
Signal and Information Processing

Alejandro Ribeiro

April 5, 2016

Contents

1 Image Processing 3
1.1 Signal Representation . 3
1.2 Images as Signals . 4

1.2.1 Deltas in Two Dimensions . 5
1.2.2 Rectangular Pulses . 5
1.2.3 Gaussian Pulses . 6
1.2.4 Inner Product . 7
1.2.5 Norm and Energy . 8

1.3 2D DFT . 9
1.3.1 Definition . 9
1.3.2 Relating the 2D DFT to the 1D DFT 9
1.3.3 2D Discrete Complex Exponentials 9
1.3.4 2D DFT as Inner Product . 10

1.4 2D DFT of Images . 10
1.5 Properties . 11

1.5.1 Periodicity of Complex Exponentials 11
1.5.2 Periodicity of the 2D DFT . 11
1.5.3 Orthogonality of complex exponentials 11

1.6 2D iDFT . 12
1.6.1 Definition . 12
1.6.2 iDFT is inverse of DFT . 12
1.6.3 Image Reconstruction . 12

1.7 Properties of the 2D DFT . 13
1.7.1 Energy Conservation - Parseval’s Theorem 13
1.7.2 Image Reconstruction Energy . 14
1.7.3 2D Filtering . 15

1.8 DCT . 16
1.8.1 Motivation for DCT and iDCT . 16
1.8.2 iDCT Definition . 17
1.8.3 DCT . 17
1.8.4 The Even Extension of the iDCT . 18
1.8.5 DCT Basis . 18
1.8.6 iDCT is the Inverse of the DCT . 19

1.9 2D Discrete Cosine Transform . 19

I

CONTENTS 1

1.9.1 The 2D DCT as an Inner Product . 20
1.9.2 2D iDCT . 20
1.9.3 The DCT is the Inverse of the DCT (Again!) 21

1.10 JPEG Image Compression . 21

2 CONTENTS

Chapter 1

Image Processing

1.1 Signal Representation

So far, we have been working with 1D signals in time, x(n), indexed by a single time index
n. These signals have been represented in 2 ways, as sums of shifted deltas, and as sums
of oscillations.
A sum of shifted deltas

x(n) =
N

∑
k=1

x(k)δ(k− n) (1.1)

is the representation of the signal in the time domain, where x(k)δ(k− n) is a single value
of the signal at time k. Processing the values in the time signal one time step at a time is
a very intuitive way of representing the signal, but a frequency domain representation is
often more useful.
A sum of oscillations

x(n) =
N

∑
k=1

X(k)ej2πkn/N (1.2)

is the representation in the frequency domain. With this representation, we can filter noise
and classify sounds, operations we cannot do in the time domain.

Time and DFT representations are not the only ways we can represent signals, and 1D
signals in time are not the only signals we can work with. For example

• 2D images with multidimensional DFTs or Discrete Cosine Transforms (DCT)

• Stochastic processes with Principal Component Analysis(PCA)

• Graph signal processing

Whenever we change how we represent a signal, we say that we change the basis.
In linear algebra, this is changing the basis vectors used to span all possible signals in
a vector space. With the right basis, we can perform operations and visualizations not
previously possible.

3

4 CHAPTER 1. IMAGE PROCESSING

(a) Black and white image representation (b) Color image representation

0 8 16 24 32
0

4

8

12

16

index n = 0, 1, . . . N = 32

in
de

x
m

=
0,

1,
..

.M
=

16

0 8 16 24 32 0
4

8
12

16
0

0.5

1

Figure 1.2: Two dimensional M× N signal

1.2 Images as Signals

Although in 2D, images are still signals and many of our 1D signal processing techniques
can be applied with some modifications. Images are represented as a grid of pixels, each
containing values representing color and brightness.

For a black and white image like in 1.1a, each pixel contains a single value, repre-
senting the luminescence of the point. For a color image like in 1.1b, more information
about the image has to be represented. Each pixel contains multiple channels for different
colors. For example, in a RGB (red, green, blue) image, each pixel is represented by 3
channels, while for a CMYK (cyan, magenta, yellow, black) image, each pixel is repre-
sented by 4 channels. Each of these channels can also form a 2D image on their own (but
with a single color). Therefore, the more complex colored image is really just made up
of multiple images, each representing a color channel. If we disregard the color and just
focus on the luminescence, we see that these channels are no different from black and
white images.

Although images are in 2D, they can be represented as signals with two sets of indices
instead of one, as seen in figure 1.2

This 2D discrete signal is indexed by (m, n)

m = 0, 1, . . . , M− 1 = [0, M− 1] (1.3)

n = 0, 1, . . . , N − 1 = [0, N − 1] (1.4)

Formally, the signal is defined as a function that maps pairs of indices to real values.

x : [0, M− 1]× [0 : N − 1]→ R

1.2. IMAGES AS SIGNALS 5

0 8 16 24 32
0

4

8

12

16

index n = 0, 1, . . . N = 32

in
de

x
m

=
0,

1,
..

