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Chapter 1

Discrete Time Fourier Transforms

Now that we have discussed the Discrete Fourier Transform (DFT) and the Fourier Trans-
form (FT), we will now cover the Discrete Time Fourier Transform (DTFT). Note that
DTFT is different from the DFT, despite the similar names. We will be covering the same
concepts such as inner product and energy from the DFT and FT for the DTFT, and this
should seem very repetitive, and almost boring, intentionally.

1.1 Discrete Time Signals

1.1.1 Definition

When we used the DFT, we used it on discrete signals, which have a finite number of values
(discrete) over a finite time period (i.e. x(0)tox(N —1). When we talked about the continu-
ous Fourier transform, we used continuous time signals, which were a continuous or analog
signal from a time interval from —co to co. When we are talking discrete time signals, which
are discrete signals with an infinite time index (i.e. x(—o0)...x(—1),x(0),x(1)...x(c0), not-
ing that the indices of x are integers).

More formally, the discrete time signal x is a function mapping Z to complex value
x(n). As with discrete signals, we have a sampling time T;, which is the time between
samples n and n + 1, and the sampling frequency fs = 1/Ts.

For example, a shifted delta function é(n — ng) has a spike at time n = ng. This signal
continues to +oco and -co.

1 ifn=mn
5(n—mng) = { 0 else 0 (1.1)
6(n—np)
1
noTs

Figure 1.1. Shifted delta function é(n — np)
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1.1.2 Inner Product and Energy

We define the inner product of discrete time signals x and y as the sum from —co and +oo
of x(n)y * (n):

(o)

(cyy=") x(n)y"(n) (12)

n=—oo
Like with the DFT and FT, the inner product tells how much x and y are like each other.
If the inner product equals 0, then the signals are orthogonal and there is no relationship
between the two. If it equals 1, when they are related and synchronous. If the inner
product is -1, then x and y are anti-synchronous, meaning they are inversely related and
move in the opposite direction.
The energy of a signal is defined as the inner product with itself.

[e.0) [e0) [e9)

IxI?:= (v y) = ) P = 3 armP+ 3 |x(n)? (13)

n—=-—oo n—=-—oo n—=-—oo

Because the summation for the inner product extends to +oo and -oo, the sum is more
like a series than a sum. As a result, the inner product may not exist since the series may
be infinite, and the energy may be infinite. This is in contrast to when we were studying
continuous signals with the FI, where the inner product did not exist, and the energy
may be infinite. With discrete signals and the DFT, the inner product does exist and the
energy was finite. The difference here demonstrates that the DTFT has a sort of hybrid
behavior between the DFT and FT.

As an example, we define a square pulse of odd length M+1 as a signal M4 with
values

M M
Myt (n) =0 else M <mn (1.5)
M1 (n)
1
U, dr,
Figure 1.2. Square pulse M1
To compute energy of the pulse we just evaluate the definition
) ) M/2 )
My = Y, [Mua@P= ) 1)*=M+1 (1.6)
n=—o0 n=—M/2

With the square pulse Mys4+1(n) and the shifted pulse Mys41(n — K), we can calculate
the inner product of the two. For shifts 0 < K < M + 1, the signals overlap for K — M /2 <
n < M/2 and are 0 elsewhere (at any point where the pulses don’t overlap, the product
of the signals at that point is 0), so we focus our attention in the overlap region.
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My (n)

M M
M, K= 41,

S

T, KT K+ 4T,

Figure 1.3. Overlapping square pulse My;1 (red) and shifted pulse Mps11(n — K) (blue)

) M/2
(M1 (n), M (n = K)) = )0 My () My (n=K) =}, (D) = (M+1)-K (1.7)
n=—oo n=K—M/2
This inner product is proportional to the overlap between the pulses, which is another
way of saying how much the pulses are similar to each other.

1.2 The Discrete Time Fourier Transform (DTFT)

1.2.1 Definition

Not surprisingly, as with the DFT and FT, the DTFT X is a sum of products of a discrete
time signal x and a complex exponential. The argument f, or the frequency, is continuous.
The DTFT also depends on the sampling time Ts.

X(f):=Ts i x(n)e 12fnTs (1.8)

n=-—oo

As with the inner product of discrete time signals, this sum may not exist. As a result,
not all signals have a DTFT, which is different than the DFT, for which all discrete signals
have.

From this definition, we see that the DTFT has a discrete input but a continuous out-
put, compared to the FT (continuous input and continuous output) and the DFT (discrete
input and discrete output). This is a mismatch, showing that once again the DTFT is a
hybrid of the DFT and FT. This is interesting and of little consequence to this fact, but it
does have some philosophical significance.

