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Who are us, where to find me, lecture times

I Alejandro Ribeiro

I Assistant Professor, Dept. of Electrical and Systems Engineering

I GRW 276, aribeiro@seas.upenn.edu,

I http://alliance.seas.upenn.edu/~aribeiro/wiki

I Arman Khouzani

I Teaching assistant, khouzani@seas.upenn.edu

I We meet on DRLB A7

I Mondays, Wednesdays, Fridays 10 am to 11 am

I My office hours, Fridays at 4 pm

I Anytime, as long as you have something interesting to tell me

I http://alliance.seas.upenn.edu/~ese303/wiki
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Prerequisites

I Probability theory

I Stochastic processes are time-varying random entities

I If unknown, need to learn as we go

I Will cover in first seven lectures

I Linear algebra

I Vector matrix notation, systems of linear equations, eigenvalues

I Programming in Matlab

I Needed for homework.

I If you know programming you can learn Matlab in one afternoon.

I But it has to be this afternoon

I Differential equations, Fourier transforms

I Appear here and there. Should not be a problem
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Homework and grading

I 14 homework sets in 14 weeks

I Collaboration accepted, welcomed and encouraged.

I Sets graded as 0 (bad), 1 (good), 2(very good) and 3 (outstanding)

I We’ll use the 3 sparingly. Goal is to earn 30 homework points

I Midterm examination handed on October 23, due on October 26

I Take home. Work independently. No collaboration, no discussion

I 35 points

I Final examination on December 15-22 worth 35 points

I At least 60 points are required for passing.

I C requires at least 70 points. B at least 80. A at least 90.

I Goal is for everyone to earn an A
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Textbooks

I Textbook for the class is (older editions acceptable)

I Sheldon M. Ross ”Introduction to Probability Models”,
Academic Press, 9th ed.

I Same topics at advanced level (more rigor, includes proofs)

I Sheldon Ross ”Stochastic Processes”, John Wiley & sons, 2nd ed.

I Stohastic processes in systems biology

I Darren J. Wilkinson ”Stochastic Modelling for Systems Biology”,
Chapman & Hall/CRC, 1st ed.

I Part on simulation of chemical reactions taken from here

I Use of stochastic processes in finance

I Masaaki Kijima ”Stochastic Processes with Applications to
Finance”, Chapman & Hall/CRC, 1st ed.
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Stochastic systems

I Anything random that evolves in time

I Time can be discrete (0, 1, . . . ) or continuous

I More formally, assign a function to a random event

I Compare with “random variable assigns a value to a random event”

I Generalizes concept of random vector to functions

I Or generalizes the concept of function to random settings

I Can interpret a stochastic process as a set of random variables

I Not always the most appropriate way of thinking
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A voice recognition system

I Random event ∼ word spoken. Stochastic process ∼ the waveform
I Try the file speech signals.m
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Five blocks

I Probability theory review (6 lectures)
I Probability spaces,
I Conditional probability: time n + 1 given time n, future given past ...
I Limits in probability, almost sure limits: behavior as t →∞ ...
I Probability distribution of interest (binomial, exponential, Poisson,

Gaussian)

I Stochastic processes are complicated entities

I Restrict attention to particular classes that are somewhat tractable

I Markov chains (9 lectures)

I Continuous time Markov chains (12 lectures)

I Stationary random processes (9 lectures)

I Midterm covers up to Markov chains
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Markov chains

I A set of states 1, 2, . . .. At time n, state is Xn

I Memoryless property

⇒ Probability of next state Xn+1 depends on current state Xn

⇒ But not on past states Xn−1, Xn−2, . . .

I Can be happy (Xn = 0) or sad (Xn = 1)

I Happiness tomorrow affected by
happiness today only

I Whether happy or sad today, likely to
be happy tomorrow

I But when sad, a little less likely so

H S

0.8

0.2

0.3

0.7

I Classification of states, ergodicity, limiting distributions

I Google’s page rank, machine learning, virus propagation, queues ...
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Continuous time Markov chains

I A set of states 12, . . .. Continuous time index t

I Transition between states can happen at any time

I Future depends on present bus is independent of the past

I Probability of changing state in
an infinitesimal time dt

H S

0.2dt

0.7dt

I Poisson processes, exponential distributions, transition probabilities,
Kolmogorov equations, limit distributions

I Chemical reactions, queues, communication networks, weather
forecasting ...
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Stationary random processes

I Continuous time t, continuous state x(t), not necessarily memoryless

I System has a steady state in a random sense

I Prob. distribution of x(t) constant or becomes constant as t grows

I Brownian motion, white noise, Gaussian processes, autocorrelation,
power spectral density.

I Black Scholes model for option pricing, speech, noise in electric
circuits, filtering and equalization ...
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An interesting betting game

I There is a certain game in a certain casino in which your chances of
winning are p > 1/2

I You place $b bets,

(a) With probability p you gain $b and
(b) With probability (1− p) you loose your $b bet

I The catch is that you either

(a) Play until you go broke (loose all your money)
(b) Keep playing forever

I You start with an initial wealth of $w0

I Shall you play this game?