.M
=

16

Real part

0 8 16 24 32
0

4

8

12

16

index n = 0, 1, . . . N = 32

in
de

x
m

=
0,

1,
..

.M
=

16

Imaginary part

Figure 1.3: Complex 2D signals

0 1 2 3 0
1

2
3

0

0.5

1

x(n, m) = δ(n, m)

0 1 2 3
0

1

2

3

x(n, m) = δ(n, m)

Figure 1.4: 2D Delta function

At indices m and n, the signal x has the value x(m, n).
We can also have complex signals as well, with x mapping to complex values.

x : [0, M− 1]× [0 : N − 1]→ C

Having complex 2D signals allows us to define and work with two dimensional DFTs,
which involve 2D complex exponentials, seen in figure 1.3

We will now define 2D analogues of common 1D signals we have worked with before

1.2.1 Deltas in Two Dimensions

A 2D delta function δ(m, n) is simply a spike at (m, n) = 0, similar to how a 1D delta
function δn is a spike at n = 0.

δ(m, n) =
{

1 if m = n = 0
0 else

(1.5)

Similarly, a shifted delta δ(m−m0, n− n0) has a spike at (m, n) = (m0, n0).

δ(m−m0, n− n0) =

{
1 if (m, n) = (m0, n0)
0 else

(1.6)

1.2.2 Rectangular Pulses

A rectangular pulse with N rows and N columns, uM0 N0 is defined as

uM0 N0(m, n) =
{

1 if m < M0, n < N0
0 else

(1.7)

6 CHAPTER 1. IMAGE PROCESSING

0 1 2 3 4 5 6 7
0

1

2

3

m

n

x(n, m) = u24(n, m)

Figure 1.5: 2D Rectangular Pulse

0 4 8 12 16
0

4

8

12

16

Gaussian pulse, mean µ = 8, variance σ2 = 16

0 4 8 12 16 0
4

8
12

16
0

0.5

1

Gaussian pulse, mean µ = 8, variance σ2 = 1

Figure 1.6: 2D Gaussian Pulse

We can also define square pulses when M0 = N0 as uN0 N0 = uN0 , as well as shifted
pulses uM0 N0(m−m0, n− n0), which moves the bottom-left corner of the pulse to (m0, n0).
However, to ensure that the entire pulse remains inside the M× N signal, we must have
m0 < M−M0 and n0 < N − N0.

1.2.3 Gaussian Pulses

A symmetric 2D gaussian pulse with mean µ and variance σ2 is defined as

gµσ(m, n) =
1

2πσ2 exp
[
−m− µ

2σ2 −
n− µ

2σ2

]
(1.8)

This gives us a bell-shaped pulse centered at (µ, µ), with 2D symmetry. The variance,
σ2, controls how fast the pulse decays as we move away from the center.

We can also create skewed gaussian pulses by adding a covariance matrix. It is easier
to represent the equation for a generic gaussian pulse using matrix algebra. Therefore, we
define the following matrices

• Coordinate Vector, n = [m, n]T , represents the location (m, n).

• Center vector, n = [µ1, µ2]
T , represents the center coordinates (µ1, µ2)

• Covariance matrix, C =

(
σ2

11 σ12
σ12 σ2

22

)
The convariance matrix controls how the gaussian pulse is stretched horizontally or

vertically, determined by the value of the variances along the diagonal.

1.2. IMAGES AS SIGNALS 7

0 4 8 12 16
0

4

8

12

16

0 4 8 12 16 0
4

8
12

16
0

0.5

1

Figure 1.7: Gaussian pulse skewed in m direction

0 4 8 12 16
0

4

8

12

16

0 4 8 12 16 0
4

8
12

16
0

0.5

1

Figure 1.8: Gaussian pulse skewed in m direction

The equation for a 2D gaussian pulse can now be expressed with matrix algebra as

gµσ(n, m) =
1

2πσ2 exp
[
−1

2
(n− ¯)TC−1(n− ¯)

]
(1.9)

With C =

(
16 0
0 4

)
, we have a gaussian pulse in figure 1.7 skewed in the m direction.

Meanwhile, with C =

(
4 0
0 16

)
, we have a gaussian pulse in figure 1.8 skewed in the n

direction. Notice that σ2
11 in the covarience matrix determines the spread along the m axis,

while σ2
22 determines the spread along the n axis. Therefore, σ2

11 > σ2
22 results in greater

spread along m than n and a skew in the m direction.

1.2.4 Inner Product

The inner product, which we have been using on 1D signals, can also be modified to work
on 2D signals. We define the inner product in 2D as

〈x, y〉 =
M−1

∑
m=0

N−1

∑
n=0

x(m, n)y∗(m, n) (1.10)

The inner product has the same properties in 2D as it does in 1D. Linearity, 〈x, y+ z〉 =
〈x, y〉+ 〈x, z〉, and reversal of order, 〈y, x〉 = 〈x, y〉∗, both behave the same way.

The 2D inner product can also be interpreted in a similar way to the 1D inner product.
A positive result represents positive correlation, and the two signals tend to be similar. A
negative result indicates that the two signals tend to be opposites of each other, and a 0
result indicates that the two signals are orthogonal.

