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Chapter 1

Discrete Fourier Transform

1.1 Discrete Fourier Transform(DFT), definitions
and examples

1.1.1 Definition of the Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a very useful tool for the analysis of information.
It defined as the following for a signal x(n) of duration N with time indices from n =
[0, N − 1].

X(k) :=
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N =
1√
N

N−1

∑
n=0

x(n) exp(−j2πkn/N) (1.1)

For all integers k ∈ Z

We see that the DFT X(k) takes the argument k, referred to as the frequency, instead
of the time index n which acts as the argument for the original signal x(n). The value
corresponding to each frequency k is a summation involving the original signal and a
complex exponential of frequency −k. Since each value in X involves a summation with
all the values in x, it captures all the information in the original signal. The DFT is
therefore a transformation of the original signal, written as X = F (x).

Because we multiply x(n) with a complex exponential in the calculation of the DFT,
the DFT is complex even if the signal x(n) is real. While analyzing a DFT it is customary
to focus on its magnitude instead of its real and imaginary parts separately.

X(k) = XR(k) + jXI(k) (1.2)

|X(k)| =
[

X2
R(k) + X2

I (k)
]1/2

= [X(k)X∗(k)]1/2 (1.3)

Although the definition of a DFT as an explicit summation is easier to compute, some-
times an alternate definition can be more useful for analysis
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Figure 1.1: Unit Energy Square Pulse ending at M with signal duration N

1.1.2 DFT elements as inner products

We see that exponential factor in the DFT calculation, e−kN(n) = 1√
N

e−j2πkn/N , is a com-
plex exponential with a frequency of −k. Since complex exponentials with negative fre-
quencies are conjugates of each other, we can rewrite the DFT as the following

X(k) :=
1√
N

N−1

∑
n=0

x(n)e−kN(n) =
1√
N

N−1

∑
n=0

x(n)e∗kN(n) (1.4)

Which is equal to X(k) = 〈x, ekN〉 from the definition of the inner product.

This gives us another interpretation of the DFT. The value of the DFT at k is the inner
product between the signal x(n) and a complex exponential of frequency k. This is a
projection of the signal x(n) onto the complex exponential ekN(n), and tells us how much
of the signal x is made up of an oscillation of frequency k.

Using these definitions for the calculation of the DFT, we can determine the DFT for
several common signals.

Example 1 The DFT of a square pulse

Solution: Let us consider the DFT of a square pulse signal. As a reminder, the unit
energy square pulse is defined as

uM (n) =
1√
M

if 0 ≤ n < M

uM (n) = 0 if M ≤ n
(1.5)

which can be seen in Figure 1.1. Substituting the square pulse into the definition of the
DFT, we have

X(k) :=
1√
N

N−1

∑
n=0
uM(n)e−j2πkn/N

=
1√
N

M−1

∑
n=0

1√
M

e−j2πkn/N

(1.6)

We can shorten the summation in the DFT since only the first M− 1 elements of uM(n)
are not null. Therefore, X(k) is just the sum of the first M components of an exponential
of frequency −k.
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Figure 1.2: DFT of a square pulse of M = 2 and N = 32

For a square pulse of length M = 2 and signal duration N = 32, the DFT is

X(k) :=
1√
N

M−1

∑
n=0

1√
M

e−j2πkn/N

=
1√
N

2−1

∑
n=0

1√
2

e−j2πkn/N

=
1√
2N

(1 + e−j2πk/N)

=
1√
64

(1 + e−j2πk/64)

(1.7)

We can see this DFT plotted in Figure 1.2. From the interpretation in section 1.1.2, the
DFT tells us how much of a signal is made up of an oscillation of frequency k. The DFT
of the square pulse then shows us the proportion of the signal that is made up of each
frequency k

The DFT in 1.2 also has the interesting property of being periodic with period N = 64.
If we substitute k = 0,±N,±2N . . . into equation 1.7, we have

X(k± N) =
1√
64

(1 + e−j2π(k±N)/64)

X(0± 64) =
1√
64

(1 + e−j2π(0±64)/64)

=
1√
64

(1 + e−j2π0/64e−j2π(±64)/64)

=
1√
64

(1 + e−j2π0/64e±j2π)

=
1√
64

(1 + e−j2π0/64)

X(0± 64) =
1√
64

(1.8)

Likewise, for k = N/2± N, we have X(k) = 0. In the next section, we will see that all
DFT have the important property of being periodic with period N �
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Figure 1.3: DFT of a square pulse with the canonical set k ∈ [0, N − 1]
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Figure 1.4: DFT of a square pulse with the canonical set k ∈ [−N/2, N/2]

1.1.3 Periodicity of the DFT

Since complex exponentials with frequencies N apart are equivalent, we can use this to
prove that for a DFT of x(n) with length N, frequencies k that are N apart have the same
DFT values.