Stoch. Systems Analysis Introduction 15



Modeling

I Let t be a time index (number of bets placed)

I Denote as x(t) the outcome of the bet at time t
I x(t) = 1 if bet is won (with probability p)
I x(t) = 0 if bet is lost (probability (1− p))

I x(t) is called a bernoulli random varible with parameter p

I Denote as w(t) the player’s wealth at time t

I At time t = 0, w(0) = w0

I At times t > 0 wealth w(t) depends on past wins and losses

I More specifically we have
I When bet is won w(t) = w(t − 1) + b
I When bet is lost w(t) = w(t − 1)− b
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Coding

t = 1; w(t) = w0; ; // Initialize variables
% repeat while not broke up to time maxt

while (w(t) > 0) & (t < maxt) do
x(t) = random(’bino’,1,p); % Draw Bernoulli random variable
if x(t) == 1 then

w(t + 1) = w(t) + b; % If x = 1 wealth increases by b
else

x(t + 1) = w(t)− b; % If x = 0 wealth decreases by b
end
t = t + 1;

end

I Initial wealth w0 = 20, bet b = 1, win probability p = 0.55

I Shall we play ?
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One lucky player

I She didn’t go broke. After t = 1000 bets, her wealth is w(t) = 109

I Less likely to go broke now because wealth increased
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Two lucky players

I Wealths are w1(t) = 109 and w2(t) = 139

I Increasing wealth seems to be a pattern
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Ten lucky players

I Wealths wj(t) between 78 and 139

I Increasing wealth is definitely a pattern
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One unlucky player

I But this does not mean that all players will turn out as winners

I The twelfth player j = 12 goes broke
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One unlucky player

I But this does not mean that all players will turn out as winners

I The twelfth player j = 12 goes broke
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One hundred players

I Only one player (j = 12) goes broke

I All other players end up with substantially more money
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Average tendency

I It is not difficult to find a line estimating the average of w(t)

I w̄(t) ≈ w0 + (2p − 1)t ≈ w0 + 0.1t
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Where does the average tendency comes from?

I To discover average tendency w̄(t) assume w(t − 1) > 0 and note

E
[
w(t)

∣∣w(t − 1)
]

= w(t − 1) + bP {x(t) = 1} − bP {x(t) = 0}
= w(t − 1) + bp − b(1− p)

= w(t − 1) + (2p − 1)b

I Now, condition on w(t − 2) and use the above expression once more

E
[
w(t)

∣∣w(t − 2)
]

= E
[
w(t − 1)

∣∣w(t − 2)
]

+ (2p − 1)b

= w(t − 2) + (2p − 1)b + (2p − 1)b

I Proceeding recursively t times yields

E
[
w(t)

∣∣w(0)
]

= w0 + t(2p − 1)b

I This analysis is not entirely correct because w(t) might be zero
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Analysis of outcomes: mean

I For a more accurate analysis analyze simulation’s outcome

I Consider J experiments

I For each experiment, there is a wealth history wj(t)

I We can estimate the average outcome as

w̄J(t) =
1

J

J∑
j=1

wj(t)

I w̄(t) is called the sample average

I Do not confuse w̄(t) with E [w(t)]
I w̄J(t) is computed from experiments, it is a random quantity in itself
I E [w(t)] is a property of the random variable w(t)
I We will see later that for large J, w̄J(t)→ E [w(t)]
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Analysis of outcomes: mean

I Expected value E [w(t)] in black (approximation)

I Sample average for J = 10 (blue), J = 20 (red), and J = 100
(magenta)
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Histogram

I There is more information in the simulation’s output

I Estimate the probability distribution function (pdf) ⇒ Histogram

I Consider a set of points w (1), . . . ,w (N)

I Indicator function of the event w (n) ≤ wj < w (n+1)

I I
h
w (n) ≤ wj < w (n+1)

i
= 1 when w (n) ≤ wj < w (n+1)

I I
h
w (n) ≤ wj < w (n+1)

i
= 0 else

I Histogram is then defined as

H
[
t; w (n), w (n+1)

]
=

1

J

J∑
j=1

I
[
w (n) ≤ wj(t) < w (n+1)

]
I Fraction of experiments with wealth wj(t) between w (n) and w (n+1)

Stoch. Systems Analysis Introduction 28



Histogram

I The pdf broadens and shifts to the right (t = 10, 50, 100, 200)
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What is this class about

I Analysis and simulation of stochastic system

⇒ A system that evolves in time with some randomness

I They are usually quite complex ⇒ Simulations

I We will learn how to model stochastic systems, e.g.,
I x(t) Bernoulli with parameter p
I w(t) = w(t − 1) + b when x(t) = 1
I w(t) = w(t − 1)− b when x(t) = 0

I ... how to analyze, e.g., E
[
w(t)

∣∣w(0)
]

= w0 + t(2p − 1)b

I ... and how to interpret simulations and experiments, e.g,
I Average tendency through sample average
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