For example, the inner product of 2 rectangular pulses, as seen in figure 1.9

8 CHAPTER 1. IMAGE PROCESSING

0 1 2 3 4 5 6 7
0

1

2

3

m

n

Inner product of two square pulses

Figure 1.9: Inner product of rectangular pulses

is area where both pulses are not null, and therefore the sum of the overlap area of the
2 rectangles.

1.2.5 Norm and Energy

The norm of a 2D signal is defined as

||x|| =
[

M−1

∑
m=0

N−1

∑
n=0
|x(m, n)|2

]1/2

(1.11)

and the energy of a 2D signal is just the square of the norm

||x||2 =
M−1

∑
m=0

N−1

∑
n=0
|x(m, n)|2 =

M−1

∑
m=0

N−1

∑
n=0
|xR(m, n)|2 +

M−1

∑
m=0

N−1

∑
n=0
|xI(m, n)|2 (1.12)

Now that we have the definition of an inner product in 2D, we can also write the
energy as an inner product, ||x||2 = 〈x, x〉.

As an example, assume we have a rectangular pulse uM0 N0 with N0 rows and M0
columns, as seen in figure 1.5

Using the definition for energy

|| uM0 N0 ||
2 =

M−1

∑
m=0

N−1

∑
n=0
| uM0 N0 |

2 (1.13)

=
M0−1

∑
m=0

N0−1

∑
n=0

12 (1.14)

= M0N0 (1.15)

We see that the energy of a rectangular pulse is equal to the number of pixels (M0N0)
in the pulse. With this information, we also see that we need to multiply a square pulse
by 1/

√
M0N0 in order to normalize its energy.

1.3. 2D DFT 9

1.3 2D DFT

1.3.1 Definition

A 2D signal x is defined as having N rows and M columns. For easier computation, we
restrict our attention to the case where N = M. We call signals where N = M square
signals. The definition of the 2D DFT where N = M is:

1
N

N−1

∑
m=0

N−1

∑
n=0

x(m, n)e−j2π(km+ln)/N (1.16)

Our notation is the same as in the 1D case. We write the 2D DFT of x as X = F (x). We
refer to k as the horizontal frequency and l as the vertical frequency.

1.3.2 Relating the 2D DFT to the 1D DFT

The 2D DFT may look complex in formal notation - but it is really just an extension of
the vanilla 1D DFT. To see this in action we separate the summation terms of the 2D DFT
equation and regroup the factors to get:

X(k, l) :=
1√
N

N−1

∑
m=0

[
1√
N

N−1

∑
n=0

x(m, n)e−j2πln/N

]
e−j2πkm/N (1.17)

Say we fix the outer value of m to a single value. Then the term in the parentheses is just
the 1D DFT of x(m f ixed, ·). The 2D DFT can be seen as the 1D DFT of a set of 1D DFTs.
We say that this is the column-wise DFT of the row-wise DFTs - or the row-wise DFT of
the column-wise DFTs (summation is order invariant so both are correct).

1.3.3 2D Discrete Complex Exponentials

The DFT is just a method to determine how complex exponentials of different frequencies
can be used to compose a signal. This of course extends to the 2D case, except for now the
complex exponentials are two dimensional. A 2D complex exponential has two frequency
parameters: horizontal frequency k and vertical frequency l. The definition is:

eklN(m, n) =
1
N

ej2π(km+ln)/N =
1√
N

ej2π(km/N) 1√
N

ej2π(ln/N) = ekN(m)elN(n) (1.18)

The 2D complex exponential is shown to be the product of two 1D complex exponen-
tials with frequencies k and l respectively.

10 CHAPTER 1. IMAGE PROCESSING

1.3.4 2D DFT as Inner Product

As in the 1D case, the 2D DFT can be written in inner product form.

We first rewrite the 2D DFT equation using the definition of the 2D complex exponential.

X(k, l) =
N−1

∑
m=0

N−1

∑
n=0

x(m, n)e(−k)(−l)N(m, n) =
N−1

∑
m=0

N−1

∑
n=0

x(m, n)e∗klN(m, n) (1.19)

We can use the definition of the inner product to say that:

X(k, l) = 〈x, eklN〉 (1.20)

Each element of the DFT X(k, l) represents exactly how much of x is an oscillation of
horizontal frequency k and vertical frequency l.

1.4 2D DFT of Images

Images are defined as two-dimensional grids (matrices) of pixels where each pixel takes
on a color. It is immediately clear that images are the perfect discrete 2D signal to analyze
with the 2D DFT. When we take the 2D DFT of an image, we always split the image into
patches and take the 2D DFT of each patch. Why do we do this? The first reason is
computational - it is much more efficient to split the image up and take the DFT of each
patch than to take the DFT of the whole image. The more important reason is we actually
get more information by looking at small patches. For instance, we can often determine
whether a patch is part of the background or main content of the image by analyzing it’s
2D DFT.

