , v(N � 1)]

I We say that v is an eigenvector of ⌃ if for some scalar � 2 R

⌃v = �v

I We say that � is the eigenvalue associated to v

w

⌃w

v

1

⌃v

1

= �
1

v

1

v

2

⌃v

2

= �
2

v

2

I In general, w and ⌃w point in di↵erent directions

I But for eigenvalues v, the product vector ⌃v is collinear with v
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Normalization

I If v is an eigenvector, ↵v is also an eigenvector for any scalar ↵ 2 R,

⌃(↵v) = ↵(⌃v) = ↵�v = �(↵v)

I Eigenvectors are defined up to a constant

I We use normalized eigenvectors with unit energy ) kvk2 = 1

I If we compute v with kvk2 6= 1 replace v with v/kvk

I There are N eigenvalues and distinct associated eigenvectors

) Some technical qualifications are needed in this statement
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Ordering

Theorem
The eigenvalues of ⌃ are real and nonnegative ) � 2 R and � � 0

Proof.

I Begin by observing that we can write � = v

H
⌃v/kvk2. Indeed

v

H
⌃v = v

H (⌃v) = v

H (�v) = �vHv = �kvk2

I Complete by showing that vT⌃v is nonnegative. Indeed (assume E [x] = 0)

v

H
⌃v = v

HE
h
xx

H
i
v = E

h
v

H
xx

H
v

i
= E

h�
v

H
x

��
x

H
v

�i
= E

h�
v

H
x

�
2

i
� 0

I Order eigenvalues from largest to smallest ) �
0

� �
1

� . . . � �N�1

I Eigenvectors inherit order ) v

0

, v
1

, . . . , vN�1

I The nth eigenvector of ⌃ is associated with its n largest eigenvalue
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Eigenvectors are orthonormal

Theorem
Eigenvectors of ⌃ associated with di↵erent eigenvalues are orthogonal

Proof.

I Normalized eigenvectors v and u associated with eigenvalues � 6= µ

⌃v = �v, ⌃u = µu

I Since the matrix ⌃ is symmetric we have ⌃

H = ⌃, and it follows

u

H⌃v =
�
u

H⌃v
�H

= v

H⌃H
u = v

H⌃u

I Make ⌃v = �v on the leftmost side and ⌃u = µu on the rightmost

u

H�v = �uHv = µvHu = v

Hµu

I Eigenvalues are di↵erent ) Relationship can only be true if vHu = 0
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Eigenvectors of face images (1D)

I One dimensional representation of first four eigenvectors v
0

, v
1

, v
2

, v
3
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Eigenvectors of face images (2D)

I Two dimensional representation of first four eigenvectors v
0

, v
1

, v
2

, v
3
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Eigenvector matrix

I Define the matrix T whose kth column is the kth eigenvector of ⌃

T = [v
1

, v
2

, . . . , vN ]

I Since the eigenvectors vk are orthonormal, the product TH
T is

T

H
T =

⇥
v

1

· · · vk · · · vN

⇤

2

66666664

v

H
1

...
v

H
k

...
v

H
N

3

77777775

2

66666664

v

H
1

v

1

· · · v

H
1

vk · · · v

H
1

vN

...
. . .

...
. . .

...
v

H
k v1 · · · v

H
k vk · · · v

H
k vN

...
. . .

...
. . .

...
v

H
NvN · · · v

H
Nvk · · · v

H
NvN

3

77777775

=

2

6666664

1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1

3

7777775

I The eigenvector matrix T is Hermitian ) T

H
T = I
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Principal component analysis transform

I Any Hermitian T can be used to define an info processing transform

I Define principal component analysis (PCA) transform ) y = Tx

I And the inverse (i)PCA transform ) x̃ = T

H
y

I Since T is Hermitian, iPCA is, indeed, the inverse of the PCA

x̃ = T

H
y = T

H (Tx) = T

H
Tx = Ix = x

I Thus y is an equivalent representation of x ) Back and forth

I And, also because T is Hermitian, Parseval’s theorem holds

kXk2 = X

H
X = (Tx)H Tx = x

H
T

H
Tx = x

H
x = kxk2

I Modifying elements yk means altering energy composition of signal
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Discussions

I The PCA transform is defined for any signal (vector) x

) But we expect to work well only when x is a realization of X

I Write the iPCA in expanded form and compare with the iDFT

x(n) =
N�1X

k=0

y(k)vk(n) , x(n) =
N�1X

k=0

X (k)ekN(n)

I The same except that the use di↵erent bases for the expansion

I Still, like developing a new sense.

I But not one that is generic. Rather, adapted to the random signal X
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Coe�cients of a projected face image

I PCA transform coe�cients for given face image with 10,304 pixels

I Substantial energy in the first 15 PCA coe�cients y(k) with k  15

I Almost all energy in the first 50 PCA coe�cients y(k) with k  50

) Thas is a compression factor of more than 200
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients increases accuracy.

) Using 50 coe�cients su�ces
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Figure: No. P.C.s = 1
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients increases accuracy.

) Using 50 coe�cients su�ces
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Figure: No. P.C.s = 5
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients increases accuracy.

) Using 50 coe�cients su�ces
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Figure: No. P.C.s = 10
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients increases accuracy.

) Using 50 coe�cients su�ces
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Figure: No. P.C.s = 20
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients increases accuracy.

) Using 50 coe�cients su�ces
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Figure: No. P.C.s = 30
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients increases accuracy.

) Using 50 coe�cients su�ces
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Figure: No. P.C.s = 40
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients increases accuracy.

) Using 50 coe�cients su�ces
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Figure: No. P.C.s = 50
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Coe�cients of the same person

I PCA transform y for two di↵erent pictures of the same person
I Coe�cients are similar, even if pose and attitude are di↵erent

) E.g., first two coe�cients almost identical
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Coe�cients of di↵erent persons

I PCA transform y for pictures of di↵erent persons
I Similar pose and attitude, but PCA coe�cients are still di↵erent

) Can be used to perform face recognition. More later
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Principal Components

The discrete Fourier transform with Hermitian matrices

Stochastic signals

Principal component analisys (PCA) transform

Principal Components

Principal Component analysis for Compression

Dimensionality reduction

Face recognition
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Signals with uncorrelated components

I A random signal X with uncorrelated components is one with

⌃nm = E
⇥�
X (n)� E [X (n)]

��
X (m)� E [X (m)]

�⇤
= 0

I Di↵erent components are unrelated to each other.