X(k + N) :=
1√
N

N−1

∑
n=0

x(n)e−j2π(k+N)n/N

=
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N

= X(k)

(1.9)

Because the DFT shows how much of signal x(n) of length N can be represented by a
complex exponential of frequency k, and complex exponentials range in frequency from
k = 0 to k = N, it makes sense that the DFT has only N frequencies and is periodic outside
of this range.

Thanks to the periodicity of the DFT, we only have to look at N consecutive frequen-
cies, known as a canonical set. The two main canonical sets we use are k ∈ [0, N − 1] and
k ∈ [−N/2, N/2] These 2 canonical sets can be seen in Figures 1.3 and 1.4.

The canonical set k ∈ [0, N − 1] is easier to use for computations since we can easily
iterate over each frequency k, calculating the DFT values as we do. However, for interpret-
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ing the DFT we often use the canonical set k ∈ [−N/2, N/2] instead. This puts frequency
0 at the center of the DFT, with frequencies k and −k symmetrically on either side.

The 2 canonical sets k ∈ [0, N − 1] and k ∈ [−N/2, N/2] are related to each other by a
”chop and shift”. Since frequencies greater than N/2 have no physical meaning, we take
the frequencies [N/2, N − 1] and move them N steps to left to [−N/2,−1], giving us the
canonical set [−N/2, N/2]. During our chop and shift, we end up copying the value at
N/2 and moving it to −N/2 resulting in a repeated element. Since frequencies −N/2 and
N/2 are repeated, we actually have N + 1 elements, but we keep both these end elements
for the sake of symmetry.

1.1.4 Pulses of Different Lengths

From example 1, we see that the DFT X(k) tells us how much of x(n) is made up of
a complex exponential of frequency k. Another interpretation is that the DFT gives us
information on how fast the signal x changes.

In Figures 1.5 to 1.9, we have the DFTs of several square pulses with varying length.
As the width of the square pulse increases, we can see that the center lobe in the DFT
becomes narrower. This shows that more of the DFT’s weight becomes concentrated at
lower frequencies and reflects the fact that a pulses of longer lengths change more slowly
than pulses of shorter lengths. For example, the DFT of a square pulse of length M = 4
in Figure 1.5 has its central lobe ranging from k = −64 to k = 64. However, the DFT of
a square pulse of length M = 8 in Figure 1.7 has its central lobe over a shorter range of
frequencies from k = −32 to k = 32.

1.1.5 Delta Functions and Complex Exponentials

Delta Functions and Complex Exponentials are also signals we will encounter often in the
future, and here we will calculate their DFTs.

Example 2 The DFT of a delta function

Solution: The delta function is defined as the following

δ(n) =

{
1 n = 0
0 n 6= 0

The fact that the delta function is 0 everywhere except for n = 0 is a useful property
for simplifying the summations in the calculation of the DFT. After substituting the delta
function into the definition of the DFT, we have

X(k) =
1√
N

N−1

∑
n=0

δ(n)e−j2πkn/N

=
1√
N

δ(0)e−j2πk(0)/N

=
1√
N

(1.10)
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Figure 1.5: DFT of a square pulse with lengths M = 2 and signal duration N = 256
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Figure 1.6: DFT of a square pulse with lengths M = 4 and signal duration N = 256
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Figure 1.7: DFT of a square pulse with lengths M = 8 and signal duration N = 256
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Figure 1.8: DFT of a square pulse with lengths M = 16 and signal duration N = 256
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Figure 1.10: DFT of a delta function is constant

We can ignore all terms except for n = 0 in the delta function since they will all be 0

We obtain the DFT for the delta function seen in 1.10. The DFT of a delta function is
completely constant, with each of its values equal to 1/

√
N. If we compute the energy of

the DFT by summing the square of all N values, we will see that the DFT has energy equal
to 1, the same as the delta function. This energy conservation is an important property of
the DFT that we will prove later in section 1.4.2 �

Example 3 DFT of a shifted delta function

Solution:
We have the definition of a shifted delta function, which is similar to a normal delta

function except it has a non-zero value at n = n0 instead of n = 0.

