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Chapter 1

Discrete sines, cosines, and
complex exponentials

1.1 Discrete Signals

A signal is a collection of all possible values that can be mapped from a set of indices
to their value in real time. Signals can represent various types of information, and thus
it is important to gain some experience and intuition on how these signals look like and
behave. The signals we consider here are discrete because they are indexed by a finite and
integer time index n = 0, 1, . . . , N − 1. The constant N is referred to as the length of the
signal. This discrete signal x is a function mapping its time index n to the real value x(n)
that the signal takes, represented as

x : [0, N − 1]→ R (1.1)

Signals can also be complex, with the mapping

x : [0, N − 1]→ C, (1.2)

, and such are represented as x(t) = xR(t) + j xI(t). Therefore, the space of signals is the
space of N-dimensional vectors in RN or CN . An example of a discrete signal is a delta
function δ(n) that spikes at initial time n = 0 seen in the figure 1.1, and shown by the
equation

δ(n) =
{

1 if n = 0
0 else

(1.3)

It is important to note that in this case, and as for the case with signals, the first index
is always n = 0 and so the last time index of a signal will be n = N − 1. For example, in
Figure 1.1, the signal is of length 8, but the last time index is n = 7. Figure 1.2 is a shifted
version of this function, δ(n− n0), that spikes at time n = n0, shown by the equation

δ(n− n0) =

{
1 if n = n0
0 else

(1.4)
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Figure 1.1. Discrete delta function δ(n) that has value δ(n) = 1 at initial time n = 0 and value
δ(n) = 0 elsewhere.
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Figure 1.2. Shifted delta function δ(n− n0) that has value 1 at time n = n0, and value 0 elsewhere.

This is simply a time shift of the original delta function. Some examples of common
signals include a constant function x(n), that has the same value c for all n, shown in
figure 1.3, with the function

x(n) = c, for all n (1.5)

Also to note is a square pulse signal, uM(n), which is of width M, and equals one for the
first M values, shown in figure 1.4, denoted by

uM(n) =
{

1 if 0 ≤ n < M
0 if M ≤ n

(1.6)

When dealing with sampling of a signal, some units to be aware of are the sampling
time Ts, which is the time elapsed between indexes n and n + 1 and sampling frequency
fs := 1/Ts. Time index n represents the actual time t = nTs. Therefore, the signal duration
T = NTs is the total length in real time of the signal. Figure 1.5 is an example of a square
pulse plotted in actual time t, which was taken at sampling rate Ts = 125ms for duration
T = 2s.
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Figure 1.3. Example of a constant function, x(n) = 1.
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Figure 1.4. Example of a square pulse, x(n) = u6(n)
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Figure 1.5. Example of a square pulse plotted in real time for the signal x(t).

1.2 Discrete Cosines and Sines

Discrete cosines and sines are important signals to understand for the basis of signal and
information processing. For a signal of duration N (assume N is even), there exists the
discrete cosine x(n) of frequency k, where

x(n) = cos(2πkn/N), (1.7)

and the discrete sine x(n) of frequency k, where

x(n) = sin(2πkn/N). (1.8)

Frequency k is discrete, with an integer number of complete oscillations, (i.e. k = 0, 1, 2, . . .).
Figure 1.6 illustrates a cosine and sine signal of length N = 32 and frequency k = 2.
Other examples of cosines of different frequencies can be seen in figure 1.7. When
dealing with discete cosines and sines, it is necessary to note certain properties about
these signals. Since we are in discrete time, for a cosine or sine signal of length N, you
can only physically denote up to N/2 times that the signal can oscillate, i.e go from
1 → −1 → 1,→ −1, . . ., as seen in figure 1.8. After this, in order to capture frequencies
of higher order (k > N/2), one would need to go into continuous time, where points be-
tween, for example, 0 and 1 can be referenced. When solely dealing with discrete cosines,
we observe that for frequencies k and N − k, the same cosine is represented, i.e for dis-
crete cosines of frequency k and l where k + l = Ṅ, cosines of frequencies k and l are
equivalent. Note, though, that this is not true for sines, where the signals have opposite
signs. Examples of equivalent discrete cosines are shown in Figure 1.9.
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Figure 1.6. Cosine x(n) = cos(2πkn/N) and sine x(n) = sin(2πkn/N). Frequency k = 2 and
number of samples N = 32.
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Figure 1.7. Discrete cosines of different discrete frequencies. The discrete frequency k dictates the
number of complete oscillations during the duration of the signal. When k = 1 there is one complete
oscillation (top right), when k = 2 there are two complete oscillations (bottom left), there are then
three complete oscillations for k = 3 (bottom right), and so on. When k = 0 there are no oscillations
(top left). The cosine is just the constant signal with x(n) = 1 for al n.

