

Probability review

Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

September 22, 2010

Image: A math a math

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Conditional probabilities

Conditional expectation

Image: Image:

프 () () ()

Stoch. Systems Analysis

Markov's inequality

- RV X with finite expected value $\mathbb{E}(X) < \infty$
- Markov's inequality states $\Rightarrow P[|X| \ge a] \le \frac{\mathbb{E}(|X|)}{a}$
- ▶ $\mathbb{I}\{|X| \ge a\} = 1$ when $X \ge a$ and 0 else. Then (figure to the right)

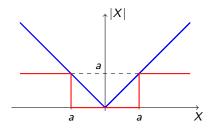
 $a\mathbb{I}\left\{|X| \ge a\right\} \le |X|$

• Expected value. Linearity of $\mathbb{E}\left[\cdot\right]$

 $a\mathbb{E}(\mathbb{I}\left\{|X|\geq a
ight\})\leq\mathbb{E}(|X|)$

► Indicator function's expectation = Probability of event

$$a\mathsf{P}\left[|X| \ge a
ight] \le \mathbb{E}(|X|)$$



Chebyshev's inequality

- ▶ RV X with finite mean $\mathbb{E}(X) = \mu$ and variance $\mathbb{E}\left[(X \mu)^2\right] = \sigma^2$
- Chebyshev's inequality $\Rightarrow \mathsf{P}[|X \mu| \ge k] \le \frac{\sigma^2}{k^2}$
- Markov's inequality for the RV $Z = (X \mu)^2$ and constant $a = k^2$

$$\mathsf{P}\left[(X-\mu)^2 \ge k^2\right] = \mathsf{P}\left[|Z| \ge k^2\right] \le \frac{\mathbb{E}\left[|Z|\right]}{k^2} = \frac{\mathbb{E}\left[(X-\mu)^2\right]}{k^2}$$

▶ Notice that $(X - \mu)^2 \ge k^2$ if and only if $|X - \mu| \ge k$ thus

$$\mathsf{P}\left[|X-\mu| \ge k
ight] \le rac{\mathbb{E}\left[(X-\mu)^2
ight]}{k^2}$$

Chebyshev's inequality follows from definition of variance

- Markov and Chebyshev's inequalities hold for all RVs
- If absolute expected value is finite E [|X|] < ∞
 ⇒ RV's cdf decreases at least linearly (Markov's)
- If mean 𝔅(𝑋) and variance 𝔅 [(𝑋 − μ)²] are finite
 ⇒ RV's cdf decreases at least quadratically (Chebyshev's)
- ► Most cdfs decrease exponentially (e.g. e^{-x²} for normal) ⇒ linear and quadratic bounds are loose but still useful

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Conditional probabilities

Conditional expectation

メロト メ団ト メヨト メヨト

э

- Sequence of RVs $X_{\mathbb{N}} = X_1, X_2, \ldots, X_n, \ldots$
- ▶ Distinguish between stochastic process $X_{\mathbb{N}}$ and realizations $x_{\mathbb{N}}$
- ▶ Say something about X_n for *n* large? \Rightarrow Not clear, X_n is a RV
- ► Say something about x_n for n large? \Rightarrow Certainly, look at $\lim_{n \to \infty} x_n$
- ► Say something about $P[X_n]$ for *n* large? \Rightarrow Yes, $\lim_{n\to\infty} P[X_n]$
- Translate what we now about regular limits to definitions for RVs
- Can start from convergence of sequences: $\lim_{n\to\infty} x_n$
 - Sure and almost sure convergence
- Or from convergence of probabilities: $\lim_{n\to\infty} P[X_n]$
 - Convergence in probability, mean square sense and distribution

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

- Denote sequence of variables $x_{\mathbb{N}} = x_1, x_2, \ldots, x_n, \ldots$
- Sequence x_N converges to the value x if given any ε > 0 ⇒ There exists n₀ such that for all n > n₀, |x_n − x| < ε</p>
- Sequence x_n comes close to its limit $\Rightarrow |x_n x| < \epsilon$
- And stays close to its limit \Rightarrow for all $n > n_0$
- ► Stochastic process (sequence of RVs) $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$
- Realizations of $X_{\mathbb{N}}$ are sequences $x_{\mathbb{N}}$
- We say SP $X_{\mathbb{N}}$ converges surely to RV X if $\Rightarrow \lim_{n \to \infty} x_n = x$
- For all realizations $x_{\mathbb{N}}$ of $X_{\mathbb{N}}$
- Not really adequate. Even an event that happens with vanishingly small probability prevents sure convergence

・ロ・・ (日・・ (日・・ 日・・ 日・・

Almost sure convergence

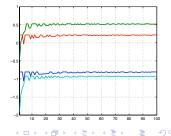
- RV X and stochastic process $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$
- We say SP $X_{\mathbb{N}}$ converges almost surely to RV X if

$$\mathsf{P}\left[\lim_{n\to\infty}X_n=X\right]=1$$

- Almost all sequences converge, except for a set of measure 0
- ► Almost sure convergence denoted as $\Rightarrow \lim_{n\to\infty} X_n = X$ a.s.
- Limit X is a random variable

Example

- $X_0 \sim \mathcal{N}(0,1)$ (normal, mean 0, variance 1)
- Z_n Bernoulli parameter p
- Define $\Rightarrow X_n = X_0 \frac{Z_n}{n}$
- $Z_n/n \to 0$, then $\lim_{n\to\infty} X_n = X_0$ a.s.