I They represent di↵erent (orthogonal) aspects of signal

I Components uncorrelated ) The covariance matrix is diagonal

⌃ = E
h�
x� E [x]

��
x� E [x]

�T i
=

2

6666664

⌃

00
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I How eigenvectors (principal components) of uncorrelated signals look?
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Uncorrelated signal with 2 components

I Signal X = [X (0),X (1)]T with 2 components and diagonal covariance

⌃ =


2 0
0 1

�

I Covariance eigenvectors are

v

0

=


1
0

�
v

1

=


0
1

�
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0

0.5

1

1.5

2

I The respective associated eigenvalues are �
0

= 2 and �
1

= 1

I Eigenvectors are orthogonal, as they should.

) Represent directions of separate signal variability

) Rate of variability given by associated eigenvalue
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Another uncorrelated signal with 2 components

I Signal X = [X (0),X (1)]T with 2 components and diagonal covariance

⌃ =


1 0
0 2

�

I Covariance eigenvectors reverse order

v

0

=


0
1

�
v

1

=


1
0

�

I Associated eigenvalues are �
0

= 2 and �
1

= 1

I Eigenvectors still orthogonal, as they should.

) Directions of separate signal variability

) Rate given by associated eigenvalue
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Signal with correlated components

I Signal X = [X (0),X (1)]T with 2 components and diagonal covariance

⌃ =


3/2 1/2
1/2 3/2

�

I Covariance eigenvectors mix coordinates

v

0

=


1
1

�
v

1

=


1

�1

�

I Eigenvalues are �
0

= 2 and �
1

= 1
−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

I The eigenvalues are orthogonal. This is true for any covariance matrix

) Mix coordinates but still represent directions of separate variability

) Rate of change also given by associated eigenvalue
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Eigenvectors in uncorrelated signals

I Uncorrelated components means diagonal covariance matrix

⌃ =

2

6666664

⌃
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· · · ⌃
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⌃n0 · · · ⌃nn · · · ⌃n(N�1)
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. . .

...
. . .

...
⌃

(N�1)0

· · · ⌃
(N�1)n · · · ⌃

(N�1)(N�1)

3

7777775

I If variances are ordered, kth eigenvector is k-shifted delta �(n � k)

I The corresponding variance ⌃kk is the associated eigenvalue

I Eigenvectors represent directions of orthogonal variability

I Rate of variability given by associated eigenvalue
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Eigenvectors in correlated signals

I Correlated components means a full covariance matrix

⌃ =

2

6666664

⌃
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· · · ⌃
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. . .
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⌃n0 · · · ⌃nn · · · ⌃n(N�1)
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. . .

...
. . .
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⌃

(N�1)0

· · · ⌃
(N�1)n · · · ⌃

(N�1)(N�1)

3

7777775

I The eigenvectors vk now mix di↵erent components

) But they still represent directions of orthogonal variability

) With the rate of variability given by associated eigenvalue

I PCA transform represents a signal as a sum of orthonormal vectors

) Each of which represents independent variability

I Principal components (eigenvectors) with larger eigenvalues represent
directions in which the signal has more variability
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Principal Component analysis for Compression

The discrete Fourier transform with Hermitian matrices

Stochastic signals

Principal component analisys (PCA) transform

Principal Components

Principal Component analysis for Compression

Dimensionality reduction

Face recognition
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Recap of DFT and iDFT in matrix notation

I Write DFT X as a stacked vector and stack individual definitions

X =

2

6664

X (0)
X (1)
...
X (N � 1)

3

7775
=

2

6664

e

H
0Nx

e

H
1Nx

...
e

H
(N�1)Nx

3

7775
=

2

6664

e

H
0N

e

H
1N

...
e

H
(N�1)N

3

7775
x

I Define the DFT matrix F

H so that we can write X = Fx

F =

2

6664

e

H
0N

e

H
1N

...
e

H
(N�1)N

3

7775
=

1p
N

2

6664

1 1 · · · 1

1 e

�j2⇡(1)(1)/N · · · e

�j2⇡(1)(N�1)/N

...
...

. . .
...

1 e

�j2⇡(N�1)(1)/N · · · e

�j2⇡(N�1)(N�1)/N

3

7775

I The DFT of signal x is a matrix multiplication ) X = Fx

I The iDFT of signal X is a matrix multiplication ) x = F

H
X
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Recap of Compression by DFT

I We map signal x into the frequency domain X using DFT

2

6664

X (0)
X (1)
...
X (N � 1)

3

7775
=

1p
N

2

6664

1 1 · · · 1

1 e

�j2⇡(1)(1)/N · · · e

�j2⇡(1)(N�1)/N

...
...

. . .
...

1 e

�j2⇡(N�1)(1)/N · · · e

�j2⇡(N�1)(N�1)/N

3

7775

2

6664

x(0)
x(1)
...
x(N � 1)

3

7775

I Keep the k largest coe�cients of X and make the rest 0 ! X̃

X

T = [X (0),X (1), . . . ,X (N � 1)] ! X̃

T = [X (0), 0, . . . ,X (N � 1)]

I Map the compressed signal X̃ into the time domain x̃ using iDFT

2

6664

x̃(0)
x̃(1)
...
x̃(N � 1)

3

7775
=

1p
N

2

6664

1 1 · · · 1

1 e

�j2⇡(1)(1)/N · · · e

�j2⇡(1)(N�1)/N

...
...

. . .
...

1 e

�j2⇡(N�1)(1)/N · · · e

�j2⇡(N�1)(N�1)/N

3

7775

H 2

6664

X̃ (0)

X̃ (1)
...

X̃ (N � 1)

3

7775
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Recap of Principal Component Transform

I Define the matrix T whose ith row is the ith eigenvector of ⌃

T =

2

6664

· · · v

T
0

· · ·
· · · v

T
1

· · ·
...

...
...

· · · v

T
N�1

· · ·

3

7775

I The eigenvectors vi are orthonormal

I Eigenvectors vi are ordered based on their associated eigenvalues

) �
0

� �
1

� . . .�N�1

I principal component analysis (PCA) transform ) y = Tx

I And the inverse (i)PCA transform ) x̃ = T

H
y

I For PCA compression we do not pick k largest coe�cients of y

I We pick the coe�cients of the k largest eigenvectors
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PCA Compression Idea

I We map signal x into y using PCA transform
2

6664

y(0)
y(1)
...
y(N � 1)

3

7775
=

2

6664

v

0

(0) v

0

(1) · · · v

0

(N � 1)
v

1

(0) v

1

(1) · · · v

1

(N � 1)
...

...
. . .

...
vN�1

(0) vN�1

(1) · · · vN�1

(N � 1)

3

7775

2

6664

x(0)
x(1)
...
x(N � 1)

3

7775

I Keep k coe�cients of y corresponding to the k largest eigenvectors

y

T = [y(0), y(1), . . . , y(N � 1)] ! ỹ

T = [y(0), y(1), . . . , y(k � 1), 0, . . . , 0]

I Reconstruct the compressed signal ỹ using iPCA transform

2
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x̃(0)
x̃(1)
...
x̃(N � 1)

3
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=

2
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(1) · · · v

1
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...
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. . .