1.2.2 DTFT as an Inner Product

We can define the DTFT as an inner product by substituting the complex exponential in
the previous definition with the exponential esr, with values esr, (1) = Tse/2/1Ts . We can
then write the as inner product:

o)

X(f) = (xem) =Ts ). x(n)ejp,(n) (1.9)

n=—oo

We did this for the DFT ({x,e)) and FT ({x,exn)), so why is this important with the
DTFT? For one, the DTFT shows how much a discrete signal x(n) resembles a discrete
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oscillation of freq. f. The other reason is that it shows the connection between the 3
transforms as all inner products with a complex exponential. However, they are all con-
ceptually different because they have different input spaces. The FT exists in real life
because signals are in continuous time in reality. The DTFT can be seen as an abstract of
the FT. Lastly, the DFT does not exist in reality, but it does in the space we have created.

1.2.3 Periodicity
Theorem 1 The DFTF X = F(x) of discrete time signal x is periodic with period f;.

X(f+fi)=X(f), forall f€R. (1.10)

From this theorem, we know that any frequency interval of length f; contains all of
the DTFT information. Therefore, we don’t need to look at the whole signal, but rather
just at the set of frequencies f € [—fs/2, fs/2]. For sampling time T, frequencies larger
than f;/2 have no physical meaning. Additionally, the frequency —f is (more or less) the
same as frequency f.

Proof:
Use the DTFT definition to write X(f + f;) as

X(F+f) =T Y. x(n)e PrUHAT (1.11)

n=—oo

Separate the complex exponential in two factors
X(f+fo)=Ts Y. x(n)e /2fnTse=i2nfnT: (1.12)
n=—oo
Use fTs = 1 in the last factor so that we get e /27Hfs"Ts — (=27 — (eﬂ”) " = 1.By
substituting the previous expression, we observe the definition of the DTFT:

X(f+f) =T Y, x(n)e T = X(f) (1.13)
]
1.2.4 DTFT of a Square Pulse
Computing the DTFT is painful, but we will give one example.
Consider square pulse of odd length M + 1.
Magq (n) =1 if—%gng%
My (n) =0 elseM<mn
To compute the pulse DTFT X = F(My11), we evaluate the definition
0 ) M/2 .
X(f)=T ¥ Muaa(m)e P =T 3 x(n)e 2T (1.14)

n=—oo 1’!:7M/2
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M1 (n)

-4, T,

S

Figure 1.4. Square pulse M1

Write down the individual elements of the sum to express DTFT as

X(f) — o2f(—4)Ts Jrejznf(—%ﬂ)n jLm+ej2nf(%—1)n +ejznf(%)n

S
Multiply by /27" ()T and ¢27/(~2) to write the equalities

ejZNf(%)TS X(f) — ejZﬂf(—%-i—%)Ts + ejZﬂf(—%-i—%)Ts + ...+ ejZﬂf(%—%)Ts + ejZHf(%-i—%)Ts

o3

o2 f(MT XU s (- YD | onf (DT G2 (BT | p2nf (B3

o3

Notice a pattern where the first term in first row equals the second term in the second
row, the second term in first row equals the third term in second row, and so on up to the
penultimate term in first row equalling the last term in the second row. By subtracting
second row from first row, only two terms survive: the last term in the first row and the
first term in the second row.

s XU) 4 (B 1)
Ts

(N XS _ prf(- %D,

S

Implementing the subtraction results in the equality
X(f) [efznf(%)Ts - e—ﬂnf(%)n} = 2 (5+2)Ts _ pi2nf (=5 =2)T: (1.15)

Remembering that complex exponentials are conjugate, subtraction cancels the real parts,
leaving us with the imaginary parts only, which are sines.

%sf) {stin (an G) Ts)} = 2jsin (2nf(M2+1) Ts) (1.16)

We then solve for X(f) and simplify the terms using the pulse length T = (M + 1) Ts.

_sin(f (M+1)Ts)  sin (7fT)
X(f) =T sin (71fTs) =T sin (70 Ts)

(1.17)

The final result is a ratio of a slow sine over a faster sine, which is very similar to
the sinc function. Recall that the Fourier transform of a continuous pulse outputs a sinc
function, so it is interesting that the DTFT of a sampled pulse is close to a sinc as well.
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1.2.5 The FT, the DTFT, and the DFT

We would now like to connect the three concepts together and see how they are related
to each other.

X — > FT ————— X¢
v v
sample = T chop = =+ %
v v
x DTFT X
' b
chop = [0, NT] sample = %
v v
Xp —— > DFT Xp

Figure 1.5. Relationship between the FT, DTFT, and DFT. We see that the DTFT acts as a bridge
between the FT and the DFT via sampling and/or chopping.

With the DTFT, we are interpreting the signal x(n) as samples xc(nTs) of a continuous
signal xc(t). When we evaluate the DTFT Xc(f) = F(x) from the definition, we can
also see that it is the Riemann sum approximation of the integral in the FT definition of
Xc = F(xc).