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 1.10: Lena and 2D DFT of patches

We can see in the 2D DFT of the image above that the background of the image has
DFT patches with low variability. In visual terms, low variability means the DFT coeffi-
cients make one clean shape - e.g. a single vertical or diagonal line. Likewise, the DFT

1.5. PROPERTIES 11

coefficients of the image subject have high variability. In other words, the DFT patches
representing the subject are messy and have no clear shape. This is a very useful insight
and demonstrates why we separate an image into patches before taking the 2D DFT; we
can tell visually from the 2D DFT what is likely content and what is likely background.
This insight would not be possible if we took the DFT of the complete image.

1.5 Properties

1.5.1 Periodicity of Complex Exponentials

For a 2D square signal of dimension N × N, there are N2 distinct 2D complex exponen-
tials. This extends from the 1D case. Horizontal frequencies k and k + N are equivalent.
Likewise, vertical frequencies l and l + N are equivalent. Furthermore, 2D complex expo-
nential are conjugate symmetric.

e(−k)(−l)N ≡ e∗klN (1.21)

1.5.2 Periodicity of the 2D DFT

In the previous subsection we asserted that 2D complex exponentials are periodic. We use
this periodicity to establish the periodicity of the 2D DFT. The 2D DFT is shown below to
be N periodic in both the horizontal and vertical directions. Thus, if we have N × N ad-
jacent frequencies, we have a completely defined frequency response. The two canonical
sets we will use most often are [0, N − 1]× [0, N − 1] and [−N/2, N/2]× [−N/2, N/2].

X(k + N, l) =
N−1

∑
m=0

N−1

∑
n=0

x(m, n)e∗(k+N)lN(m, n) =
N−1

∑
m=0

N−1

∑
n=0

x(m, n)e∗klN(m, n) = X(k, l)

(1.22)

1.5.3 Orthogonality of complex exponentials

We assert that complex exponentials with non-equivalent frequencies are orthogonal. We
demonstrate orthogonality using the inner product and showing it is zero in all cases
accept when the frequencies of the two complex exponentials are the same.

〈eklN , epqN〉 =
1

N2

N−1

∑
m=0

N−1

∑
n=0

ej2πkm+ln)/N
(

ej2π(k̃m+l̃n)/N)
)∗

(1.23)

=
1
N

N−1

∑
m=0

ej2πkm/N
(

ej2πk̃m/N
)∗ 1

N

N−1

∑
n=0

ej2πln/N
(

ej2π l̃n/N
)∗

(1.24)

The first grouping is a delta of the horizontal frequencies. The second grouping is a
delta of horizontal groupings. Therefore we have expression below - the delta functions

12 CHAPTER 1. IMAGE PROCESSING

give that complex exponentials with non-equivalent frequencies are orthogonal.

〈eklN , ek̃l̃N〉 = δ(k− k̃)δ(l − l̃) (1.25)

1.6 2D iDFT

1.6.1 Definition

Given a Fourier transform X, the inverse (i)DFT is x = F−1(X). We demonstrated before
that the 2D DFT is N periodic. This property applies to the 2D iDFT as well. Any
summation over N × N adjacent frequencies will produce the 2D iDFT.

x(m, n) =
N−1

∑
m=0

N−1

∑
n=0

X(k, l)ej2π(km+ln)/N =
N−1

∑
m=0

N−1

∑
n=0

X(k, l)eklN(k, l) (1.26)

We can also use the inner product form we derived for the 2D DFT. In this case we
take the inner product of the DFT with the complex exponential of corresponding negative
frequencies so the mathematical expression evaluates.

x(m, n) = 〈X, e(−k)(−l)N〉 (1.27)

1.6.2 iDFT is inverse of DFT

For the complete proof refer to the slides. The proof that the iDFT is the inverse of the
DFT is verbose and full of algebra and calculus. Really, this proves something that should
be incredibly intuitive: the iDFT is the inverse of the DFT. If take the inverse DFT of the
DFT of a 2D signal, we have recovered the original signal.

x = F−1(F (x)) (1.28)

1.6.3 Image Reconstruction

As described earlier, we split an image into patches before taking the 2D DFT of each
patch. To recover the exact original image, we take the 2D iDFT of the 2D DFT of each
patch and stitch them together like a quilt.

Let’s say we take the same approach to compression we used in the 1D case. Recall that
in 1D we took the DFT of a signal and kept the k largest coefficients. By performing
the iDFT using only the k largest coefficients, we got an output signal with almost all of
the energy of the original signal. Put colloquially, we were able to compress the original
signal, yielding a new nearly identical signal while storing a fraction of the information.
You can see how this is useful to all telecommunications.

Compression becomes more complicated in the case of images because the output is de-
coded visually. Even if the compressed signal has nearly the same energy and all of the

1.7. PROPERTIES OF THE 2D DFT 13

information as the original signal, if someone can visually register a difference none of
that matters. The major drawback to using the DFT for image compression is that the DFT
produces BORDER EFFECTS. If we view the image signal as a quilt, we want to sew the
compressed patches back together without seeing the seams. This is not possible with the
DFT unless we use all of the coefficients - but then we haven’t compressed. The Discrete
Cosine Transform described in a later section addresses this issue.