...
vN�1

(0) vN�1
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(N � 1)

3
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H 2

6664

ỹ(0)
ỹ(1)
...
ỹ(N � 1)

3

7775
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PCA Compression implementation

I PCA compression is equivalent to ignoring vk , . . . vN�1

I Keep the eigenvectors that corresponds to the k largest eigenvalues

T =

2

6666664

· · · v

T
0

· · ·
· · · v

T
1

· · ·
...

...
...

...
...

...
· · · v

T
N�1

· · ·

3

7777775
! T̃ =

2

6664

· · · v

T
0

· · ·
· · · v

T
1

· · ·
...

...
...

· · · v

T
k�1

· · ·

3

7775

I Transform the signal x to ỹ using the transform matrix T̃

ỹ = T̃x

I Reconstruct signal x̃ by transforming back the ỹ signal

x̃ = T̃

H
ỹ
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Expected reconstruction error

I Define the expected reconstruction error as E
⇥
kx� x̃k2

⇤

I Given the realizations {x
1

, . . . , bbxn} for the random variable x

) The empirical expected reconstruction error is 1

n

Pn
i=1

kxi � x̃ik2

I Consider the case that we only keep k eigenvectors for compression.

I How to choose k eigenvectors to minimize the expected
reconstruction error?

min E
⇥
kx� x

0k2
⇤
or min

1

n

nX

i=1

kxi � x

0
ik2
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Proof of optimality of PCA (1 of 3)

Theorem
The Expected reconstruction error is minimized by choosing the k largest
principal components.

Proof:

I Consider Ŝ := {v̂
0

, v̂
1

, . . . , v̂k�1

} ⇢ S := {v
0

, . . . , vN�1

} as the set
of eigenvectors for compression

I
yi is the mapped signal of xi when we use all the eigenvectors

I The empirical expected reconstruction error can be simplified as

1

n

nX

i=1

kxi � x

0
ik2 =

1

n

nX

i=1

k
X

vj2S

yi (j)vj �
X

vj2 ˆS

yi (j)vjk2

=
1

n

nX

i=1

k
X

vj2S� ˆS

yi (j)vjk2

=
1

n

nX

i=1

X

vj2S� ˆS

yi (j)
2
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Proof of optimality of PCA (2 of 3)

I Substituting yi (j) by its definition x

T
i vj

1

n

nX

i=1

kxi � x

0
ik2 =

1

n

nX

i=1

X

vj2S� ˆS

v

T
j xix

T
i vj

=
X

vj2S� ˆS

v

T
j

 
1

n

nX

i=1

xix
T
i

!
vj

I The covariance matrix ⌃ of dataset D = {x
1

, . . . , xn} is defined as

⌃ :=
1

n

nX

i=1

xix
T
i 2 Rn⇥n

I Considering the definition of covariance matrix ⌃, we obtain

min
1

n

nX

i=1

kxi � x

0
ik2 = min

X

vj2S� ˆS

v

T
j ⌃ vj
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Proof of optimality of PCA (3 of 3)

I The sum
P

vj2S v

T
j ⌃vj = trace(⌃) is constant. Therefore,

min
X

vj2S� ˆS

v

T
j ⌃ vj = max

X

vj2 ˆS

v

T
j ⌃ vj

I Therefore, minimizing the empirical expected reconstruction error is
equivalent to

min
1

n

nX

i=1

kxi � x

0
ik2 = max

X

vj2 ˆS

v

T
j ⌃ vj

I The right hand side is maximized if we pick the k largest P.C.s.

) Ŝ := {v̂
0

, . . . , v̂k�1

} = {v
0

, . . . , vk�1

}
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Dimension reduction

I Consider a set of realizations in R2 as

x
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
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�
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
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�
, x
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
�3
�3
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I The covariance matrix is ⌃ =


4.66 4.66
4.66 4.66

�

I The eigenvalues are �
0

= 9.33 and �
1

= 0

I The eigenvectors are v

0

= [1/
p
2, 1/

p
2]T , v

1

= [�1/
p
2, 1/

p
2]T
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Dimension reduction

I Consider a set of realizations in R2 as

x
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
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I The covariance matrix is ⌃ =


4.66 4.66
4.66 4.66

�

I The eigenvalues are �
0

= 9.33 and �
1

= 0

I The eigenvectors are v

0

= [1/
p
2, 1/

p
2]T , v

1

= [�1/
p
2, 1/

p
2]T
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Dimension reduction (continued)

I Axis [1, 1] is very informative, while axis [�1, 1] has no information

I Consider that we pick only one P.C. which is v
0

I The mapped points are computed as yi = v

T
0

xi for i = 1, . . . , 6

y
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6
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
�6p
2

�

I The reconstructed points are x̃i = v

0

yi = xi for i = 1, . . . , 6
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�
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5
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6
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
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I The empirical reconstruction error is 0! (lossless compression).
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Dimension reduction 2

I Consider a set of realizations in R2 as

x
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I The covariance matrix is ⌃ =


4.66 4.66
4.66 4.66

�

I The eigenvalues are �
0

= 11.97 and �
1

= 0.22

I The eigenvectors are v

0

= [0.687, 0.727]T , v
1

= [�0.727, 0.687]T
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Dimension reduction 2

I Consider a set of realizations in R2 as

x
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I The covariance matrix is ⌃ =


4.66 4.66
4.66 4.66

�

I The eigenvalues are �
0

= 11.97 and �
1

= 0.22

I The eigenvectors are v

0

= [0.687, 0.727]T , v
1

= [�0.727, 0.687]T
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Dimension reduction 2 (continued)

I
v

0

= [0.687, 0.727]T is more informative than v

1

= [�0.727, 0.687]T

I Consider that we pick only one P.C. which is v
0

I The mapped points are computed as yi = v

T
0

xi for i = 1, . . . , 6

y
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2
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3
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y

4
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5

= [�3.61] y

6

= [�4.37]
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Dimension reduction 2 (continued)

I The reconstructed points are x̃i = v

0

yi = xi for i = 1, . . . , 6
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I The empirical reconstruction error is the average of the distances

1

6

6X

i=1

kxi � x̃ik2 = 0.22
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Dimension reduction 2 (continued)

I The reconstructed points are x̃i = v

0

yi = xi for i = 1, . . . , 6
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I The empirical reconstruction error is the average of the distances

1

6

6X

i=1

kxi � x̃ik2 = 0.22
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients reduces reconstruction error.