Xc(f) = /_o:oxc(t)e’jznftdt%Ts f x(n)e 2T = X(f) (1.18)

n=—oo

In addition to these observations, we know that only the frequencies between *f;/2 have
meaning in the DTFT. This means that in the frequency domain, we can chop off the higher
frequencies. To sum it all together, we can achieve the DTFT from the FT by sampling in
time and chopping in frequency.

If we compare the DTFT and the DFT, we see that we use a discrete signal xp with
the DFT Xp = F(xp), which can be obtained by chopping the discrete time signal x to the
range 1 € [0, N — 1]. In the definition of the DTFT, the summation is from —co to oo, but
if the elements chopped away from x are small, we can at least make an approximation of
the DTFT using n € [0, N — 1].

) ) N-1 )
X(f) = Ts ), x(n)e 2T & T ) xp(n)e /2T (1.19)
n=0

n=—oo

If we also sample the DTFT in frequency at f = (k/N)fs, we can obtain the expression of
the DFT:

N-1 ) N-1 ,
X (%fs) ~ T, Z xD(n)eﬂZﬂ(k/N)fsnTs = T, Z xD(n)eﬂann/N _ TS\/NXD(k) (1.20)

n=0 n=0
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Thus, we were able to obtain the DFT from the DTFT by chopping x in time and sampling
X(f) in frequency.

We have 3 transforms for 3 families of signals. We can go from continuous time signals
to discrete time signals via sampling, and from discrete time signals to discrete signals by
chopping. We can also observe an interesting duality across the center: sampling in time
implicitly requires a chop in frequency and performing a chop in time implicitly performs
a sampling in frequency.

1.3 The Inverse Discrete Time Fourier Transform (iDTFT)

Now that we have discussed the DTFT, it should come as no surprise that the inverse
DTFT, or iDTFT, comes next. Once again, things should look very familiar from our past
discussions with the DFT/iDFT and FT/iFT.

1.3.1 Definition
The iDTFT x of DTFT X is the discrete time signal with elements

fi/2 2mfnT.
x(n) ::/ X(f)el27nTs g (1.21)
—fs/2

We denote the iDTFT as x = F1(X). The sign in the exponent changes with respect to
DTFT. Notice that the DTFT is an indefinite sum but the iDTFT is a definite integral — an
odd mismatch but doesn’t mean much. Since the DTFT X is periodic, we can use any in-
terval of width f; to find the iDTFT. For example, we could use the intervals [—f;/2, f; /2]
or [0, fs] and get the same resulting iDTFT regardless.

fs/2 ) fs ;
xm) = [ XU af = [TX(P)R af (122)

1.3.2 iDTFT as Inverse of the DTFT

We can't just say that the inverse DTFT is truly the inverse of the DTFT — this we must
prove.

Theorem 2 The iDTFT % of the DTFT X of the discrete time signal x is the signal x
= F X)) = FF(x)] = (1.23)

This result shouldn’t be a surprise since we have done this not just once, but twice
already. However, we promise that this is the last one we will introduce.

This result implies that, as usual, discrete time signals can be written as sums of oscil-
lations. This is useful because we can separate the fast- and slow-changing components
of a signal.

fs/2 ) N/2 ]
xn) = [ X(DPITdf x (8f) Y X(fi)eRhiT (1.24
J=fs/2 n=—N/2
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Proof: To prove that the iDTFT is, in fact, the inverse of the DFTFT, we want to show
that ¥ = F1(X) = FF(x)] = .

We start with the definition of inverse transform of X,
fs/2 S
#(71) = X e]2nfnTsd
= [ X() f
and the definition of the DTFT of x,
X(f) :=T; 2 x(n)e 27EfnTs,
n=—oo
By substituting the expression for X(f) into the expression for (1), we get
fs/2 o0 ) o
x(7) = /f/ [Ts ) x(n)efznf”n}e]z”f”n‘ af (1.25)
—fs/2 n=—oo

We then exchange the integration with the sum so that we integrate first over f, then sum
over n. You can pull out x(n) from the integral because it doesn’t depend on f.

o fs/2 )
() =Ts Y x(n) [/f/Z el27efTs p=j27efTs df} (1.26)
n=—o0 —fs

Up until now we repeated the steps we already did for iDFT and iFT. There were steps in
the iDFT that didn’t work for the iFT, but luckily for us, they work here as well.

We know the result of the innermost integral from something we’ve computed several
times before — the sinc function. To simplify, we used f;Ts = 1 to go from the first to the
second expression.