δ(n− n0) =

{
1 n = n0

0 n 6= n0
(1.11)

After substituting the shifted delta function into the definition of the DFT

X(k) =
1√
N

N−1

∑
n=0

δ(n− n0)e−j2πkn/N

=
1√
N

δ(n0 − n0)e−j2πkn0/N

=
1√
N

e−j2πkn0/N

= e−n0 N(k)

(1.12)

we can ignore any values in the DFT summation for which n 6= n0 since the delta
function will be 0. Observe that we obtain a complex exponential with frequency −n0 for
a delta function shifted by −n0, seen in 1.11.

�

We can also use the inner product definition of the DFT defined in section 1.1.2 in order
to find the DFT of complex exponentials. Their property of orthonormality for means that
the inner product of any 2 complex exponentials with different frequencies will be equal
to 0, and the inner product of any 2 complex exponentials with the same frequency will
be equal to 1. This allows us to simplify much of our calculations.
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Figure 1.11: DFT of a delta function shifted to the right by n0 is equal to a complex
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Figure 1.12: DFT of a complex exponential with frequency k0 is a delta function shifted k0
to the right

Example 4 DFT of a complex exponential

Solution: For a complex exponential with frequency k0, we can use the inner product
notation for the DFT

x(n) =
1√
N

ej2πk0n/N = ek0 N(n) (1.13)

X(k) =
〈
ek0 N , ekN

〉
= δ(k− k0) (1.14)

The value of the DFT at frequency k is the inner product of a complex exponential of
frequency k with the signal. Due to the orthonormality of complex exponentials, we see
that the DFT of of our signal is 0 for all frequencies except for k0. The DFT is therefore a
shifted delta function, seen in 1.12

�

Example 5 DFT of a constant

Solution: We can express a complex function x(n) as a complex exponential with fre-
quency k0 = 0

x(n) =
1√
N

=
1√
N

ej2π(0)n/N

= e0N(n)

(1.15)
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Figure 1.13: DFT of a constant is a delta function

X(k) = 〈e0N , ekN〉 = δ(k− 0)

= δ(k)
(1.16)

Due to the orthonormality of complex exponentials, we see that the DFT of the com-
plex exponential is 0 for all frequencies except for 0. The DFT is therefore a delta function,
seen in 1.13

�

1.1.6 Observations

From the above examples, we observe several properties of the DFT

Firstly, from example 1, we see that the DFT of a signal contains information about
what frequencies it is made of and its rate of change. A signal that changes faster, such as
a short square pulse, will have higher DFT values for higher frequencies. This results in
more of the DFT’s weight being at high values of k. The opposite happens for signals that
change slowly, such as a longer square pulse, which has more of the DFT’s weight being
concentrated around frequency 0.

Secondly, from example 2, we see that the DFT conserves energy. The energy of a DFT
should be equal to the energy of the original signal. For our DFT of a delta function, we
obtain a constant with values equal to 1/

√
N. If we calculate the energy of this constant,

we get an energy equal to 1, the same as our unit energy delta function. We will prove
this property in later sections.

Thirdly, from examples 2 to 5, we can see a duality between signals and DFTs. For
delta functions and complex exponentials, we see that signals and DFTs seem come in
pairs. In Figure 1.10, the DFT of a delta is a constant, and in Figure 1.13, the DFT of
a constant is a delta. Likewise, in Figure 1.11, the DFT of a shifted delta is a complex
exponential, and in Figure 1.12, the DFT of a complex exponential is a shifted delta. Later,
when we introduce the inverse DFT, we will see that signals and DFTs do in fact come in
signal - transform pairs.
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1.2 Units of the DFT

Up to now, we have considered our signals and DFTs mathematically without any re-
gard to their duration and frequency in the physical world. Now we relate the discrete
frequency k to the actual physical frequency fk.

The discrete and physical frequencies are related to each other by the sampling time Ts
and sampling frequency fs = 1/Ts. Every Ts seconds, we sample the value of our physical
signal, forming our discrete signal x [n].

If our discrete signal has length N, then the physical signal has duration T = NTs.
x [0] is equal to the physical signal at x(0× Ts), x [1] is equal to x(1× Ts), x [2] is equal to
x(2× Ts), and so on. The last value in our discrete signal, x [n− 1], is equal to the physical
signal at x((n− 1)Ts). Since each of our samples lasts for Ts seconds, the last sample at
(n− 1)Ts fills up the remaining Ts seconds for a total duration of T = NTs.