I Reconstruction error = 1.25⇥ 107

I Sum of removed eigenvalues = 5.02⇥ 108
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Figure: No. P.C.s = 1
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients reduces reconstruction error.

I Reconstruction error = 6.6⇥ 106

I Sum of removed eigenvalues = 2.86⇥ 108
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Figure: No. P.C.s = 5
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients reduces reconstruction error.

I Reconstruction error = 3.9⇥ 106

I Sum of removed eigenvalues = 1.9⇥ 108

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

Figure: image

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

Figure: No. P.C.s = 10
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients reduces reconstruction error.

I Reconstruction error = 2.1⇥ 106

I Sum of removed eigenvalues = 8.9⇥ 107
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Figure: No. P.C.s = 20
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients reduces reconstruction error.

I Reconstruction error = 1.3⇥ 106

I Sum of removed eigenvalues = 3.11⇥ 107
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Figure: No. P.C.s = 30
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients reduces reconstruction error.

I Reconstruction error = 5.8⇥ 10�22

I Sum of removed eigenvalues = 4.7⇥ 10�7
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Figure: No. P.C.s = 40
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Reconstructed face images

I Reconstructed image for increasing number of PCA coe�cients

) Increasing number of coe�cients reduces reconstruction error.

I Reconstruction error = 6.24⇥ 10�22

I Sum of removed eigenvalues = 2.3⇥ 10�7
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Figure: No. P.C.s = 50
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Reconstruction error for one realization

I Reconstruction error for one realization kxi � x̃ik2 decreases

I Sum of the removed eigenvalues decreases

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6
x 10

8

Number of principal components

S
u
m

o
f
th

e
re
m
o
v
e
d
e
ig
e
n
v
a
lu
e
s

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14
x 10

6

Number of Principal Components

R
e
c
o
n
st
ru

c
ti
o
n
e
rr
o
r

Signal and Information Processing Principal Component Analysis 85

???

I I don’t know where to put this plot
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Dimensionality reduction

The discrete Fourier transform with Hermitian matrices

Stochastic signals

Principal component analisys (PCA) transform

Principal Components

Principal Component analysis for Compression

Dimensionality reduction

Face recognition
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Compression with the DFT

I Transform signal x into frequency domain with DFT X = Fx

I Recover x from X through iDFT matrix multiplication x = F

H
X

I We compress by retaining K < N DFT coe�cients to write

x̃(n) =
K�1X

k=0

X (k)e j2⇡kn/N

I Equivalently, we define the compressed DFT as

X̃(k) = X (k) for k < K , X̃(k) = 0 otherwise

I Reconstructed signal is obtained with iDFT ) x̃ = F

H
X̃

Signal and Information Processing Principal Component Analysis 88

Compression with the PCA

I Transform signal x into eigenvector domain with PCA y = Tx

I Recover x from y through iPCA matrix multiplication x = T

H
y

I We compress by retaining K < N PCA coe�cients to write

x̃(n) =
K�1X

k=0

y(k)vk(n)

I Equivalently, we define the compressed PCA as

ỹ(k) = y(k) for k < K , ỹ(k) = 0 otherwise

I Reconstructed signal is obtained with iDFT ) x̃ = T

H
ỹ
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Why keeping the first K coe�cients?

I Why do we keep the first K DFT coe�cients?

) Because faster oscillations tend to represent faster variation

) Also, not always, sometimes we keep the largest coe�cients

I Why do we keep the first K DFT coe�cients?

) Eigenvectors with lower ordinality have larger eigenvalues

) Larger eigenvalues entail more variability

) And more variability signifies more dominant features

I Eigenvectors with large ordinality represent finer signal features

) And can often be omitted
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Dimensionality reduction

I PCA compression is (more accurately) called dimensionality reduction

) Do not compress signal. Reduce number of dimensions

⌃ =


3/2 1/2
1/2 3/2

�

I Covariance eigenvectors mix coordinates

v

0

=


1
1

�
v

1

=


1

�1

�

I Eigenvalues are �
0

= 2 and �
1

= 1
−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

I Signal varies more in v

0

= [1, 1]T direction than in v

1

= [1,�1]T

) Study one dimensional signal x̃ = y(0)v
0

) instead of the original two dimensional signal x
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Expected reconstruction error

I PCA dimensionality reduction is Minimizes the expected error energy

I To see that this is true, define the error signal as ) e := x� x̃

I The energy of the error signal is ) kek2 = kx� x̃k2

I The expected value of the energy of the error signal is

E
⇥
kek2

⇤
= E

⇥
kx� x̃k2

⇤

I Keeping the first K PCA coe�cients minimizes E
⇥
kek2

⇤

) Among all reconstructions that use, at most K coe�cients
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Dimensionality reduction expected error

Theorem
The expectation of the reconstruction error is the sum of the eigenvalues
corresponding to the eigenvectors of the coe�cients that are discarded

E
⇥
kek2

⇤
=

N�1X

k=K

�k

I It follows that keeping the first K PCA coe�cients is optimal

) In the sense that it minimizes the Expected error energy

I Good on average. Across realizations of the stochastic signal X

I Need not be good for given realization(but we expect it to be good)
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Proof of expected error expression

Proof.

I Error signal signal is e := x� x̃. Define error PCA transform as f = T

H
x

I Using Parseval’s (energy conservation) we can write the energy of e as

kek2 = kfk2 =
N�1X

k=K

y

2(k)

I In the last equality we used that f = y� ỹ = [0, . . . , 0,y(K), . . . , y(N � 1)]

I Here, we are interested in the expected value of the error’s energy

I Take expectation on both sides of equality ) E
h
kek2

i
=

N�1X

k=K

E
h
y

2(k)
i

I Used the fact that expectations are linear operators
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Proof of expected error expression

Proof.

I Compute expected value E
⇥
y

2(k)
⇤
of the squared PCA coe�cient y(k)

I As per PCA transform definition y(k) = v

H
x, which implies

E
h
y

2(k)
i

= E
h
(vHk x)

2

i
= E

h
v

H
k xx

T
vk

i
= v

H
k E
h
xx

T
i
vk

I Covariance matrix: ⌃ := E
⇥
xx

T
⇤
. Eigenvector definition ⌃vk = �k . Thus

E
h
y

2(k)
i

= v

H
k ⌃vk = v

H
k �kvk = �kkvkk2

I Substitute into expression for E
⇥
kek2

⇤
to write ) E

h
kek2

i
=

N�1X

k=K

�k

Signal and Information Processing Principal Component Analysis 95

Principal eigenvalues for face dataset

I Covariance matrix eigenvalues for faces dataset.