/f;//zz /2T o= 27 Ts g £ — fesine(mtfs(n — 1) Ts) = fesinc(m(n — 1)) (1.27)
Recall that n and 7 are discrete. For n = 7, this expression evaluates to fssinc(mr(n —
1)) = fs because sinc(0) = 1. For n # 7i, the expression evaluates to fssinc(m(n —i)) =
0 because sinc(krr) = 0 for any integer k. This means that the sinc here acts as a delta
function in disguise (it evaluates to 1 for one value and 0 for all other values), so we can
rewrite the integral expression as:

fil2
/f , 2 Ts o= 127fTs g £ — £65(n — 1) (1.28)
—f/2

We then substitute in the above expression for X(i1), and because of the delta function, we
get only one non-zero term. Here we also used f;Ts = 1.

(i) =Tofs Y, x(n)d(n—it) = x(i1) (1.29)

Since we have %(7i) = x(7i) for all 71, ¥ = x. [ |



1.4. THE DIRAC TRAIN 11

1.3.3 From Time to Frequency and Back

If a discrete signal x has a DTFT X, then that means its DTFT has an iDTFT. The iDTFT
can be used to recover the original signal x. What does this imply? It means that the DTFT
is a transformation without any loss of information, which allows us to move between the
frequency domain and time domain without issues. This is also true for of the DFT-iDFT
and FT-iFT paris as well.

x X

/—> DTFT \
\ iDTFT <—/

Figure 1.6. Moving between time and frequency domains using the DTFT and iDTFT without loss
of information

1.4 The Dirac Train

1.4.1 DTFT of a Constant

Suppose we have a constant function x.(t) = 1, sampled so that we get the discrete time
constant x(n) = x(nT;) = 1 for all n. The DTFT of x would be

X(f) =T, Z x(n)e—jZanTs =T, Z e—j27TfnTS (1.30)

n=-—oo n=—oo

Unfortunately, this summation does not exist. If we set n = 0, X(f) would be an infinite
summation of 1. We can try to make the DTFT into a finite sum between —M /2 and M/2
like we did in continuous time. To do this, we write the constant as a pulse limit, whose
DTFT we saw is a ratio of sines similar to a sinc. We can rewrite the DTFT of the constant
function x as the limit

M/2 , :
X(f) = lim Ts Z e—]27TfnT5 — lim Ts Sln(ﬂf(M+ 1)TS) (131)
M=o~ S, M—c0 sin(7tfTs)

However, this limit also doesn’t exist, because it’s essentially saying that the summation
is infinite. This makes sense, since we simply rewrapped the expression to look slightly
different. To find this limit, we can look at the quantity inside the limit, the ratio of sines.
We know that that has an iDTFT, which is the square pulse. We also can observe that there
are peaks at £kf;, demonstrating periodicity. If we multiply the limit by some arbitrary
signal Y(f), we notice that after integrating, we recover Y(0).

. fs/2 sin(7tf(M+1)Ts)
A}Ilgloo —f/2 Y(H)Ts sin(7tfTs)

df = Y(0) (1.32)

We were able to recover Y(0) by using the integral, which is what the delta function is
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sin(rtf (M +1)Ts)
s sin(7fT;)

\ . _— \ T,/sin(nfTs) ,
I i A 1 e A

Figure 1.7. The limit of the DTFT of a square pulse

defined as. As a refresher, the delta function ¢ is a generalized function such that for all Y

| (st ds =y (1.33)

—o0
We can therefore define the DTFT of a constant as a delta function. This relationship
can’t be derived because, as we saw earlier, the actual DTFT of a constant results in an
infinite sum. So instead, we make a definition that the DTFT of a constant is the delta
function. However, this isn’t exactly right because of the periodic peaks at £kf;. To
correct our definition, we now say that the DTFT is defined as a train of deltas, also
known as a Dirac train or a Dirac comb.

X(f) = Z 5(f —kfs) (1.34)

k=—o00

Informally, 6(f) = oo for f =0, f = £f;, f = £2f;, ... and 6(f) = 0 for all other f.

25 —kf.)

—4fs  —3fs —2fs —fs fs 2fs 3fs 4fsf

Figure 1.8. The DTFT of a constant: a Dirac train in frequency spaced every f;

What does it mean exactly that the DTFT of a constant is the Dirac train? It means that
the DTFT of a constant can’t be observed in reality, and can only be observed once we
pass it through an integral. What if we wanted to observe it without an integral? Simply
put, you don’t want to without it.

/_ df/ —kfy) df_k_z_ooY —kf) (1.35)

It also means that we are able to recover the values of Y(f) at the points where the
train has its peaks, at &k f;. We can also recover the constant using the iDTFT:

/ﬂ/2 (f)e]ZﬂfnTb df / (f _ kfs)e]'ZT(fnTs df _ ejZTrOnTs =1 (136)

—fs/2 k— o
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1.4.2 The Dirac Train in the Time Domain

If we compare a constant to its DTFT, we see that they are suspiciously similar. Both look
like Dirac trains.