If we have a discrete frequency k, we have k oscillations in a time of NTs, and the
period of each oscillation would be equal to NTs/k. The real frequency would also be
equal to the inverse of the period.

fk =
k

NTs
= k

fs

N
(1.17)

Since discrete frequencies greater than k = N/2 have no real meaning, we see that if
we convert this to physical frequencies.

fN/2 =
N/2 fs

N
=

fs

2
(1.18)

For our DFT, we cannot obtain information about frequencies greater than half our
sampling frequency.

If we convert our canonical set k ∈ [−N/2, N/2] into physical frequencies, we have a
range of frequencies between − fs/2 and fs/2, with each frequency separated by fs/N.
From this set of frequencies, we see how changing N, the number of samples, and fs,
the sampling frequency, changes the information we can obtain. By increasing the num-
ber of samples, we decrease the interval fs/N, increasing our resolution. By increasing
our sampling frequency fs (and decreasing sampling time Ts), we increase the range of
frequencies from − fs/2 to fs/2.

Example 6 Physical Units for the DFT of a discrete complex exponential

Solution: From example 4, we see that the DFT of a discrete complex exponential
of frequency k0 is a delta function shifted to k0. We will now show how the discrete
frequencies in this DFT correspond to physical frequencies.

In Figure 1.14, we see that for a delta function shifted to k0, k0 corresponds to a fre-
quency of f0 where f0 = k fs

N . Therefore, Figure 1.14 is the DFT of a physical complex
exponential with a frequency of f0 = k fs

N hertz. Notice that only complex exponentials
with physical frequencies that are multiples of fs/N, such as f0 = k0

fs
N have DFTs that
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1
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Figure 1.14: DFT of a complex exponential with physical units

are equal to delta functions. For physical frequencies that are not multiples of fs/N, they
will have several non-zero values in their DFT, showing that they are made up of several
different frequencies that are multiples of fs/N. �

Example 7 Physical units for the DFT of a square pulse

Solution: In example 1, we calculated the DFT of a square pulse M = 2 long and with
duration N = 32. Here, we will calculate the DFT of a physical square pulse of length
T0 = 4 seconds with signal duration T = 32s, with a sampling frequency of fs = 8 Hz.

A sampling frequency of fs = 8 Hz corresponds to a sampling time of Ts = 1/8 =
0.125 seconds. If we sample continuously over the signal duration of T = 32s, we will
get N = 32/0.128 = 256 samples, the duration of our discrete signal. The length of our
square pulse is M = 4/0.128 = 32 samples long.

Since k ranges from −N/2 to N/2, our maximum discrete frequency will be k =
N/2 = 256/2 = 128. This corresponds to a physical frequency of fk = k fs/N = fs/2 = 4
Hz. The resolution of our frequencies in the DFT will be fs/N = 8/256 = 0.03125Hz

In Figure 1.16, we can see the DFT of our square pulse with physical frequencies, and
the corresponding DFT with discrete frequencies in 1.15.

In Fig 1.17, we take a closer look at our DFT in 1.16. We can see that the distance
between every value is equal to the value of fs/N = 8/256 = 1/32 = 0.03125 Hz we
calculated earlier, which is the best resolution we can get with a sampling frequency of fs
and N samples.

From the DFT, we see that frequencies 0.25 Hz, 0.5 Hz, 0.75 Hz, and so on are equal
to 0. These frequencies also correspond to 1/T0, 2/T0, 3/T0, . . . , where T0 = 4s is the
length of our square pulse. In fact, for any square pulse, there will be zeros at multiples
of 1/T0. Most of the energy of our DFT is between −1/T0 and 1/T0. As the duration
of our square pulse increases, T0 increases resulting in more of our DFT energy being
concentrated around frequency 0.

�
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Figure 1.15: DFT of a square pulse with discrete frequencies
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Figure 1.16: DFT of a square pulse with physical units
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1.3 DFT inverse

Now that we have a grasp of the DFT transform, we will define the inverse transform.
If the DFT transforms x → F (x) = X, then the iDFT transforms X → F−1(X) =
F−1F (x) = x back into the original signal.