I Expected approximation error ) Tail sum of eigenvalue distribution

) Average across all realizations. Not the same as actual error
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I First 10 coe�cients have 98% of energy.

I Eigenvectors with index k > 50 have 10�3% of energy on average
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Reconstructed face images

I Increasing number of coe�cients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 1 coe�cient ) Reconstruction error ) 0.06

) Sum of removed eigenvalues ) 0.52
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Reconstructed face images

I Increasing number of coe�cients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 5 coe�cients ) Reconstruction error ) 0.03

) Sum of removed eigenvalues ) 0.11

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

Signal and Information Processing Principal Component Analysis 98

Reconstructed face images

I Increasing number of coe�cients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 10 coe�cients ) Reconstruction error ) 0.02

) Sum of removed eigenvalues ) 0.04
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Reconstructed face images

I Increasing number of coe�cients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 20 coe�cients ) Reconstruction error ) 0.01

) Sum of removed eigenvalues ) 0.01
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Reconstructed face images

I Increasing number of coe�cients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 30 coe�cients ) Reconstruction error ) 0.006

) Sum of removed eigenvalues ) 0.003
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Reconstructed face images

I Increasing number of coe�cients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 40 coe�cients ) Reconstruction error ) 0

) Sum of removed eigenvalues ) 0
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Reconstructed face images

I Increasing number of coe�cients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 50 coe�cients ) Reconstruction error ) 0

) Sum of removed eigenvalues ) 0

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

Signal and Information Processing Principal Component Analysis 103

Evolution of reconstruction error

I Error for reconstruction process

I one realization (red), energy of removed eigenvalues (blue)
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Dimension reduction

The discrete Fourier transform with Hermitian matrices

Stochastic signals

Principal component analisys (PCA) transform

Principal Components

Principal Component analysis for Compression

Dimensionality reduction

Face recognition
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Face Recognition

I Observe faces of known people ) Use them to train classifier

I Observe a face of unknown character ) Compare and classify

I The dataset we’ve used contains 10 di↵erent images of 40 people
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Training set

I Separate the first 9 of each person to construct training set

I Interpret these images as know, and use them to train classifier
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Test set

I Utilize the last image of each person to construct a test set

I Interpret these images as unknown, and use them to test classifier
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Nearest neighbor classification

I Training set contains (signal, label) pairs ) T = {(xi , zi )}Ni=1

I Signal x is the face image. Label z is the person’s “name”

I Given (unknown) signals x, we want to assign a label

I Nearest neighbor classification rule

) Find nearest neighbor signal in the training set

x

NN

:= argmin
xi2T

kxi � xk2

) Assign the label associated with the nearest neighbor

x

NN

) (xi , zi ) ) z = zi

I Reasonable enough. It should work. But it doesn’t

Signal and Information Processing Principal Component Analysis 109

The signal and the noise

I Image has a part that is inherent to the person ) The actual signal

I But it also contains variability ) Which we model as noise

xi = x̃i +w

I Problem is, there is more variability (noise) than signal

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

Figure: Test image
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Figure: Nearest neighbor
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PCA nearest neighbor classification

I Compute PCA for all elements of training set ) yi = T

H
xi

I Redefine training set as one with PCA transforms ) T = {(yi , zi )}Ni=1

I Compute PCA transform of (unknown) signal x ) y = T

H
x

I PCA nearest neighbor classification rule

) Find nearest neighbor signal in training set with PCA transforms

y

NN

:= argmin
yi2T

kyi � yk2

) Assign the label associated with the nearest neighbor

y

NN

) (yi , zi ) ) z = zi

I Reasonable enough. It should work. And it does
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Why does PCA work for face recognition?

I Recall: image = a part that belongs to the person + noise

xi = x̃i +w

I PCA transformation T = [vT
0

; . . . ; vTN�1

] leads to

yi = Txi = Tx̃i + Tw

I PCA concentrates energy of x̃i on a few components

I But it keeps the energy of the noise on all components

I Keeping principal components improves the accuracy of classification

) Because it increases the signal to noise ratio
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PCA on the training set

I The training set D = {x
1

, . . . , x
360

} where xi 2 R10304 is given

I Compute the mean vector and the covariance matrix as

x̄ =
1

n

nX

i=1

xi and ⌃ :=
1

n

nX

i=1

(xi � x̄i )(xi � x̄i )
T .

I Find the k largest eigenvalues of ⌃

I Store their corresponding eigenvalues v
0

, . . . , vk�1

2 R10304 as P.C.

) The Principal Components v
0

, . . . , vk�1

are called eigenfaces

I Create the PCA transform matrix as T = [vT
0

; . . . ; vTk�1

]

I Project the training set into the space of P.C.s yi = Txi

I
⌃ depends training set, but is also a good description of the test set
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Average face of the training set

I The average face of the training set
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PCA on the training set

I The top 6 eigenfaces of the training set.
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Finding the nearest neighbor

Num. of P.C. test point N.N. in the training set

k = 1
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PCA improves classification accuracy

Classification method test point result of classification

Naive N.N.
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PCA-ed(k = 5) N.N.
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Graph Signals

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE
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The support of one dimensional signals

I We have studied one-dimensional signals, image processing, PCA

I It is time to understand them in a more unified way

I Consider the support of one-dimensional signals

I There is an underlying graph structure

) Each node represents discrete time instants (e.g. hours in a day)

) Edges are unweighted and directed
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The support of images

I Similarly, images also have an underlying graph structure

I Each node represents a single pixel

I Edges denote neighborhoods of pixels

) Unweighted and undirected
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PCA uses another underlying graph

I The previous underlying graph assumes a structure between pixels
(neighbors in lattice) a priori of seeing the images

I PCA considers images as defined on a di↵erent graph

I Each node represents a single pixel

I Edges denote covariance between pairs of pixels in the realizations

) A posteriori after seeing the images

) Undirected and weighted, including self loops
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Graphs

I Formally, a graph (or a network) is a triplet (V, E ,W )

I V = {1, 2, . . . ,N} is a finite set of N nodes or vertices

I E ✓ V ⇥ V is a set of edges defined as order pairs (n,m)

) Write N (n) = {m 2 V : (m, n) 2 E} as the in-neighbors of n

I W : E ! R is a map from the set of edges to scalar values, wnm

) Represents the level of relationship from n to m

) Unweighted graphs ) wnm 2 {0, 1}, for all (n,m) 2 E
) Undirected graphs ) (n,m) 2 E if and only if (m, n) 2 E and

wnm = wmn, for all (n,m) 2 E
) In-neighbors are neighbors

) More often weights are strictly positive, W : E ! R
++
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Graphs – examples