AT BTy 2Ts -Ts 0 Ts 2Ts 3T 4T ! Afs 3fs 2fs ofs 0 fs 2fs 3fs 4fs f
Figure 1.9. The discrete time constant in time and its DTFT, the Dirac train in frequency

However, we cannot say that the Fourier transform of a train is another train because
the constant (on the left) is discrete, whereas the Fourier transform (on the right) is con-
tinuous. We cannot define the Dirac train in discrete time because the definition of delta
functions uses integration.

In continuous time (and not as discrete time constant), a Dirac train xc(t) can be
defined as .

xc(t) =T Y 6(t—nTy) (1.37)

n=—oo

-4Ts -3Ts -2Ts  -Ts 0 Ts 2Ts 3Ts 4Ts t

Figure 1.10. A Dirac train in the continuous time domain

Because this Dirac train is continuous, it also has a Fourier transform X.

Xc(f):/

—00

~ xc(t)e_ﬂ”ftdt:/oo [Ts Y (5(t—nTs)}e_jZ”ftdt (1.38)

n=-—oo

We can use this definition of the continuous-time Dirac train to relate it to the DTFT of a
discrete time constant. From the above expression, we can exchange the order of the sum
and integration and use the delta function definition to obtain

Xe(f)=T. ¥ [ / " 5(t — nTy)e 2t dt} _T, Y e 139)

n=—o0 - n=—o0

The resulting summation is the DTFT of a constant.

X(f)=Ts Y x(n)e @M =1, Y o /21T (1.40)

n—=——oo n—=——oo

From this, it can be seen that the DTFT of a constant and the FT of a Dirac train coincide.
Both are, in fact, Dirac trains with spacing fs.

Xe(f)=X(f) = Y. 6(t—kfy) (L41)

k=—c0
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The FT of a Dirac train with spacing T; is the same as a Dirac train with spacing f;.

o
xc(t)= Y 6(t—nTy) (1.42)
n=—oo
We can say that the set of Dirac trains is invariant with respect to the FT because it
looks the same in the time and frequency domains with the related spacing. We can also
call the Dirac train and the FT of the Dirac train as a Fourier transform pair because both
are continuous signals.

4Ts 3Ts 2T -Ts 0 T 2Ts 3Ts 4Ts | “Afs Bfs 2fs <fs 0 fs 2fs 3fs 4fs

Figure 1.11. A Dirac train in the continuous time domain and its FT, a Dirac train in the frequency
domain

In summary, the DTFT of a discrete time constant sampled at Ts is the Dirac train in
frequency spaced every fs.

4Ts 3Ts 2Ts -Ts 0 Ty 2Ts 3Ts 4Ts | “Afs Bfs 2fs fs 0 fs 2fs 3fs 4fs

Figure 1.12. The discrete time constant in time and its DTFT, the Dirac train in frequency

The Fourier transform of the Dirac train in continuous time spaced every T; is the
Dirac train in frequency spaced every fs.

]:—1

ATy 3Ty 2Ts -Ts 0 Ts 2Ty 3Ty 4Ty L -Afs Bfs 2fs -fs 0 fs 2fs 3fs 4fs f

Figure 1.13. A Dirac train in the continuous time domain and its FT, a Dirac train in the frequency
domain

The discrete time constant is fundamentally different from the continuous time train,
so the DTFT of the constant is fundamentally different from the FT of the Dirac train.
However, we do see that the DTFT of the constant and FT of the Dirac train coincide,
revealing something deeper at play. This will be saved for a future discussion.

1.5 Sampling

Now that we understand the DTFT and Dirac Train, we can start to understand Sam-
pling. Sampling is an extremely important concept to signal processing, and leads to
some interesting conclusions.
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1.5.1 What is a Sampled Signal?

So what exactly is a sampled signal? The answer to this question is rather simple. A
sampled signal, which we denote as xs, is a discretized version of the continuous signal
x. In order to get from x to x;, we retain specific values of x spaced by a sampling time
Ts. As a formula, this can be represented by

xs(n) = x(nTs). (1.43)

As you can see, this sampling of a signal is something we’ve done since the beginning
of the semester. The only difference is that this representation x; extends past some value
N and in fact, has no limit. Thus, the signal is not limited within the window of [0, N —1].
So why is this representation important? Well, we live in a continuous world. In order
to read in data or information as a signal, we have to convert it into a discrete domain.
This implies the need for sampling to collect, manipulate, and understand information.
However, this sampling creates a loss in information as all values of x(f) not equal to
x(nTs) for any n are lost. This causes another question to arise: how much information is
lost? This is the question we will attempt to answer as we continue our learning.