• We say SP $X_{\mathbb{N}}$ converges in probability to RV X if for any $\epsilon > 0$

 $\lim_{n\to\infty}\mathsf{P}\left[|X_n-X|<\epsilon\right]=1$

- Probability of distance $|X_n X|$ becoming smaller than ϵ tends to 1
- Statement is about probabilities, not about processes
- The probability converges
- ▶ Realizations $x_{\mathbb{N}}$ of $X_{\mathbb{N}}$ might or might not converge
- ▶ Limit and probability interchanged with respect to a.s. convergence
- a.s. convergence implies convergence in probability
 - If $\lim_{n\to\infty} X_n = X$ then for any $\epsilon > 0$ there is n_0 such that $|X_n X| < \epsilon$ for all $n \ge n_0$
 - ▶ This is true for all almost all sequences then $P[|X_n X| < \epsilon] \rightarrow 1$

Convergence in probability (continued)

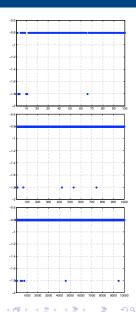
Penr

Example

- $X_0 \sim \mathcal{N}(0,1)$ (normal, mean 0, variance 1)
- Z_n Bernoulli parameter 1/n
- Define $\Rightarrow X_n = X_0 Z_n$
- X_n converges in probability to X_0 because

$$P[|X_n - X_0| < \epsilon] = P[|Z_n| < \epsilon]$$
$$= 1 - P[Z_n = 1]$$
$$= 1 - \frac{1}{n} \rightarrow 1$$

- Plot of path x_n up to $n = 10^2$, $n = 10^3$, $n = 10^4$
- $Z_n = 1$ becomes ever rarer but still happens



Difference between a.s. and p

- Almost sure convergence implies that almost all sequences converge
- Convergence in probability does not imply convergence of sequences
- ▶ Latter example: $X_n = X_0 Z_n$, Z_n is Bernoulli with parameter 1/n
- As we've seen it converges in probability

$$\mathsf{P}\left[|X_n - X_0| < \epsilon\right] = 1 - \frac{1}{n} \to 1$$

- ▶ But for almost all sequences, the $\lim_{n\to\infty} X_n$ does not exist
- ► Almost sure convergence ⇒ disturbances stop happening
- Convergence in prob. \Rightarrow disturbances happen with vanishing freq.
- Difference not irrelevant.
 - Interpret Y_n as rate of change in savings
 - with a.s. convergence risk is eliminated
 - with convergence in probability risk decreases but does not disappear

・ロ・・ (日・・ (日・・ 日・・ 日・・

• We say SP $X_{\mathbb{N}}$ converges in mean square to RV X if

$$\lim_{n\to\infty}\mathbb{E}\left[|X_n-X|^2\right]=0$$

- Sometimes (very) easy to check
- Convergence in mean square implies convergence in probability
- From Markov's inequality

$$\mathsf{P}\left[|X_n - X| \ge \epsilon\right] = \mathsf{P}\left[|X_n - X|^2 \ge \epsilon^2\right] \le \frac{\mathbb{E}\left[|X_n - X|^2\right]}{\epsilon^2}$$

▶ If $X_n \to X$ in mean square sense, $\mathbb{E}\left[|X_n - X|^2\right]/\epsilon^2 \to 0$ for all ϵ

• Almost sure and mean square \Rightarrow neither implies the other

イロト イヨト イヨト イヨト 三日

Convergence in distribution

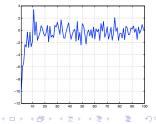
- Stochastic process $X_{\mathbb{N}}$. Cdf of X_n is $F_n(x)$
- The SP converges in distribution to RV X with distribution $F_X(x)$ if

 $\lim_{n\to\infty}F_n(x)=F_X(x)$

- For all x at which $F_X(x)$ is continuous
- Again, no claim about individual sequences, just the cdf of X_n
- Weakest form of convergence covered,
- Implied by almost sure, in probability, and mean square convergence

Example

- $Y_n \sim \mathcal{N}(0,1)$
- Z_n Bernoulli parameter p
- Define $\Rightarrow X_n = Y_n 10Z_n/n$
- $Z_n/n \to 0$, then $\lim_{n\to\infty} F_n(x) = \mathcal{N}(0,1)$