0 1 2 3

· · ·
23

I Unweighted and directed graphs

) V = {0, 1, . . . , 23}
) E = {(0, 1), (1, 2), . . . , (22, 23), (23, 0)}
) W : (n,m) 7! 1, for all (n,m) 2 E

I Unweighted and undirected graphs

) V = {1, 2, 3, . . . , 9}
) E = {(1, 2), (2, 3), . . . , (8, 9), (1, 4), . . . , (6, 9)}
) W : (n,m) 7! 1, for all (n,m) 2 E

1 2 3

4 5 6

7 8 9

p
1

p
2

p
3

p
4

⌃

12

⌃

13

⌃

34

⌃

24

⌃

14

⌃

23

⌃

11

⌃

22

⌃

33

⌃

44

I Weighted and undirected graphs

) V = {p
1

, p
2

, p
3

, p
4

}
) E = {(p

1

, p
1

), (p
1

, p
2

), . . . , (p
4

, p
4

)} = V ⇥ V
) W : (n,m) 7! ⌃nm = ⌃mn, for all (n,m)
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Adjacency matrices

I Given a graph G = (V, E ,W ) of N vertices,

I Its adjacency matrix A 2 RN⇥N is defined as

Anm =

(
wnm, if(n,m) 2 E
0, otherwise

I A matrix representation incorporating all information about G

) For unweighted graphs, positive entries represent connected pairs

) For weighted graphs, also denote proximities between pairs

I Inherently defines an ordering of vertices

) same ordering as in graph signals that we will see soon
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Adjacency matrices – examples
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will yield di↵erent A
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Graph signals

I Graph signals are mappings x : V ! R
I Defined on the vertices of the graph

I May be represented as a vector x 2 RN

I xn represents the signal value at the nth vertex in V
I Inherently utilizes an ordering of vertices

) same ordering as in adjacency matrices
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Graphs – Gene networks

I Graphs representing gene-gene interactions

) Each node denotes a single gene (loosely speaking)

) Connected if their coded proteins participate in same metobolism

A sample network
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Graph signals – Genetic profiles

I Genetic profiles for each patient can be considered as a graph signal

) Signal on each node is 1 if mutated and 0 otherwise

Sample patient 1 with subtype 1
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Sample patient 2 with subtype 2
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Plans

I We are going to derive following concepts for graph signal processing

) Total variations

) Frequency

) the notion of high or low frequency will be less obvious

) DFT and iDFT for graph signals

) Graph filtering

I And apply graph signal processing to gene mutation dataset
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Graph Laplacian

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE
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Degree of a node

I The degree of a node is the sum of the weights of its incident edges

I Given a weighted and undirected graph G = (V, E ,W )

I The degree of node i , deg(i) is defined as deg(i) =
P

j2N (i) wi j

) where N (i) is the neighborhood of node i

I Equivalently, in terms of the adjacency matrix A

) deg(i) =
P

j Ai j =
P

j Aj i

I The degree matrix D 2 RN⇥N is a diagonal matrix s.t. D ii = deg(i)

I In directed graphs, each node has an out-degree and an in-degree

) Weights in outgoing and incoming edges need not coincide
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Laplacian of a graph

I Given a graph G with adjacency matrix A and degree matrix D

I We define the Laplacian matrix L 2 RN⇥N as

L = D� A

I Equivalently, L can be defined elementwise as

Li j =

8
><

>:

deg(i) if i = j

�wi j if (i , j) 2 E
0 otherwise

I We assume undirected G ) deg(i) is well-defined

I The normalized Laplacian can be obtained as L = D�1/2LD�1/2

) We will mainly focus on the unnormalized version
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An example of a graph Laplacian

I Consider the weighted and undirected graph and its Laplacian

1
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4
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3
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L =

2

664

3 �1 0 �2
�1 6 �3 �2
0 �3 4 �1
�2 �2 �1 5

3

775

I Diagonal elements are strictly positive since no node is isolated

) Every node has a non-zero degree

I O↵-diagonal elements are non-positive
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Interpretation of the Laplacian

I Consider a graph G with Laplacian L and a signal x on G

) Define the new signal y = Lx

y i = [Lx]i =
X

j2N (i)

wi j(xi � xj)

I The summand j is large if one of two things happens

) The weight wi j is large, i.e., edge (i , j) 2 E is significant

) The value of x at node j is very di↵erent from the value at node i
I y i measures the di↵erence between x at a node and its neighborhood

I We can also define the Laplacian quadratic form of x

xTLx =
1

2

X

(i,j)2E

wi j(xi � xj)
2

I xTLx quantifies the local variation of signal x

) signals can be ordered depending on how wildly they vary

) will be important to order frequencies
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Spectral properties of the Laplacian

I Denote by �i and vi the eigenvalues and eigenvectors of L

I Since xTLx > 0 for x 6= 0, L is positive semi-definite

) All eigenvalues are nonnegative, i.e. �i � 0 for all i

I A constant vector 1 is an eigenvector of L with eigenvalue 0

[L1]i =
X

j2N (i)

wi j(1� 1) = 0

I Thus, �
1

= 0 and v
1

= 1/N 1

) In connected graphs �i > 0 for i = 2, . . . , n

) Multiplicity of � = 0 equals the nr. of connected components
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Graph Fourier Transform (GFT)
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Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network
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Graph-shift operator

I Given an arbitrary graph G = (V, E ,W )

I A graph-shift operator S 2 RN⇥N of graph G ia a matrix satisfying

) S i j = 0 for i 6= j and (i , j) 62 E

I S can take nonzero values in the edges of G or in its diagonal

I We have already seen some possible graph-shift operators

) Adjacency A, Degree D and Laplacian L matrices

I We restrict our attention to normal shifts S = V⇤VH

) Columns of V = [v
1

v
2

. . . vN ] correspond to the eigenvectors of S

) ⇤ is a diagonal matrix containing the eigenvalues of S
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Graph Fourier Transform (GFT)

I Given a graph G and a graph signal x 2 RN defined on G

) Consider a normal graph-shift S = V⇤VH

I The Graph Fourier Transform (GFT) of x is defined as

x̃(k) = hx, vki =
NX

n=1

x(n)v⇤k(n)

I In matrix form, x̃ = VHx

I Given that the columns of V are the eigenvectors vi of S

) x̃(k) = vHk x is the inner product between vk and x

) x̃(k) is how similar x is to vk

) In particular, GFT ⌘ DFT when VH = F, i.e. vk = ekN
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DFT and PCA as particular cases of GFT

0 1 2 3

· · ·
23

I For the directed cycle graph, GFT ⌘ DFT

) if S = A or

) if S = L for symmetrized graph

) then VH = F

I For the covariance graph, GFT ⌘ PCA

) if S = A, then VH = PH
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Ordering of frequencies