1.2.1 Physical meaning of discrete frequencies

Discrete cosines are digital representations of real continuous time cosines. Given that a
cosine is characterized by its frequency f0 we ask the question of what is the frequency
f0 that is associated with a cosine of duration N and discrete frequency k. The answer to
this question depends on the sampling time Ts.

To see how k, N, and Ts determine f0, start by recalling that the duration of the signal
x when measured in continuous time is T = NTs; see Figure 1.10. Since we also know
that the discrete frequency k represents the number of complete oscillations during the
duration of the signal, the period of the cosine must be T/k = NTs/k. Further observing
that the frequency of a cosine is the inverse of its period, we conclude that the continuous
time frequency f0 must be given by

f0 =
k
T

=
k

NTs
=

k
N

fs, (1.9)

where we have used the definition of the sampling frequency fs = 1/Ts to write the last
equality.

In the example in Figure 1.10, we have a discrete cosine of discrete frequency k = 4
with N = 64 samples and a sample period of Ts = 0.5s. Given the length of the signal
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Figure 1.8. For discrete cosines of large discrete frequencies (k = 15 for sample size N = 32),
the oscillations before dofficult to see (left). For a signal of sample size N = 32 the last discrete
frequency with physical meaning is k = 16 (right).
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Figure 1.9. Discrete cosines of length N = 32, where for frequencies k + l = N, the same signal
is represented. Cosines of frequencies k = 1 and l = 31 (top) and frequencies k = 2 and k = 30
(bottom) are equivalent.

N = 64 and the sampling time Ts = 0.5s, the duration of the signal is T = NTs = 32s.
Considering now that the discrete frequency is k = 4 we have 4 complete oscillations
during the duration of the signal. This implies that the period of the cosine, i.e., the time
it takes for a complete oscillation, is NTs/k = 8s. The frequency of the cosine is the
inverse of its period leading to f0 = 1/8 = 0.125Hz. This is, of course, the same result
that follows from direct application of (1.9).

It is important to observe here that since only discrete frequencies k ≤ N/2 have meaning,
only frequencies f0 ≤ fs/2 have physical meaning. This means that if we use a sampling
frequency fs we can represent cosines that oscillate with a frequency smaller than fs/2.

[t]

0 NTs /k = 8s NTs = 32s

Figure 1.10. Transforming discrete frequencies to continuous time frequencies. A discrete cosine
of discrete frequency k = 4 with N = 64 samples and a sample period of Ts = 0.5s is shown. The
duration of the signal is T = NTs = 32s and the period of the cosine is NTs/k = 8s. The frequency
of the cosine is the inverse of its period, namely f0 = 1/8 = 0.125Hz [cf. (1.9)].
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Figure 1.11. Creating an A note observed for T = N ∗ Ts = 18.2ms using a sampling rate of
fs = 1760Hz. Note there are k = 8 oscillations.