-ATs -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts A4Ts t

Figure 1.14. Signal x sampled with sampling time T;

X ——>| Sample = Ty ——> X

TS‘

x l Xs

Figure 1.15. Representation of the loss in information between multiples of T

1.5.2 New Representation of Sampling

We can simply represent a sampled signal x; using xs(n) = x(nT;). However, there is a
slight problem in doing so. The representation is dependent on manually taking values
within the continuous function x(t), making it difficult to establish a direct relationship
between x and x;. One solution to find some function of x(t) that results in x;. One such
function is the multiplication of x with a Dirac Train.

xs(t) = x(t) x Ts i O(t —nTs) (1.44)

n=—o0
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This representation is quite easy to understand visually. By multiplying the two, you
essentially scale the Dirac Train by whatever value the corresponding x(t) is at times
nTs. This essentially modifies the Dirac Train to take on the shape of the continuous
signal x(t). Now, this resulting Modulated Dirac Train or x; is not exactly the same as a
sampled signal x; as spikes still go to infinity.

Since the only value that is relevant for §(t — nTs) is x(nTs),

xs(t) = Ts i x(nTs)o(t — nTs) (1.45)
or o
xs(t) =T Y, xs(n)d(t—nTy) (1.46)

Thus, we can construct x if given x5 and construct x; if given x; by using either of
the formulas established. Now, we will continue to use the Modulated Dirac Train x; to
represent xs. The reason for this is in their equivalence (proved in the next section). The
visual Dirac Train representation is shown below:

T T T T T T T T T
-ATs -3Ts -2Ts -Ts 0 Ts 2Ts 3Ts A4Ts t

Figure 1.16. Representation of the Modulated Dirac Train x;

1.5.3 DTFT and FT of sampled signals

The DTFT X; = F(x;) of the sampled signal x; and the FT X5 = F(x5) of the Dirac
sampled signal x; coincide and

X5(f) = Xs(f)- (1.47)

Why does this happen? Well, as we saw before, x5 and xs are essentially equivalent.
The only difference is that the spikes in x; are infinite in value, but that doesn’t make
a huge difference conceptually. Thus, the FT of two equivalent functions are equivalent.
The reason we take the DTFT of xs and the FT of x; is because x; is technically in the
continuous domain (a function of two continuous functions). However, that is not too
important. What is important is that you understand X;(f) = Xs(f).

So how do we prove that Xs(f) = Xs(f)? We can begin by first writing the equation
for X;, the FT of x;.

[e9)

X5(f) = /Oo {TS Z x(nTs)8(t —nT)e 27! af (1.48)

= n=—oo

Next we can exchange the order of summation and integration.
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X =T ¥ | [T ot - nte it ag (1.49)

n=—oo —®

Then, by multiplying by the delta function and integrating, you will recover the value at
the spikes.
(o) e}
X5(f) =T Y, x(nTe)e s =T, Y xg(n)e 2T = X,(f) (1.50)
n=—oo n=—oo
Note that for the last step, we used the fact that xs(n) = x(nTs) and the definition of
the DTFT.
So what is X;5? In order to answer this, we must first be aware of a simple property.
A multiplication in time of a signal is equal to a convolution in frequency. And when
we convolve a signal in time with some function, we multiply the spectrum of the signal
by the spectrum of that other function. Now since the signal x; is the represented as the
multiplication of x(t) with the Dirac Train,

x5(t) = x(t) x Ts i 5(t —nTy), (1.51)

n=—oo

the Fourier Transform of x5 or X; is equal to the convolution of X(f) and the FT of the
Dirac Train,

o

X5 = X x ]—“{TS Yo a(t— nTs)} (1.52)
n—=—oo

Now, remember that the Fourier Transform of a Dirac Train (Ts) is another Dirac Train

(fs). Because of this, we can represent X; as

X5 = X { f 5(t—kfs)} (1.53)

k=—c0
But since convolution is a linear operator, we can move the summation sign to the outside
of X.

X, = i X% 6(f — kfs) (1.54)

k=—o00

And since the inside of the summation is now a convolution between X and a shifted
delta, the spectrum of a sampled signal is the sum of shifted versions of the original
spectrum.

Xs(f) = Y X(f—kf) (155)

k=—o00

X()=Xs()= Y X(f k) (1.56)

k=—o0

So now that we know this, let’s revisit the question of "how much information do we
lose from sampling?” Well, we first know that the amount of information lost depends on
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how fast a signal changes. The faster a signal changes, the more information that is lost
given a constant sampling time. but to really understand how much information is lost,
we have to go into the frequency domain (where we can see how fast a signal changes).
Thus, the amount of information lost can be determined by the differences between the
spectra X and X;. Through our calculations and determination of a formula relating X
and X;, we can now move forward with better answering the question.

1.5.4 Spectrum Periodization

As we have seen, the spectrum of X is equal to a convolution of X with a Dirac Train. Thus,
we determine the effect of sampling by seeing the effect a convolution with a Dirac Train
has. We first start with the spectrum X. From there, we understand that a convolution
is equivalent to summing shifted copies of the spectrum X. Thus, the next step is to
duplicate X shift spectrum to each kf; where k represents all integers. From this resulting
spectrum, we can obtain the spectrum X by summing all the replicated spectra.