Graph Signals
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Ordering of frequencies
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Ordering of frequencies

I Recall in conventional DFT, the kth DFT component can be written

X (k) = hx, ekNi =
1p
N

N�1X

n=0

x(n)e�j2⇡kn/N

I We say X (k) the component for higher frequency given higher k

) There exists a natural ordering of frequencies

) Higher k ) higher oscillations
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Quantifying oscillations – Zero crossings

I We want to quantify the qualitative intuition of ‘high oscillations’
I Classical zero crossings – # of places signals change signs

ZC (x) =
X

n

1 {xnxn�1

< 0}

I Graph zero crossings – # of edges signals on two ends di↵er in signs

ZCG (x) =
NX

n=1

X

m2N (n)

1 {xnxm < 0}
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Underlying graph
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Quantifying oscillations – Total variations

I Classical total variations – sum of squared di↵erences in consecutive
signal samples

TV (x) =
X

n

(xn � xn�1

)2

I Graph total variations – sum of squared di↵erences between signals
on two ends of edges multiplied by the corresponding edge weights

) Also known as Laplacian quadratic form

TVG (x) =
NX

n=1

X

m2N (n)

(xn � xm)
2 wmn = xTLx
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Graph frequencies

I The Laplacian eigenvalues can be interpreted as frequencies

I Larger eigenvalues ) Higher frequencies

I The eigenvectors associated with large eigenvalues oscillate rapidly

) Dissimilar values on vertices connected by edges with high weight

I The eigenvectors associated with small eigenvalues vary slowly

) Similar values on vertices connected by edges with high weight

I Eigenvector associated with eigenvalue 0 is constant

) for connected graph
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Graph frequencies – Gene networks

I Three graph Laplacian eigenvectors for the gene networks

v
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v
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I

I ZCG (v0) = 0

I TVG (v0) = 0

I ZCG (v1) = 2

I TVG (v1) = 0.4

I ZCG (v1) = 20

I TVG (v1) = 8.0
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Inverse graph Fourier transform (iGFT)
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Inverse graph Fourier transform

I Recall the graph Fourier transform x

) of any signal x 2 RN on the vertices of graph G

) is the expansion of x of the eigenvectors of the Laplacian

x̃(k) = hx, vki =
NX

n=1

x(n)v⇤
k (n)

I In matrix form, x̃ = VHx

I The inverse graph Fourier transform is

x(n) =
N�1X

k=0

x̃(k)vk(n)

I In matrix form, x = Vx̃
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Inverse theorem, like a pro

I Recap in proving theorems we have monkey steps and one smart step

) That was orthonormality ) VH is Hermitian ) VVH = I

Theorem
The inverse graph Fourier transform (iGFT) is, indeed, the inverse of the
GFT.

Proof.

I Write x = Vx̃ and x̃ = VHx and exploit fact that V is Hermitian

x = Vx̃ = VVHx = Ix = x

I This is the last inverse theorem we will see...
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Energy conservation (Parseval) theorem, like a pro

Theorem
The GFT preserves energy ) kxk2 = xHx = x̃H x̃ = kx̃k2

Proof.

I Use GFT to write x̃ = VHx and the fact that V is Hermitian

k˜xk2 = ˜xH˜x =

⇣
VHx

⌘H

VHx = xHVVHx = xHx = kxk2

I This is the last energy conservation theorem we will see...
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Graph signal representations in two domains

I Graph signals can be equivalently represented in two domains

) The vertex domain and the graph spectral domain

Sample patient 2 with subtype 1
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Spectral representation for patient 2 with subtype 1
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Spectral representation for patient 1 with subtype 2
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Graph Filters
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Linearity and shift-invariance

I A graph filter f : RN ! RN is a map between graph signals

) Given a graph signal x 2 RN , its filtered version is y = f (x)

I We will focus on filters f that are linear and shift-invariant

I A linear filter f is one that satisfies

y
1

= f (x
1

), y
2

= f (x
2

) =) ↵
1

y
1

+ ↵
2

y
2

= f (↵
1

x
1

+ ↵
2

x
2

)

I A shift-invariant filter f satisfies

f (Sx) = Sf (x)

where S is the graph-shift operator of the graph where x is defined

I Shift-invariance is the graph analog of time invariance in classical SP
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Graph filters as matrix polynomials

I Given a graph G and a graph-shift operator S 2 RN⇥N on G

I We define the graph filter H as

H := h
0

S0 + h
1

S1 + h
2

S2 + . . . =
LX

`=0

h`S
`

I H is a polynomial on the graph-shift operator S with coe�cients hi

) L is the degree of the filter

I Filter H acts on a graph signal x 2 RN to generate y = Hx

) If we define x(`) := S`x = Sx(`�1)

y =
LX

`=0

h`x
(`)

I Why is H defined as a polynomial on S?
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Matrix polynomials are linear and shift-invariant

Proposition

The graph filter H =
PL

`=0

h`S` is linear and shift-invariant.

Proof.

I Since H is a matrix, linearity is trivial

y
1

= Hx
1

, y
2

= Hx
2

=) ↵
1

y
1

+ ↵
2

y
2

= H(↵
1

x
1

+ ↵
2

x
2

)

I For shift-invariance, note that S commutes with Si for all i

H(Sx) =

 
LX

`=0

h`S
`

!
Sx = S

 
LX

`=0

h`S
`

!
x = S(Hx)

In fact, no other formulation of H is linear and shift-invariant
) We will not show this
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Connection with filters of time-varying signals

0 1 2 3

· · ·
23 I Consider the particular case where S = Adc

) Adjacency matrix of a directed cycle

I Focus on a signal x defined on a cyclic graph with 6 nodes
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I Consider the output signal y = Hx

y = h
0

x+ h
1

S1x+ h
2

S2x+ h
3

S3x+ h
4

S4x+ h
5

S5x
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Connection with filters of time-varying signals

I Let’s focus on the first component of signal y

y
1

= h
0

[S0x]
1

+ h
1

[S1x]
1

+ h
2

[S2x]
1

+ h
3

[S3x]
1

+ h
4

[S4x]
1

+ h
5

[S5x]
1

= h
0

x
1

+ h
1

x
6

+ h
2

x
5

+ h
3

x
4

+ h
4

x
3

+ h
5

x
2

I In general, for element yn of y, exploiting the fact that x is cyclic

yn =
N�1X

l=0

hlxn�l

I Defining h := [h
0

, h
1

, . . . , h
5

]T we may write

y = h ⇤ x

I Thus, for the particular case where S = Adc

) h recovers the impulse response of the filter
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Frequency response of a graph filter

I Recalling that S = V⇤VH , we may write

H =
LX

`=0

h`S
` = V

 
LX

`=0

h`⇤
`

!
VH

I The application Hx of filter H to x can be split into three parts

) VH takes signal x to the graph frequency domain x̃

) bH :=
PL

`=0

h`⇤` modifies the frequency coe�cients to obtain ỹ

) V brings the signal ỹ back to the graph domain y

I Since bH is diagonal, define bH =: diag(bh)
) bh is the frequency response of the filter H

) Output at frequency i depends only on input at frequency i

ỹi = bhi x̃i
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Frequency response and filter coe�cients

I In order to design a graph with a particular frequency response bh
) Need to know the relation between bh and the filter coe�cients h

I Define the matrix  :=

0

B@
1 �

1

. . . �L�1

1

.