The idea behind the construction of the iDFT is that any signal can be represented as
a sum of complex exponentials, each with a different weight. The weight for a complex
exponential of frequency k is equal to the X(k), the DFT of the original signal. With this,
we can define the iDFT as

x(n) =
1√
N

N−1

∑
k=0

X(k)ej2πkn/N (1.19)

Notice that this is very similar to the definition of the DFT except for the sign in the
exponent. A DFT has a negative sign in the exponent, while the iDFT has a positve sign.
Because a DFT is periodic, with X(k + N) = X(k), we only need to consider N different
frequencies in a canonical set. Since we can sum over any canonical set of frequencies k,
we can redefine the interval of summation as

x(n) =
1√
N

N−1

∑
k=0

X(k)ej2πkn/N

=
1√
N

N/2

∑
k=−N/2+1

X(k)ej2πkn/N

(1.20)

Where the coefficient X(k) multiplying each complex exponential ej2πkn/N is the k’th
element of the DFT of x

X(k) =
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N (1.21)

Example 8 Proof of the DFT inverse formula

Solution: Although we have defined the iDFT, we have no proof that it actually is an
inverse of the DFT.

Suppose we have a signal x and its DFT X = F (x). Let the signal x̃ = F−1(X) be the
signal obtained from the iDFT of X. To prove that the iDFT is in fact the inverse of the
DFT, we need to prove that the resulting signal x̃ is equal to the original signal x.

From the definition of the iDFT, we have

x̃(ñ) =
1√
N

N−1

∑
k=0

X(k)ej2πkñ/N (1.22)

From the definition of the DFT, we have

X(k) =
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N (1.23)
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If we substitute the definition of the DFT into the definition of the iDFT, we have

x̃(ñ) =
1√
N

N−1

∑
k=0

[
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N

]
ej2πkñ/N (1.24)

If we exchange the order of summation to sum first over k then n

x̃(ñ) =
1√
N

N−1

∑
n=0

[
N−1

∑
k=0

x(n)
1√
N

e−j2πkn/Nej2πkñ/N

]

=
N−1

∑
n=0

x(n)

[
N−1

∑
k=0

1√
N

e−j2πkn/N 1√
N

ej2πkñ/N

] (1.25)

Since x(n) does not depend on k, we can move it out of the innermost summation. We
can also move the factors 1√

N
anywhere we wish, and we put them next to the exponential

factors to turn them into unit energy complex exponentials.

Notice that the innermost sum is an inner product between 2 complex exponentials
eñN and enN . Due to orthonormality, this inner product is equal to a delta function.

N−1

∑
k=0

x(n)
1√
N

e−j2πkn/Nej2πkñ/N = δ(ñ− n) (1.26)

If we substitute this back into our equation

x̃(ñ) =
N−1

∑
n=0

x(n)δ(ñ− n)

= x(ñ)δ(ñ− ñ)

= x(ñ)

(1.27)

Because of the delta function in the sum, all terms in the sum except for n = ñ are
equal to 0. The equation then simplifies to x(ñ). We have shown that x̃ = F−1 (F (x))
and therefore proved that our definition of the iDFT is in fact the inverse of the DFT.

�

1.3.1 The Inverse DFT as an Inner Product

Similar to the DFT, we can interpret the iDFT as an inner product with a set of complex
exponentials. From the definition of the iDFT

x̃(ñ) =
1√
N

N−1

∑
k=0

X(k)ej2πkñ/N (1.28)
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We see that 1√
N

ej2πkn/N is a discrete complex exponential enN(k). We can then rewrite
the iDFT as

x̃(ñ) =
N−1

∑
k=0

X(k)enN(k)

=
N−1

∑
k=0

X(k)e∗−nN(k)

(1.29)

Which is the inner product x(n) = 〈X, e−nN〉 between the DFT and a complex expo-
nential of frequency −n.

1.3.2 Inverse DFT as Successive Approximations

We originally developed the iDFT by considering a signal x(n) as a sum of complex
exponentials with different frequencies k. Consider the definition of the iDFT over the
canonical set k ∈ [−N/2 + 1, N/2]

x(n) =
1√
N

N/2

∑
k=−N/2+1

X(k)ej2πkn/N (1.30)

If we start with frequency k = 0, and add frequencies k = ±1, k = ±2, and so on up
to faster frequencies, we see that the sum in the iDFT is equal to.

x(n) = X(0)ej2π0n/N constant

+ X(1)ej2π1n/N +X(−1)e−j2π1n/N single oscillation

+ X(2)ej2π2n/N +X(−2)e−j2π2n/N two oscillations

+ X
(

N
2
− 1
)

ej2π( N
2 −1)n/N +X

(
−N

2
+ 1
)

e−j2π( N
2 −1)n/N

(
N
2
− 1
)

oscillations

+ X
(

N
2

)
ej2π( N

2 )n/N N
2

oscillations

(1.31)
This is the basis behind using the iDFT to approximate and reconstruct different sig-

nals. We start with a constant equal to the average value of the signal, and add on faster
and faster oscillations until finally reaching oscillations with frequency k = N/2. To
illustrate this, we will try reconstructing a square pulse.