50 100 150 200

50

100

150

200

Figure 1.11: DFT Compressed Lena with Border Effects

1.7 Properties of the 2D DFT

All properties of 1D DFTs have corresponding versions for 2D DFTs. This includes lin-
earity, conjugate symmetry, and the modulation shift duality. The two most important
properties, energy conservation and the convolution/multiplication duality, will be dis-
cussed in further detail below.

1.7.1 Energy Conservation - Parseval’s Theorem

The energies of a signal and its 2D DFT X = F (x) are the same. Refer to the lecture slides
for a complete proof.

N−1

∑
m=0

N−1

∑
n=0
|x(m, n)|2 = ‖x‖2 = ‖X‖2 =

N−1

∑
k=0

N−1

∑
l=0
|X(k, l)|2 (1.29)

This is exactly the same as in 1D case. Because the 2D DFT is periodic, any set of adjacent
frequencies will satisfy this theorem.

‖X‖2 =
M−1

∑
k=0

N−1

∑
l=0
|X(k, l)|2 =

M/2

∑
k=−M/2+1

N/2

∑
l=−N/2+1

|X(k, l)|2 (1.30)

14 CHAPTER 1. IMAGE PROCESSING

1.7.2 Image Reconstruction Energy

When we reconstruct an image using all of its DFT coefficients, the recovered image has
one hundred percent of the original image energy. When we reconstruct an image using
less coefficients (i.e. k coefficients), the image will contain less energy than the original
image. This energy loss is known as the reconstruction error and is an excellent metric of
how similar the compressed image is to the original image.

An example is shown below. Separate the original image into 16× 16 patches. Compute
the 2D DFT of each patch. Now compute the iDFT of each patch using only 4 coefficients.
The new image contains sixty eight percent of the original image. The reconstruction error
is 32%.

50 100 150 200

50

100

150

200

Figure 1.12: DFT Compressed Lena with 32% Reconstruction Error

1.7. PROPERTIES OF THE 2D DFT 15

1.7.3 2D Filtering

As in the 1D case, we can apply filters to 2D signals to control output behavior. The
fundamental operation of filters is the convolution. Why the convolution is necessary to
design filters won’t be discussed in this course - take it on faith that convolutions and
filters go hand in hand.

Say we have have an 2D input signal of dimension N × N and 2D filter of dimension
M×M. When we say the filter has dimension M×M, we mean that the filter has value
zero outside of the bounds: [0, M− 1]× [0, M− 1]. The formula for the 2D convolution of
the signal and filter is:

y(m, n) =
N

∑
p=0

N

∑
q=0

x(p, q)h(m− p, n− q) (1.31)

The result of hitting the N×N signal with the M×M filter is an N + M×N + M output.

x
h

y = x ∗ h

M + NNM

Figure 1.13: Result of Input Signal ’hit’ by Filter

At this point we should be satisfied, but it’s awkward to have a system where the inputs
have dimensions N × N and M×M with output N + M× N + M. For the sake of com-
putation, it would be much easier to deal with a system where the inputs and output have
the same dimension. All we have to do to achieve this is pad our input signals to both
have dimension N + M× N + M. Now the inputs and output of the system will all have
dimension N + M× N + M.

To pad a signal, create a new signal that retains the values of the original signal in the
original bounds and has zeros elsewhere. In the figure below, the smaller squares rep-
resent the original bounds while the larger squares are the bounds of the new padded
signals. The area between the small square and large square - i.e. the padding - contains
zeros. Notice that both padded signals now have dimension N + M× N + M.

M + NN M + NM

Figure 1.14: Padded signals

16 CHAPTER 1. IMAGE PROCESSING

Now we get to the convolution theorem. Convolution in space is multiplication in
frequency. Multiplication in space is convolution in frequency. To apply a filter in
space we take the convolution. It is equivalent, and far easier computationally, to apply
the filter in frequency by multiplying the DFT of the input signal with the DFT of the
filter.

y = x̄ ∗ h̄ ⇐⇒ Y = X̄H̄ (1.32)

As always you should be asking what the point of all this is. The answer is very simple:
we design our filters in the frequency domain and implement them in space. In plain
English, it’s much easier to design filters by looking at Fourier transforms than it is looking
at input signals. Once we have the filter designed, implementing it in space is trivial. We
want to make our lives as easy as possible by exploiting the frequency domain for the
harder task of designing the filter. An excellent graphic demonstrating this is shown
below:

x̄ h̄ y = x̄ ∗ h̄

X̄ H̄ Y = H̄X̄

F F−1 F F−1 F F−1

Figure 1.15: Design in Frequency, Implement in Space

The only trick is that we padded our inputs x and h. In the notation, x̄ and h̄ are the
padded versions of x and h. Because x ∗ h and x̄ ∗ h̄ are equivalent, we can say Ȳ ≈ HX.

There are a lot of really cool application to image filtering including every effect on Insta-
gram. Things like noise filtering, image sharpening, edge detection, and image smoothing
are all implemented with filters. Refer to the slides for more detail.