Further observe that from the definition of the discrete cosine in (1.8) we can write the
value of the signal at continuous time t = nTs as

x(t) = x(nTs) = cos(2πkn/N). (1.10)

If we use the expression in (1.9) to convert the discrete frequency k into the continuous
time frequency f0 = (k/N)Ts we can rewrite (1.10) as

x(t) = x(nTs) = cos(2π f0nTs) = cos(2π f0t). (1.11)

We can reinterpret (1.11) as a way of extending the signal x(nTs) to times t other than
those available. If we are given the discrete cosine x with signal values x(n), we can
transform it into its continuous time representation x(nTs) = cos(2π f0nTs), which is
identical to the representation x(t) = cos(2π f0t) for all times t = nTs. However, we can
also think of (1.11) as defining intermediate values for all times t, not just those times
having the form t = nTs for some n between 0 and N − 1. Conversely, we can think that
the signal x(t) = cos(2π f0t) exists for all times t and that the discrete signal x with values
x(n) = x(nTs) = cos(2π f0nTs) is a sampling of the continuous time signal x(t). These
matters are related to sampling and reconstruction of continuous time signals, which we
will study later.

Example 1 Generate and signal of an A note with N = 32 samples and with sampling frequency
fs = 1, 760Hz.

Solution: Fist consider the real frequency of an A, f0 = 440Hz. Therefore, the discrete
frequency must be

k = f0
fs

N = 440Hz
1,760Hz 32 = 8

Reference Figure 1.11 for the generated signal. Instead of converting to discrete frequency

to calculate the discrete cosine, x(n) = cos
[
2πkn/N

]
, we can directly substiture the

real frequency and sampling frequency into the equation x(n) = cos
[
2π( f0/ fs)Nn/N

]
,

which simplifies to x(n) = cos
[
2π( f0/ fs)n

]
= cos

[
2π f0(nTs)

]
�
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Figure 1.12. (left) The two signals x and y that point in same direction will have a large and positive
inner product. (middle) For two signals that are completely perpendicular, they have orthogonal
signals and their inner product is 0. This signifies that knowing x tells you very little about y. (right)
The two signals x and y that point in completely opposite directions have an inner product that is
large and negative. This signifies that the signals are similar, but point in opposite directions.

1.3 Inner Product and Energy

An important mathematical operation used in signal processing is the inner product. We
can conceptually think of signals as vectors, and so the inner product of two signals has
the same interpretation as the projection of one signal on another, i.e. the inner product
〈x, y〉 is the projection of y on x. This value determines how ”related” the two signals are.
Figure 1.12 shows examples of the projection of y on x. If the value of the inner product
is 0 (〈x, y〉 = 0), the signals are orthogonal. Mathematically, given two signals x and y, we
define the inner product of x and y as

〈x, y〉 :=
N−1

∑
n=0

x(n)y∗(n), (1.12)

Which can be explicitly written as

〈x, y〉 =
N−1

∑
n=0

xR(n)yR(n) +
N−1

∑
n=0

xI(n)yI(n) + j
N−1

∑
n=0

xI(n)yR(n)− j
N−1

∑
n=0

xR(n)yI(n) (1.13)

The inner product is a linear operation, such that 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉. Additionally,
reversing the order of the inner product means conjugation, 〈y, x〉 = 〈x, y〉∗. Remember
that for complex signals, conjugation means the negation of the imaginary part of a signal.

Another common operation in signal processing is the norm of a signal, defined as

‖x‖ :=
[ N−1

∑
n=0
|x(n)|2

]1/2

=

[ N−1

∑
n=0
|xR(n)|2 +

N−1

∑
n=0
|xI(n)|2

]1/2

(1.14)

For easier mathematical operations, we put greater emphasis on the energy of a signal,
which is simply the norm of the signal, squared,

‖x‖2 :=
N−1

∑
n=0
|x(n)|2 =

N−1

∑
n=0
|xR(n)|2 +

N−1

∑
n=0
|xI(n)|2 (1.15)

Therefore, from the definition of inner product in (1.12), we can see that the inner product
of a signal with its own conjugate is equivalent to calculating the energy of the signal,

x(n)x∗(n) = |xR(n)|2 + |xI(n)|2 = |x(n)|2 (1.16)
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Figure 1.13. Sqaure pulse of duration M goes from 0toM− 1 with value 1/sqrt(M) and other values
go from MtoN − 1 with value 0.