Example 9 Reconstruction of a square pulse

Consider a square pulse with N = 256 and M = 128. Starting with k = 0, we have
only the DC component of the pulse, seen in Figure 1.18. This is just the average value,
and not a good approximation.

But as we add more and more frequencies, from 1.18 to 1.23, we get a better and
better approximation. A common way of compressing signals is to store the DFT values
instead of the actual signal values, and reconstructing the original signal when needed.
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Figure 1.18: Closeup of the DFT of a square pulse
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Figure 1.19: Closeup of the DFT of a square pulse
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Figure 1.20: Closeup of the DFT of a square pulse

0 32 64 96 128 160 192 224
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Discrete time index n ∈ [0, 255]

Pulse reconstruction with k=8 frequencies (N = 256, M = 128)

Figure 1.21: Closeup of the DFT of a square pulse
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Figure 1.22: Closeup of the DFT of a square pulse
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Figure 1.23: Closeup of the DFT of a square pulse
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Figure 1.24: Process of Spectrum Reshaping
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Figure 1.25: Process of Spectrum Reshaping

For example, sending the DFT of a song over the Internet instead of the actual sound
samples. In Figure 1.23, we only have to send k = 32 DFT values instead of N = 256
samples. If we want a better reconstruction of the original signal, we can send more DFT
values, but this results in a lower compression ratio and a tradeoff between compression
and accurate reconstruction.

1.3.3 Spectrum Shaping

Now that we can transform a signal x(n) into the frequency domain X(k) with the DFT,
and transform it back into the time domain iDFT, we can do a lot of interesting analysis
and processing in the frequency domain that we would be able to do in the time domain.
A common procedure is Spectrum (Re)shaping, where we modify X and transform it into
Y before converting it back into the time domain, as seen in Figure 1.24.

Example 10 Spectrum reshaping to remove noise

Solution:
A common application of spectrum reshaping is cleaning a noisy signal. Consider

the signal in Figure 1.25, which has an underlying trend we want to analyse which is
distorted by noise. In the time domain, it is difficult to see what the original signal should
be. However, we can look at the spectrum(DFT) of this signal.

We can see the DFT in Figure 1.26. Here, the trend we are looking for appears as
spikes in the DFT, which is clearly separated from the high frequency noise that ranges
over the entire spectrum. To remove the noise, we reshape the spectrum into Figure 1.27
by removing all frequencies k > 8.
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Figure 1.26: Process of Spectrum Reshaping
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Figure 1.27: Process of Spectrum Reshaping
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Figure 1.28: Process of Spectrum Reshaping

Now that we have our clean spectrum, we can recover our signal by transforming it
back into the time domain using the iDFT, as seen in Figure 1.28. Here, the noise has been
removed and the signal trend is clearly visible.

The spectrum reshaping to clean high frequency noise from a signal here is a very
common procedure used in a variety of communications and electronics applications. �

1.4 Properties of the DFT

DFTs have 3 important mathematical properties that simplify how we analyse and apply
them in many cases.

1.4.1 Symmetry

The DFT of a real signal is conjugate symmetric. That is

X(−k) = X∗(k) (1.32)

Therefore, instead of storing the DFT components for all frequencies k ∈ [−N/2, N/2],
if we know our signal is a real signal, we only need to store the DFT components for k ∈
[0, N/2]. We can recover the frequencies in k ∈ [−N/2,−1] just by taking the conjugate
of frequencies in k ∈ [0, N/2]. Since most of the signals we work with are physical
signals containing only real values, the symmetry property halves the number of DFT
components we need to store and transmit.