1.8 DCT

1.8.1 Motivation for DCT and iDCT

The major issue with using the DFT for image compression is border effects. Remember
that when we split an image into patches, take the DFT of each patch, and reconstruct the
image using only k2 coefficients for each patch we are guaranteed to see border effects
(unless k2 = N2). This happens because of the periodicity of the DFT. Remember that for
a discrete signal x we say that the DFT is periodic: X(i) = X(i + N). The issue is that
there’s a big jump based on the original signal. X(i) is most likely very different from
X(i + N − 1). If we think of the original signal as being periodic, there is a big difference
between the first value we sample and the last value we sample in [0, N − 1]× [0, N − 1].

1.8. DCT 17

N − 1 t

x(n)

-N N 2N t

x̃(n)

Figure 1.16: Periodic Extension of Input Signal

1.8.2 iDCT Definition

Luckily, there’s a transform that is excellent for eliminating border effects called the in-
verse discrete cosine transform (iDCT). Notice that we have replaced the complex expo-
nential we would expect to see in the iDFT with a cosine. There are no complex numbers
involved in the iDCT. The original signal x is still represented as a sum of oscillations, but
the oscillations are cosines which help avoid border discontinuities.

x̃(n) :=
1√
N

X(0) +

√
2
N

N−1

∑
k=1

X(k) cos
[

πk(2n + 1)
2N

]
(1.33)

The iDCT yields an even extension. Put in plain english, the iDCT returns a version of
the original signal that is symmetric around discontinuities. The figure below should be
helpful. Refer to the slides for the complete derivation - it is very involved.

N − 1 t

x(n)

-N N 2N t

x̃(n)

Figure 1.17: Even Extension of the iDCT

1.8.3 DCT

Of course we need a transform to put the original signal into a domain that is recoverable
by the iDCT. This is of course the DCT. The definition is below. It assumes a real signal x
and the DCT output X is also real. Notice that the normalization constants for X(0) and
X(k 6= 0) are different. We write the DCT in parts to fully describe this behavior.

X(0) :=
1√
N

N−1

∑
n=0

x(n) cos
[

π0(2n + 1)
2N

]
X(k) :=

√
2
N

N−1

∑
n=0

x(n) cos
[

πk(2n + 1)
2N

]
(1.34)

Note that the iDCT is an even function. If we put a mirror at N− 1/2, we can see this.
Specifically, let’s look at the samples at n = N − 1 and n = N.

18 CHAPTER 1. IMAGE PROCESSING

First, the sample at n = N − 1:

x̃(N − 1) :=
1√
N

X(0) +

√
2
N

N−1

∑
k=1

X(k) cos
[

πk(N − 1 + 1/2)
N

]
(1.35)

=
1√
N

X(0) +

√
2
N

N−1

∑
k=1

X(k) cos
[

πk +
πk(−1/2)

N

]
(1.36)

Now, let’s look at n = N:

x̃(N) :=
1√
N

X(0) +

√
2
N

N−1

∑
k=1

X(k) cos
[

πk(N + 1/2)
N

]
(1.37)

=
1√
N

X(0) +

√
2
N

N−1

∑
k=1

X(k) cos
[

πk +
πk(1/2)

N

]
(1.38)

This process can be extended for any sample in the signal, as shown in the lecture
slides. This is omitted here for the sake of concision. It is helpful to see this represented
mathematically, although the visual representation in Figure ?? may be more intuitive.

1.8.4 The Even Extension of the iDCT

By now, we have seen that the iDCT is an even function due to the fact that its constituent
parts, cosines, are even functions. We have seen empirically that the DCT reduces border
effects in image reconstruction. Now we will see why.

We can formalize the iDCT’s symmetry argument as follows:

x̃
[

N + (n− 1)
]
= x

[
N − n

]
(1.39)

To better visualize the symmetry, we can write this as:

x̃
[
(N − 1/2) + (n− 1/2)

]
= x

[
(N − 1/2)− (n− 1/2)

]
(1.40)

What does this representation mean? It means that at the borders of the image, we
no longer have the discontinuities that we have with the DFT. This is because the iDCT
is even, whereas the DFT is not. This can be seen in Figure 1.17. With regards to im-
age processing, we will see soon that this lets us avoid the nasty border effects that we
encountered with the DFT.

1.8.5 DCT Basis

Let’s return to the definition of the DCT, as defined above. Note that, unlike the DFT, there
are no complex numbers involved in this transform. Both the signal and its transform are
real. This will allow us to avoid the headaches associated with complex numbers that we
have encountered thus far with the DFT.

Let’s continue to compare the DCT with the DFT. We saw that the basis for the DFT is
the complex exponential ekN . That is, the DFT is the inner product of a signal with this

1.9. 2D DISCRETE COSINE TRANSFORM 19

basis. We can write the DCT in the same way! However, the basis for the DCT is not the
complex exponential ekN , but rather ckN , such that

c0N(n) :=
1√
N

ckN(n) :=

√
2
N

cos
[

πk(2n + 1)
2N

]
(1.41)

We can apply all of our usual intuition to this representation. That is, X(k) tells us
how much x(n) resembles a discrete cosine oscillation with frequency k.