An equivalent expression for this energy is ‖x‖2 = 〈x, x〉. When considering inner prod-
ucts and energy, it is intuitive that for two signals, the largest a projection of a signal can
be is when the two vectors are collinear, seen in Figure 1.12. The two signals can point
in the same, or opposite directions, and so the inner product can be between the positive
and negative of these values,

‖x‖ ‖y‖ ≤ 〈x, y〉 ≤ ‖x‖ ‖y‖ (1.17)

This is known as the Cauchy Schwarz inequality. Here we will simply introduce it, but
we will reference this in more detail in later lectures. In terms of energy, we can see the
same idea,

〈x, y〉2 ≤ ‖x‖2 ‖y‖2 (1.18)

Explicitly written as,

N−1

∑
n=0

x(n)y∗(n) ≤
[ N−1

∑
n=0
|x(n)|2

][ N−1

∑
n=0
|y(n)|2

]
(1.19)

Example 2 Compute the energy of the square pulse in Figure 1.13, of the signal uM(n) that takes
values

uM (n) =
1√
M

if 0 ≤ n < M

uM (n) = 0 if M ≤ n

Solution: We will use the definition from (1.15), such that

‖ uM ‖2 := ∑N−1
n=0 | uM (n)|2 = ∑M−1

n=0

∣∣∣(1/
√

M)
∣∣∣2 = M

M = 1

This is a unit energy square pulse, because it has the value 1. If the height of the pulse is
1 instead of 1/

√
M, then the energy is M. These signals solely live in the digital world,

and so there is no defined units to these calculations. �

To better understand orthogonality, we can consider a shifted version of this square pulse.
The shift is a modification such that uM(n− K), where K ≥ M, which indicates that the
pulse is centered at K, since originally the pulse was centered at n = 0. You can see in
Figure 1.14 that this shifted pulse does not directly overlap with the original pulse, but
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Figure 1.14. Sqaure pulse of duration M goes from 0toM− 1 with value 1/sqrt(M) and other values
go from MtoN − 1 with value 0.
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Figure 1.15. Shifted sqaure pulse of duration M goes from K + M− 1 to K with value 1/sqrt(M)
and all other values 0.

spikes at values greater than M. Therefore, the inner product of these two pulses shows
that these signals are unrelated, and such are orthogonal to each other

〈uM(n),uM(n− K)〉 :=
N−1

∑
n=0
uM(n) uM (n− K) = 0 (1.20)

When the original signal spikes, the shifted signal has a value of 0, and when the shifted
signal spikes, the original signal has a value of 0. If we consider a different shifted version,
though, we can once again see how the inner product determines the relatedness between
two signals. Consider a shifted square pulse, uM(n−K), where K < M. As seen in Figure
1.15, these signals overlap between K and M− 1 such that

〈uM(n),uM(n− K)〉 :=
N−1

∑
n=0
uM(n) uM (n− K) (1.21)

When we plug in the overlapping values for uM(n) and uM(n− K), we get that

〈uM(n),uM(n− K)〉 :=
M−1

∑
n=K

(
1/
√

M
)(

1/
√

M
)

=
M− K

M
= 1− K

M
(1.22)

This shifted pulse overlaps with the original signal, and so the inner product between
these two signals holds information about the relationship between these signals. We can
see from (1.21) that the inner product is proportional to the overlap of the two signals.
The greater the overlap, the greater the value of the inner product.