Example 11 Proof of the symmetry property
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Solution: We can write the DFT X(−k) as

X(−k) =
1√
N

N−1

∑
n=0

x(n)e−j2π(−k)n/N

=
1√
N

N−1

∑
n=0

x(n)ej2πkn/N

=
1√
N

N−1

∑
n=0

x∗(n)
(

ej2π(−k)n/N
)∗

(1.33)

Since the conjugate of a real signal remains the same, we can replace x(n) with x∗(n).
Conjugating a complex exponential just changes the sign of its imaginary exponent, so

ej2πkn/N =
(

ej2π(−k)n/N
)∗

. Next we change the order of conjugation with multiplication.
We can do this since

(a + bj)∗(c + dj)∗ = (a− bj)(c− dj)

= ((ac− bd)− j(ad + bc))
= ((ac− bd) + j(ad + bc))∗

= ((a + bj)(c + dj))∗

(1.34)

Multiplying 2 conjugates is just the conjugate of the product of the 2 original numbers.

X(−k) =
1√
N

N−1

∑
n=0

[
x(n)e−j2πkn/N

]∗
=

[
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N

]∗
= X∗(k)

(1.35)

�

1.4.2 Energy conservation

The energy of the original signal is the same is the energy of the DFT. This property is
also known as Parseval’s Theorem. If X = F (x), then if we calculate their energies

N−1

∑
n=0
|x(n)|2 = ‖x‖2 = ‖X‖2 =

N−1

∑
k=0
‖X(k)‖2 (1.36)

Since the DFT is periodic, we can calculate its energy using any canonical set. There-
fore, the theorem can also be written as

N−1

∑
n=0
|x(n)|2 = ‖x‖2 = ‖X‖2 =

N/2

∑
k=−N/2+1

‖X(k)‖2 (1.37)

Example 12 Proof of Parseval’s Theorem



1.4. PROPERTIES OF THE DFT 23

Solution: The definition of energy, we can calculate the DFT’s energy as

‖X‖2 =
N−1

∑
k=0

X(k)X∗(k) (1.38)

If we substitute the definition of the DFT X(k) of x(n) into our energy calculation, we
have

‖X‖2 =
N−1

∑
k=0

[
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N

] [
1√
N

N−1

∑̃
n=0

x(ñ)e−j2πkñ/N

]∗
(1.39)

If we interchange conjugation with multiplication in the term to the right, we have

‖X‖2 =
N−1

∑
k=0

[
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N

] [
1√
N

N−1

∑̃
n=0

x(ñ)∗e+j2πkñ/N

]
(1.40)

We can simplify this complicated summation by changing the order to sum over k first
instead of n and ñ. In doing so, we can also pull x(n) and x()̃ out of the inner summation
since they don’t depend on k.

‖X‖2 =
N−1

∑
n=0

N−1

∑̃
n=0

x(n)x∗(ñ)

[
N−1

∑
k=0

1√
N

e−j2πkn/N 1√
N

e+j2πkñ/N

]
(1.41)

Notice that the innermost summation is the inner product between 2 complex expo-
nentials, which is a delta function due to orthonormality.

‖X‖2 =
N−1

∑
n=0

N−1

∑̃
n=0

x(n)x∗(ñ)

[
N−1

∑
k=0

1√
N

e−j2πkn/N 1√
N

e+j2πkñ/N

]

=
N−1

∑
n=0

N−1

∑̃
n=0

x(n)x∗(ñ)〈eñNenN〉

=
N−1

∑
n=0

N−1

∑̃
n=0

x(n)x∗(ñ)δ(ñ− n)

(1.42)

Since all terms where ñ− n 6= 0 are equal to zero due to the delta function, we can
remove the summation in ñ to get

‖X‖2 =
N−1

∑
n=0

N−1

∑̃
n=0

x(n)x∗(ñ)δ(ñ− n)

=
N−1

∑
n=0

x(n)x∗(n)δ(ñ− n)

= ‖x‖2

(1.43)

�

Parseval’s theorem explains why in examples 1 to 5 earlier on, our DFTs of unit en-
ergy square pulses, delta functions, and exponential functions also resulted in DFTs that
were functions with unit energy. Another interpretation from Parseval’s theorem is that
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the value of the DFT X(k) at k represents how much of x(n)’s energy is contained in
oscillations of frequency k. In example 10 where we use spectrum reshaping to remove
noise, Figure 1.26 shows that most of the signal’s energy is contained in several distinct
frequency peaks, while the high frequency noise contains only a small proportion of the
total signal’s energy. By removing frequencies that make up only a little of the signal’s
energy, we isolate the frequencies that account for most of the signal’s energy and recover
the original signal.