1.8.6 iDCT is the Inverse of the DCT

As the name would imply, the iDCT is, in fact, the inverse of the DCT. We won’t go into the
proof here, as you have already seen it several times with the DFT and other transforms
we have covered up to now. That is,

x̃ ≡ C−1(X) ≡ C−1(C(x)) ≡ x (1.42)

As we would imagine, Parseval’s theorm also holds, which allows us to perform the
reconstructions and error calculations that we have seen with the DFT.

1.9 2D Discrete Cosine Transform

Although it is helpful to conceptualize the DCT in 1D as an analog to the DFT, we will
never be using the 1D DCT. We will only be using the 2D DCT, due to its superior per-
formance in image processing. Our process of developing the 2D DCT will be similar to
when we developed the 2D DFT.

Recall the definition of the 1D DCT:

X(0) :=
1√
N

N−1

∑
n=0

x(n) cos
[

π0(2n + 1)
2N

]
X(k) :=

√
2
N

N−1

∑
n=0

x(n) cos
[

πk(2n + 1)
2N

]
(1.43)

In order to make the notation cleaner, let’s introduce normalization constants ν0 =
1/
√

2 and νk =
√

2 for k 6= 0. This is just to make the notation more compact when we
move to 2D and have a heftier formula. Our 1D DCT can then be written as

X(k) :=
νk√
N

N−1

∑
n=0

x(n) cos
[

πk(2n + 1)
2N

]
(1.44)

We can now proceed to define the 2D DFT as we did the 2D DFT. Most intuitively, that
is as the vertical DCT of the horizontal DCTs (or vice versa). As a nested sum, this is

X(k, l) :=
νkνl
N

N−1

∑
n=0

[
N−1

∑
m=0

x(m, n) cos
[

πk(2m + 1)
2N

]]
cos

[
πl(2n + 1)

2N

]
(1.45)

20 CHAPTER 1. IMAGE PROCESSING

More commonly, we write the 2D DCT as

X(k, l) :=
νkνl
N

N−1

∑
n=0

N−1

∑
m=0

x(m, n) cos
[

π k(2m + 1)
2N

]
cos

[
πl(2n + 1)

2N

]
(1.46)

Again, these normalization constants are the same as before, and are only to make the
notation more concise. Our interpretation of the 2D DCT with respect to the 1D DCT is
the same as our interpretation of the 2D DFT with respect to the 1D DFT. That is, it is a
two dimensional extension obtained by taking the row-wise transforms of the transforms
of the columns (or vice versa). Although the formula is a bit cumbersome, this should not
be anything too extraordinary at this point.

1.9.1 The 2D DCT as an Inner Product

As we wrote the 2D DCT as an inner product with a 2D complex exponential, we can also
write the 2D DCT as an inner product. To do this, we define a 2D discrete cosine with
horizontal frequency k and vertical frequency l as follows

cklN(n, m) :=
ck√
N

cos
[

πk(2m + 1)
2N

]
cl√
N

cos
[

πl(2n + 1)
2N

]
(1.47)

Now we can rewrite the 2D DCT as an inner product with this discrete cosine. That is:

X(k, l) = 〈x, cklN〉 (1.48)

This inner product representation carries with it its usual interpretation. That is, it
tells us how similar a signal (image) is to a cosine oscillation with horizontal frequency k
and vertical frequency l. Note that orthonormality is retained as well. That is,

cklN(n, m) = ckNclN (1.49)

1.9.2 2D iDCT

Before we construct the 2D iDCT, let’s return to our definition of the 1D iDCT.

x̃(n) :=
1√
N

X(0) +

√
2
N

N−1

∑
k=1

X(k) cos
[

πk(2n + 1)
2N

]
(1.50)

Now, let’s introduce our normalization constants again for the sake of concision. Let
ν0 = 1/

√
2 and νk = 1 for k 6= 0. Note that these constants are the inverse of what they were

before. This should make sense, since, as we will see shortly, the 2D iDCT is the inverse of
the 2D DCT!

x̃(n) :=
N−1

∑
k=1

νk√
N

X(k) cos
[

πk(2n + 1)
2N

]
(1.51)

We can now develop the formula for the 2D DCT, as follows:

x̃(m, n) :=
N−1

∑
n=0

N−1

∑
m=0

νkνl
N

X(k, l) cos
[

πk(2m + 1)
2N

]
cos

[
πl(2n + 1)

2N

]
(1.52)

1.10. JPEG IMAGE COMPRESSION 21

There is nothing new going on here - this inverse transform is just like all the oth-
ers! There is, however, one key difference. As we have already seen, the iDCT is even
symmetric. This is the case for the 2D iDCT two. Mathematically,

x̃
[
(N − 1/2) + (m− 1/2), n

]
= x

[
(N − 1/2)− (m− 1/2), n

]
(1.53)

x̃
[
m, (N − 1/2) + (n− 1/2)

]
= x

[
m, (N − 1/2)− (n− 1/2)

]
(1.54)

We have made a big deal of this symmetry, but why? Well, as we saw with the 1D
iDCT, this symmetry means that there is no discontinuity between subsequent elements.
This was, in general, not the case for the DFT. In the realm of image processing, this
symmetry means that we will be able to avoid those nasty border effects that we got with
the DFT when we partitioned the image into patches and transformed each patch. Now,
the borders of each patch will ”stitch” back together smoothly! This can be seen in the
Lena reconstructions to follow.