1.4 Complex Exponentials

Sines, cosines, and complex exponentials play a very important role in signal and infor-
mation processing. It is important to gain some experience and intuition on how these
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Figure 1.16. Shifted sqaure pulse of duration M goes from K + M− 1 to K with value 1/sqrt(M)
and all other values 0.

signals look like and behave. The signals we consider here are discrete because they are
indexed by a finite and integer time index n = 0, 1, . . . , N − 1. The constant N is referred
to as the length of the signal. A complex exponential is simpler way of writing discrete
cosines and discrete sines. It represents an oscillation of a specific frequency. These are
used to represent how fast signals are changing, i.e. slow and fast oscillations mimic how
fast a signal changes. The discrete complex exponential ekN(n) of discrete frequency k
and duration N is defined as

ekN(n) =
1√
N

ej2πkn/N =
1√
N

exp(j2πkn/N). (1.23)

The (regular) complex exponential is explicitly given by

ej2πkn/N = cos(2πkn/N) + j sin(2πkn/N), (1.24)

so that if we compute the real and imaginary parts of ekN(n) we can see that the real part
is a discrete cosine and the imaginary part is a discrete sine, as seen in Figure 1.16.
As with discrete sines and cosines, complex exponentials have important properties asso-
ciated with them, which will be referenced throughout the rest of this class. Firstly, for a
frequency k = 0, the exponential ekN(n) = e0N(n) is a constant so that

ekN(n) =
1√
N

=
1√
N

1 (1.25)

Second, we have that for frequency k = N, or k ∈ Ṅ (multiple of N), the exponential
ekN(n) = eNN(n) is a constant so that

ej2πNn/N
√

N =
(ej2π)n
√

N
=

(1)n
√

N
=

1√
N

(1.26)

Additionally, we have that for discrete frequency k = N/2, the exponential

eN/2N(n) =
ej2π(N/2)n/N
√

N
=

(ejπ)n
√

N
=

(−1)n
√

N
(1.27)

This represents the fastest possible oscillation with N samples. The simplification of
ej2π = 1 is possible because it follows from ejπ = −1, which is a consequent of the
mathematical constant

ejπ + 1 = 0, (1.28)

To end this chapter, we will introduce some important theorems that will be referenced
throughout this class.
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Theorem 1 If k− l = N, the signals ekN(n) and elN(n) coincide for all n, i.e.,

ekN(n) =
ej2πkn/N
√

N
=

ej2πln/N
√

N
= elN(n) (1.29)

To put simply, exponentials with frequencies k and l are equivalent if k− l = N. Exponen-
tial frequencies are periodic, and so they form a canonical set, which is any set between
N consecutive frequencies, e.g. k = 0, 1, ...N − 1. Typically, we will use canonical set of
frequencies from −N/2 + 1 to N/2. When going from one canonical set to another, you
are chopping the set at some point, and then shifting the set. This theorem of equivalent
frequencies is profound, because even though a signal can go from −∞ to ∞, this is not
necessary due to the equivalence of canonical sets. Therefore, it is the same to solely
look at one canonical set of size N, without losing any information held in the signal. To
understand the mathematics behind this theorem, the proof is as follows
Proof: We prove by showing that ekN(n)/elN(n) = 1.

ekN(n)
elN(n)

=
ej2πkn/N

ej2πln/N = ej2π(k−l)n/N (1.30)

Since k− l = N, the above simplifies to

ekN(n)
elN(n)

= ej2πNn/N =
[
ej2π

]n
= 1n = 1 (1.31)

�

Theorem 2 Complex exponentials with nonequivalent frequencies are orthogonal.

〈ekN , elN〉 = 0 (1.32)

when k− l < N, E.g., when k = 0, . . . N − 1, or k = −N/2 + 1, . . . , N/2.

This determines that signals of canonical sets are ”unrelated,” since they contain different
rates of change. This is in contrast to signals of equivalent frequencies, which have unit
energy, e.g. |ekN‖2 = 〈ekN , ekN〉 = 1. Exponentials within a canonical set are orthonormal,
and such form an orthonormal basis of signal space with N samples, given by

〈ekN , elN〉 = δ(l − k) (1.33)

Orthonormality will be explored further later in this course. The proof for orthogonality
is as follows
Proof: Use definitions of inner product and discrete complex exponential to write

〈ekN , elN〉 =
N−1

∑
n=0

ekN(n)e∗lN(n) =
N−1

∑
n=0

ej2πkn/N
√

N
e−j2πln/N
√

N
(1.34)

Regroup terms to write as geometric series

〈ekN , elN〉 =
1
N

N−1

∑
n=0

ej2π(k−l)n/N =
1
N

N−1

∑
n=0

[
ej2π(k−l)/N

]n
(1.35)
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Figure 1.17. Real and imaginary components of complex exponentials for size N = 2. There are
only 2 distinct frequencies, after which the signal repeats itself.