.

.

.

.

.

.

.

.

1 �N . . . �L�1

N

1

CA

Proposition

The frequency response bh of a graph filter with coe�cients h is given by

bh =  h

Proof.

I Since bh := diag(
PL

`=0

h`⇤`) we have that bhi =
PL

`=0

h`�`
i

I Defining �i = [�0

i ,�
1

i , . . . ,�
L�1

i ]T we have that bhi = �T
i h

I Stacking the values for all bhi , the result follows
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Graph filter design

I Given the desired frequency response bh of the graph filter

) We can find the graph coe�cients h as

h =  �1bh

I Since  is Vandermonde

)  is invertible as long as �i 6= �j for i 6= j

I For the particular case when S = Adc , we have that �i = e�j 2⇡N (i�1)

 =

0

BBBB@

1 1 . . . 1

1 e

�j
2⇡(1)(1)

N . . . e

�j
2⇡(1)(N�1)

N

.

.

.

.

.

.

.

.

.

1 e

�j
2⇡(N�1)(1)

N . . . e

�j
2⇡(N�1)(N01)

N

1

CCCCA
= F

) The frequency response is the DFT of the impulse response

bh = Fh
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Motivation

I Patients diagnosed with same disease exhibit di↵erent behaviors

I Each patient has a genetic profile describing gene mutations

I Would be beneficial to infer phenotypes from genotypes

) Targeted treatments, more suitable suggestions, etc.

I Traditional approaches consider di↵erent genes to be independent

) Not so ideal, as di↵erent genes may a↵ect same metabolism

I Alternatively, consider genetic network

) Genetic profiles becomes graph signals on genetic network

) We will see how this consideration improves subtype classification
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Genetic network

I Undirected and unweighted graph with 2458 nodes
) Describes gene-to-gene interactions

I Each node represents a gene in human DNA related to breast cancer
I An edge between two genes represents interaction

) Proteins encoded participate in the same metabolism process

I Adjacency matrix of the gene network
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Genetic profiles

I Genetic profile of 240 women with breast cancer
) 44 with serous subtype and 196 with endometrioid subtype
) Patient i has an associated profile xi 2 {0, 1}2458

I Mutations are very varied across patients
) Some patients present a lot of mutations
) Some genes are consistently mutated across patients

I Can we use the genetic profile to classify patients across subtypes?

Signal and Information Processing Signal Processing on Graphs 47

k-nearest neighbor classification

I Quantify the distance between genetic profiles

) d(i , j) = kxi � xjk2

I Given a patient i to classify, all other patients’ subtypes are known

I Find the k most similar profiles, i.e. j such that d(i , j) is minimized

) Assign to i the most common subtype among these k neighbors

I Compare estimated with real subtype y for all patients

I We obtain the following error rates

k = 3 ) 13.3%, k = 5 ) 12.9%, k = 7 ) 14.6%

I Can we do any better using graph signal processing?
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Genetic profile as a graph signal

I Each genetic profile xi can be seen as a graph signal

) On the genetic network

I We can look at the frequency components x̃i using the GFT

) Use as shift operator S the Laplacian of the genetic network

Example of signal xi
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Distinguishing Power

I Define the distinguishing power of frequency vk as

DP(vk) =

����

P
i :yi=1

x̃i (k)P
i 1 {yi = 1} �

P
i :yi=2

x̃i (k)P
i 1 {yi = 2}

���� /
X

i

|x̃i (k)| ,

I Normalized di↵erence between the mean GFT coe�cient for vk
) Among patients with serous and endometrioid subtypes

I Distinguishing power is not equal across frequencies

Frequency
0 500 1000 1500 2000 2500

D
is

tin
gu

is
hi

ng
 P

ow
er

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Signal and Information Processing Signal Processing on Graphs 50

Distribution of distinguishing powers

I The distribution of distributing power

0 1 2 3 4 5 6 7 8 9 10

x 10
−3

1

distingushing power

I Most frequencies have weak distinguishing power

) A few frequencies have strong di↵erentiating power

) The most powerful frequency outperforms others siginificantly

I The distinguishing power defined is one of many proper heuristics
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Increasing accuracy via graph filters

I Keeps only information in the most distinguishable frequency

I For the genetic profile xi with its frequency representation x̃i
I Multiply x̃i with graph filter H

1

having the frequency response

H
1

(k) =

(
1, if k = argmaxk DP(vk);

0, otherwise.

I Then perform inverse GFT to get the filtered graph signals x̂i
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Increasing accuracy via another graph filters

I Keeps information in frequencies with higher distinguishing power
I Multiply x̃i with graph filter Hp having the frequency response

Hp(k) =

(
1, if DP(vk) � p-th percentile of the distribution of DP ;

0, otherwise,
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Courses to consider

I If you want to explore more about transforms and filters

) ESE210: Introduction to Dynamic Systems

) ESE303: Stochastic Systems Analysis and Simulation

) ESE325: Fourier Analysis and Applications ...

) ESE531: Digital Signal Processing
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More courses to consider

I Once you have information you may want to something with it

I Controlling the state of a system

) ESE406: Control of Systems

) ESE500: Linear Systems Theory

I Making decisions that are good in some sense (optimal)

) ESE204: Decision Models

) ESE304: Optimization of Systems

) ESE504: Introduction to Optimization Theory

) ESE605: Modern Convex Optimization
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Even more courses to consider

I At some point, you want to use what you’ve learned to do something

) ESE290: Introduction to ESE Research Methodology

) ESE350: Embedded Systems/Microcontroller Laboratory
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Research

I Most professors use about 5% of their time on teaching

I The other 95% of their time they use on research

I It is a pity to come to Penn and not spend a summer doing research

I Most of us are happy to have help

I Even if we are not, our doctoral students are desperate for help
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Thanks

I It has been my pleasure. I am very happy abut how things turned out

I If you need my help at some point in the next 30 years, let me know

I I will be retired after that
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