As seen, this resulting spectrum X; or X; looks rather different from the initial spec-
trum X;. Frequencies above fs/2 and below —f;/2 are lost as they are overtaken by the
repeated spectra. The frequencies around f;/2 and —f;/2 are also distorted by the sum-
mation with the tails of other replicated and shifted spectra. We refer to this distortion
and loss of information as Spectral Aliasing.

We can see that the smaller f; is, the more that the replicated spectra will distort/overlap
each other. Thus, if we choose a f; large enough (or T; large enough), we can avoid more
aliasing. Alternatively, if f; is sufficiently small, all of the information within the signal
could be lost through sever aliasing. Now, if we keep increasing fs, we will continue to
decrease aliasing. But can we completely remove it? Generally no, as most spectra of sig-
nals run across all frequencies. However, if the signal does not run for all frequencies, and
if it only has values in its spectrum between some value [-W /2, W /2], then that signal is
band-limited and aliasing can be completely removed. That is, aliasing can be completely
removed if X(f) =0 for f ¢ [-W /2, W/2] (bandwidth W). How do we remove aliasing?
By simply increasing the f;, the spectra will no longer overlap, removing aliasing. Thus,
we arrive at a theorem:

Theorem 3 Let x be a signal of bandwidth W. If the signal is sampled at a frequency fs > W we
have that

Xs(f) = Xs(f) = X(f) (1.57)

for all frequencies f € [-W /2, W /2].
With f; > W, we end up with no loss of information, and we can recover x completely
from x4 by using a low pass filter to remove all frequencies outside of [-W /2, W /2]. That

is, by retaining one of the replicated spectra and removing the rest with the low pass filter,
we now have the exact same spectrum as X.

1.6 Signal Reconstruction

A non-bandlimited signal is one where f; is below W. Thus, given the f;, sampling will
result in some sort of distortion. Now, we have answered how information is lost in sam-
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X(f) Xs(f)

-W/2 w/2 f -fs fs 2fs f

Figure 1.17. Representation of a sampled signal with bandwidth W and f; > W. As seen, none of
the replicated spectra overlap, meaning there is no aliasing.

pling, but that creates another question: How can we recover x from a non-bandlimited
signal with minimal lost information? One answer is Prefiltering.

1.6.1 Prefiltering

We can remove aliasing distortion by adjusting x before sampling to make it bandwidth fs.
What exactly does this mean? Well, by using a low pass filter, we can remove frequencies
above fs;/2 and below — f;/2, essentially creating a signal with bandwidth f;. This means
that frequencies in [—fs/2, fs/2] are retained. Now, there is still a loss of information
as frequencies outside that range are removed. However, those within the range are still
there to make up the bulk of the signal. This transformed x is notated as x ;.

We can transform x into xs; using a low pass filter. Specifically, we multiply the
spectrum X by the low pass filter Mg (f).

X5, (f) = X(f) N, (f) (1.58)
X M.(f) i}ﬂfs (HX(f)

As stated, the resulting signal xy; has bandwidth f; and can be sampled without
aliasing. This prefiltering can also be represented as a convolution in the time domain
between x and the iFT of the square pulse (fssinc(mfst)):

Xp, = x * fesinc(rfst) (1.59)

Xf, =xxh Xs
> h(t) = fesinc(mfst) Sample = T —

1.6.2 Low Pass Filter Recovery

Now when we use a low pass filter to recover x a discrete time signal xs, we can’t recover
a continuous signal (can’t go from discrete to continuous domain). However, we can
recover the continuous x from the Dirac Train representation of x;, or x;, as it is technically
continuous. This means that using a low pass filter to recover x on x; will actually get the
continuous signal x. Thus, this reconstruction is:

X = Xg * [fssinc(nfst)} (1.60)
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And in order to reconstruct x from x;, we can first change x; to x; by creating a modulated
Dirac Train. This reconstruction is shown:

xs(n) x5(t) x(t)

Al Ll

t f t t

Xs x5(t) . X =2x5%h
—>| Modulate Dirac train h(t) = fssine(mfst) ——m—>

Figure 1.18. Procedure for reconstruction of x from xs using a low pass filter. x; is first changed to
x5 by changing x; to a modulated Dirac Train

1.7 From the FT to the DFT

We typically use the DFT to approximate the FT. This is generally ok as long as T; is
sufficiently small and N large. Through the analysis of sampling, we can understand
what is lost in the approximation.

X —> FT > X
' |
sample = T; chop = =+ L
! {
Xs —————————————> DTFT > X
' i
chop = [0,NTy] sample = LI\}
' §
Xp DFT Xp

Figure 1.19. Diagram showcasing relationship between FT, DTFT, and DFT

1.7.1 First the FT to the DTFT

In order to go from the FT to the DFT, we first have to understand the transition between
the FT and the DTFT. The continuous signal x undergoes a FT to get continuous spectrum
X. The sampled signal x; undergoes a DTFT to get to spectrum X,. Both signals and
Spectra aren’t windowed or limited, but x only has values in intervals of Ts.