Recall that a geometric series with basis a sums to ∑N−1
n=0 an = (1− aN)/(1− a). Thus,

〈ekN , elN〉 =
1
N

1−
[
ej2π(k−l)/N

]N

1− ej2π(k−l)/N
=

1
N

1− 1
1− ej2π(k−l)/N

= 0 (1.36)

The completion of this proof follows from[
ej2π(k−l)/N

]N
= ej2π(k−l) =

[
ej2π

](k−l)
= 1

�

Theorem 3 Opposite frequencies k and −k yield conjugate signals: e−kN = e∗kN(n)

Opposite frequencies have the same real part, but opposite imaginary parts, meaning the
cosine stays the same and the sine changes sign. We can prove this with the following
proof.
Proof: Following from the definition of complex exponentials given in (1.23)

e−kN(n) =
ej2π(−k)n/N
√

N
=

e−j2πkn/N
√

N
=

[
ej2πkn/N
√

N

]∗
= e∗kN(n) (1.37)

�

Following this theorem of conjugate frequencies, we once again look at the canonical set
of N frequencies for complex exponentials. Since we know that opposite frequencies have
conjugates, in actuality, then, there are only N/2 + 1 distinct frequencies. Consider the
canonical set −N/2 + 1 to N/2. Here we have conjugate pairs for all frequencies but 0
and N/2 (e.g. −N/2 + 1 and N/2− 1 down to −1 and 1). Recall that only frequencies
from 0 to N/2 (or fs/2) have physical meaning. The concept of conjugate frequencies then
becomes more reasonable to understand, since you can only have up to N/2 oscillations
in N samples. Consider complex exponentials for different sample sizes N. In Figure 1.17,
you can see that for sample size N = 2, there are only 2 distinct frequencies for k = 0 and
k = 1. Here, there are no imaginary parts. Now consider complex exponentials of size
N = 4 in Figure 1.18. Here we have 3 distinct signals of frequencies k = 0, 1, 2. You can
see that frequency k = 1 has conjugate k = −1. Figure 1.19 has complex exponentials of
size N = 8. Once again, there are N/2 + 1 = 5 distinct signals. Those that are conjugates
are seen in Figure 1.20. One last example in Figure 1.21 is for size N = 16, showing only
the 9 distinct frequencies.
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Figure 1.18. Real and imaginary components of complex exponentials for size N = 4. There are
only 3 distinct frequencies, after which the signal repeats itself.
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Figure 1.19. Distict real and imaginary components of complex exponentials for size N = 8. There
are only 5 distinct frequencies, after which the signal repeats itself.
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Figure 1.20. Non-distinct, conjugate signals of k = 1,k = 2 and k = 3 for complex exponentials of
sample size N = 8.
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Figure 1.21. Distict real and imaginary components of complex exponentials for size N = 16. There
are only 9 distinct frequencies, after which the signal repeats itself (non-distinct frequencies are not
shown).
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Mathematically speaking, the complex exponential, the sine, and the cosine are all differ-
ent signals. Intuitively speaking, all of them are oscillations of the same frequency. Since
complex exponentials have imaginary parts, they don’t exist in the real world. Neverthe-
less, we work with them instead of sines and cosines because they are easier to handle, as
we will see later on in this course.


	Discrete sines, cosines, and  complex exponentials
	Discrete Signals
	Discrete Cosines and Sines
	Physical meaning of discrete frequencies

	Inner Product and Energy
	Complex Exponentials