1.4.3 Linearity

Linearity is a property that is useful for modifying and combining different signals. It can
be defined as the following

F (ax + by) = aF (x) + bF (y) (1.44)

Two useful properties we can draw from linearity is that the spectrum of the sum of 2
signals, z = x + y, is the sum of their spectrums Z = X + Y, and scaling a signal y = ax
scales the spectrum proportionally, Y = aX. These properties simplify many calculations
and make a variety of signal processing techniques possible.

Example 13 Proof of Linearity

Solution: Let Z = F (ax + by). We can the substitute ax + by into the definition of the
DFT.

X(k) =
1√
N

N−1

∑
n=0

[ax(n) + by(n)] e−j2πkn/N

=
a√
N

N−1

∑
n=0

x(n)e−j2πkn/N +
b√
N

N−1

∑
n=0

y(n)e−j2πkn/N

= aF (x) + bF (y)
= aX + bY

(1.45)

By expanding the product and reordering terms using algebraic manipulations, we see
that the DFT is in fact a linear transformation. �

By taking advantage of the linearity of the DFT, we can quickly determine the DFT
of signals that are combinations of what we already know the DFTs of. For example,
consider the discrete cosine and sine signals

Example 14 DFT of a discrete cosine

Solution: A discrete cosine of frequency k0 is defined as

x(n) =
1√
N

cos(2πk0n/N) (1.46)
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We can also write the discrete cosine as a sum of discrete complex exponentials using
the identity cos(x) = ejx+e−jx

2

x(n) =
1

2
√

N

[
ej2πk0n/N + e−j2πk0n/N

]
=

1
2
[
ek0 N(n) + e−k0 N

] (1.47)

Due to the linearity of the DFT

F (x(n)) = F
(

1
2
[
ek0 N(n) + e−k0 N

])
=

1
2
[
F
(
ek0 N(n)

)
+F

(
e−k0 N

)] (1.48)

Since the DFT of a complex exponential with frequency k0 is a delta function δ(k− k0)
shifted to k0, the DFT if the discrete cosine is then

X(k) =
1
2
[δ(k− k0) + δ(k + k0)] (1.49)

We see that the DFT of the discrete cosine with frequency k0 is a pair of deltas located
at positive and negative frequencies k0, seen in the upper half of Figure 1.29

�

Example 15 DFT of a discrete sine

Solution:
Using a process similar to the one used to find the DFT of a discrete cosine, we start

with

x(n) =
1√
N

sin(2πk0n/N) (1.50)

We can discrete sine as a sum of discrete complex exponentials using the identity
sin(x) = ejx−e−jx

2j

x(n) =
1

2j
√

N

[
ej2πk0n/N − e−j2πk0n/N

]
=

j
−2

[
ek0 N(n)− e−k0 N

] (1.51)

Due to the linearity of the DFT

F (x(n)) = F
(
−j
2
[
ek0 N(n)− e−k0 N

])
=
−j
2
[
F
(
ek0 N(n)

)
−F

(
e−k0 N

)]
=

j
2
[
F
(
e−k0 N(n)

)
−F

(
ek0 N

)]
(1.52)
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Figure 1.29: DFT of discrete cosine and sine
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Figure 1.30: Modulus of the DFT of discrete cosine and sine

Since the DFT of a complex exponential with frequency k0 is a delta function δ(k− k0)
shifted to k0, the DFT if the discrete sine is then

X(k) =
j
2
[δ(k + k0)− δ(k− k0)] (1.53)

We see that the DFT of the discrete sine with frequency k0 is a pair of opposite complex
deltas located at positive and negative frequencies k0, seen in the lower half of Figure 1.29

�

DFTs of discrete sines and cosines with frequency k0 are made up of only complex
exponentials with frequency k0. The discrete cosine has only real values for its DFT
while the discrete sine has only imaginary values, despite the fact that both are real
signals. Also, the discrete cosine produces an even DFT symmetric around k = 0, while
the discrete sine produces an odd DFT antisymmetric arouond k = 0. If we consider the
DFT’s property of symmetry in section 1.4.1, we see that the DFT at −k0 is in fact the
conjugate of the DFT at k0 for both the discrete sine and cosine.

Despite the differences in the real and imaginary parts of the discrete sine and cosine,
we see that they both have the same DFT moduli, as seen in Figure 1.30. Both these signals
are essentially the same in terms of frequency, just shifted in phase. The information about
their phase difference is captured by the phase of the complex numbers at X(±k0).
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