In order to get from x to x5, x must be sampled at some sampling time T;. The
equivalent to this in the frequency domain is a periodization (not a “chop”). Specifically:

N =20T) = X(f) = Y X(F—kf) (161)

k=—00
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As can be seen from the equation relating Xs and X, there is a replication, shift, and
sum of the X spectrum. Therefore, if the spectrum of X is bandlimited such as in this
example:

X(f) Xs(f)

-W/2 w/2 f -fs fs 2f; f
Figure 1.20. Replication and summation of a bandlimited sample when going from X to X

then there is no loss in information when approximating. However, generally signals are
not bandlimited, and some distortion is expected. In the case of a non-bandlimited signal,
we use a low pass filter, denoted & in the time domain and H in the frequency domain, to
reduce the loss in information. Specifically, we use an H that retains frequencies between
fs/2 and —fs/2, reducing the distortion to just a smoothing of the signal. This smoothing
is due to the removal of frequencies above f;/2 and below —f;/2. However this resulting
signal does not suffer from distortion caused by summation of overlapping replicated
spectra within X;.

To use this filter H in a process called prefiltering, we multiply X by H. Equivalently,
this is a convolution between x and & (x x h). This resulting signal after the filtering is x¢
and its spectrum is X¢. The equations are denoted:

Xf=HX <= xp=uxxh (1.62)

Also note that if H is not a perfect filter, there could be some additional distortion.
Thus, after taking into account prefiltering, the original diagram can be altered. The
top portion representing the relationship between FI and DTFT is shown:

X ———> FT X
| l
conv. = x*h filter = HX
l l
Yf —————————————> FT > Xy
l |
sample = T period = =+ f;
l l
Xy ————————————————> DTFT X

Figure 1.21. Relationship between FT and DTFT with prefiltering

Note that filtering in the frequency domain induces sampling in the time domain. And
that sampling in the time domain induces periodization in the frequency domain.
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1.7.2 From DTFT to DFT

Recall from the beginning of the semester that the discretized version of x is a signal with
information only at intervals of Ts (similar to xs) and is restricted in a window between
values 0 and N — 1. Let us denote this discrete signal as x;. Since we know how to
get from x to x,, if we can determine how to get from x5 to x;, we will understand the
relationship between x and x,; fully. However, how exactly do we get from xs to x;? The
answer is in the differences between x; and x;. xs has no restriction in time as it is not
windowed. However, x;. Thus, if we can window or restrict x; to values between 0 and
N — 1, then we can get x,.

So how do we window? Easy: we can use the same method we used in prefiltering.
Except this time, we do it in the time domain. Define the window wy as:

wy(n) =0  forall n¢ [0,N—1] (1.63)

and the windowed signal xy, as:

xw(n) = xs(n), forall n € [0,N —1] (1.64)

By multiplying that window with signal xs, we will get x;. Equivalently, a multipli-
cation in the time domain is a convolution in the frequency domain. Thus, knowing that
the FT of the window wy is Wy,

Xo(n) = x(n) x wy(n) (1.65)

and

Xuw(f) = Xs(f) * WN(f) (1.66)

So is x and xd the same? The answer is no. xy still uses time as an input. That is,
the signal is x (t) where t is in seconds. However, the only times with information are at
intervals of Ts. x; on the other hand takes in some integer between [0, N — 1] as an input.
So how do we correct this? Well, we can first start by looking at the frequency domains
of xy and xs. Taking the DTFT of xy, we get:

N-1 '
Xo(f) =Ts Y x(n)e /2/nT: (1.67)
n=0
and DFT of x; is
N-1 ‘
Xa(f) = Y xa(n)e 2N (1.68)
n=0

Comparing expressions, we get:

Xu (I’\CI fs) = X, (k) (1.69)

From this, we can see that there is a need for sampling in the frequency domain.
As stated before, this leads to periodization in the opposite domain (time). Thus, the
relationship between the DTFT and the DFT can be shown as below:
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Xs ————————————————> DTFT X

l l
window = xwy conv = X*W

l l

Xy ————————————————> DTFT E—— )

l l
periodize = N sample = f;/N
l l
Xj —————————————> DFT X4

Figure 1.22. Relationship between DTFT and DFT with windowing

1.8 Conclusion

From all the work done, we’ve come to some interesting and important conclusions. First,
we saw how sampling, though important in reading in information, leads to a loss in
information. We then analyzed what exactly was lost, and determined that the lost rised
from the periodization of a signal’s spectrum. From there we further analyzed the process,
and came with a complete relationship between FI, DTFT, and DFT. Additionally, we
determined how to get from x to xs and ultimately to x,.
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