1.9.3 The DCT is the Inverse of the DCT (Again!)

As we would expect with an abstraction from one dimension to two, nothing of im-
portance changes. This is especially so with the most important fact regarding these
transforms: invertibility. Like before, the iDCT is, in fact, the inverse of the DCT.

x̃ ≡ C−1(X) ≡ C−1(C(x)) ≡ x (1.55)

It is important to note that equivalence here means that x̃(n) = x(n) for n ∈ [0, N− 1].
Otherwise, x̃ is an even extension of the original signal x. This is analogous to the case
with the DFT in the first half of the course. We saw that the periodized spectrum of the
DFT, when passed through the iDFT, returned a periodic extension of the original signal.
This was not a problem, as we simply applied a low pass filter to avoid this issue. While
we will not do the same thing here, it is important to be aware of this technicality, as it
was then. Parseval’s Theorem holds here as well, as we would expect.

Let’s revisit our Lena image. If we compress and reconstruct our image using coeffi-
cients 0 ≤ k, l ≤ 10, we now have a flawless reconstruction with no border effects. We have
still compressed by a factor of 2.56, yet our error energy is only 0.26%! This means that
you can upload an image to your computer, reduce the amount of storage it takes by 2.56
times, and still have a nearly perfect version of your image!

1.10 JPEG Image Compression

One particular application of the image processing techniques we’ve learned so far is
JPEG compression, which is one of the most popular image compression schemes in use.
We can imagine a color image, which has three channels: red, green, and blue. Each pixel
is then a superposition of these three values, where are 8 bit integers (in other words, they
take a value of 0 to 255), from which every color can be generated on a computer screen.
If you’ve ever sneezed on your computer screen and seen red, green, and blue, this is

22 CHAPTER 1. IMAGE PROCESSING

50 100 150 200

50

100

150

200

Figure 1.18: Reconstruction of Lena image. Indistinguishable from the original, yet with
2.56 less information stored!

what is happening - the water magnifies these pixels so that you can see the individual
channels.

Although we are working with a grayscale image in the lab, it is useful to consider
color images, as they are what this compression scheme is typically used on. A color
image can be decomposed into its luminance and chrominance. The mechanics of this
decomposition is beyond the scope of this course. Suffice it to say that our eye is much
more sensitive to luminance than to chrominance.

To perform JPEG compression, we perform the 8 x 8 patchwise DCT that we have
been doing thus far. However, we will now introduce importance quantization, which is
a way of keeping the frequencies that our eyes are more sensitive to and getting rid of the
frequencies that our eyes are less sensitive to. Mathematically, this is done by dividing
each frequency in the patch X(k, l) by some value Q(k, l) such that if Q(k, l) is close to 1,
X(k, l) does not change, but if Q(k, l) is large, X(k, l) becomes small, which requires less
computer bits to encode. Rounding achieves the same purpose, as 1.0000 requires more
information to store in a computer than 1, although they are mathematically equivalent.

Values of Q have been empirically determined to be the following:

Q=

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 36 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Similar to MP3 compression, JPEG uses psychosomatic factors in its compression

scheme. That is, although we are discarding information by rounding by these seem-
ingly arbitrary numbers, it is information that our eyes cannot perceive. Therefore, to our
eyes, we are seeing the same image, but it requires less storage in a computer.

1.10. JPEG IMAGE COMPRESSION 23

As we can see by the magnitude of the numbers, the low frequency information (top
left corner) is generally more important (i.e., scaled down by lower numbers), and the high
frequency information (bottom right corner) is generally less important (scaled down by
higher numbers). This ties back to what we learned way back in one-dimensional signal
processing about low and high frequencies. Cool!

	Image Processing
	Signal Representation
	Images as Signals
	Deltas in Two Dimensions
	Rectangular Pulses
	Gaussian Pulses
	Inner Product
	Norm and Energy

	2D DFT
	Definition
	Relating the 2D DFT to the 1D DFT
	2D Discrete Complex Exponentials
	2D DFT as Inner Product

	2D DFT of Images
	Properties
	Periodicity of Complex Exponentials
	Periodicity of the 2D DFT
	Orthogonality of complex exponentials

	2D iDFT
	Definition
	iDFT is inverse of DFT
	Image Reconstruction

	Properties of the 2D DFT
	Energy Conservation - Parseval's Theorem
	Image Reconstruction Energy
	2D Filtering

	DCT
	Motivation for DCT and iDCT
	iDCT Definition
	DCT
	The Even Extension of the iDCT
	DCT Basis
	iDCT is the Inverse of the DCT

	2D Discrete Cosine Transform
	The 2D DCT as an Inner Product
	2D iDCT
	The DCT is the Inverse of the DCT (Again!)

	JPEG Image Compression