► Individual sequences x_n do not converge in any sense ⇒ It is the distribution that converges

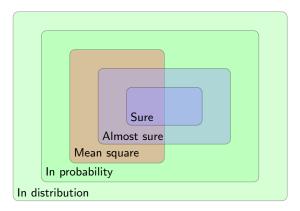
n = 1 n = 10 n = 100

As the effect of Z_n/n vanishes pdf of X_n converges to pdf of Y_n
 Standard normal N(0, 1)

(日) (同) (三) (三)

Implications

- Sure \Rightarrow almost sure \Rightarrow in probability \Rightarrow in distribution
- Mean square \Rightarrow in probability \Rightarrow in distribution
- In probability \Rightarrow in distribution



・ロン ・回 と ・ ヨ と ・ ヨ と …

э

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Conditional probabilities

Conditional expectation

・ロト ・回ト ・ヨト ・ヨト

æ

Sum of independent identically distributed RVs

- Independent identically distributed (i.i.d.) RVs $X_1, X_2, \ldots, X_n, \ldots$
- Mean $\mathbb{E}[X_n] = \mu$ and variance $\mathbb{E}[(X_n \mu)^2] = \sigma^2$ for all n
- What happens with sum $S_N := \sum_{n=1}^N X_n$ as N grows?
- ▶ Expected value of sum is $\mathbb{E}[S_N] = N\mu \implies$ Diverges if $\mu \neq 0$
- ► Variance is $\mathbb{E}\left[(S_N N\mu)^2\right] = N\sigma$ ⇒ Diverges if $\sigma \neq 0$ (alwyas true unless X_n is a constant)
- One interesting normalization $\Rightarrow \bar{X}_N := (1/N) \sum_{n=1}^N x_n$
- Now $\mathbb{E}[Z_N] = \mu$ and var $[Z_N] = \sigma^2/N$
- Law of large numbers (weak and strong)
- Another interesting normalization $\Rightarrow Z_N := \frac{\sum_{n=1}^N x_n N\mu}{\sigma\sqrt{N}}$
- Now $\mathbb{E}[Z_N] = 0$ and var $[Z_N] = 1$ for all values of N
- Central limit theorem

ヘロト ヘヨト ヘヨト ヘヨト

- ▶ i.i.d. sequence or RVs $X_1, X_2, ..., X_n, ...$ with mean $\mu = \mathbb{E}[X_n]$
- Define sample average $\bar{X}_N := (1/N) \sum_{n=1}^N x_n$
- Weak law of large numbers
- Sample average \bar{X}_N converges in probability to $\mu = \mathbb{E}[X_n]$

$$\lim_{N \to \infty} \mathsf{P}\left[|\bar{X}_N - \mu| > \epsilon \right] = 1, \quad \text{for all } \epsilon > 0$$

- Strong law of large numbers
- ► Sample average \bar{X}_N converges almost surely to $\mu = \mathbb{E}[X_n]$

$$\mathsf{P}\left[\lim_{N\to\infty}\bar{X}_N=\mu\right]=1$$

Strong law implies weak law. Can forget weak law if so wished

<ロ> <部> <部> <き> <き> <き> <き</p>

Weak law of large numbers is very simple to prove

Proof.

• Variance of \bar{X}_n vanishes for N large

$$\operatorname{var}\left[\bar{X}_{N}
ight] = rac{1}{N^{2}}\sum_{n=1}^{n}\operatorname{var}\left[X_{n}
ight] = rac{\sigma^{2}}{N} o 0$$

• But, what is the variance of \bar{X}_N ?

$$0 \leftarrow rac{\sigma^2}{N} = \operatorname{var}\left[ar{X}_{N}
ight] = \mathbb{E}\left[(ar{X}_{n} - \mu)^2
ight]$$

- ► Then, |X_N µ| converges in mean square sense
 ⇒ Which implies convergence in probability
- Strong law is a little more challenging

< □ > < 同 >

Theorem

- *i.i.d.* sequence of RVs $X_1, X_2, \ldots, X_n, \ldots$
- Mean $\mathbb{E}[X_n] = \mu$ and variance $\mathbb{E}[(X_n \mu)^2] = \sigma^2$ for all n

• Then
$$\Rightarrow \lim_{N \to \infty} \mathsf{P}\left[\frac{\sum_{n=1}^{N} x_n - N\mu}{\sigma\sqrt{N}} \le x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

▶ Former statement implies that for *N* sufficiently large

$$Z_N := \frac{\sum_{n=1}^N x_n - N\mu}{\sigma \sqrt{N}} \sim \mathcal{N}(0, 1)$$

- ~ means "distributed like"
- Z_N converges in distribution to a standard normal RV

・ロト ・回ト ・ヨト ・ヨト

CLT (continued)

• Equivalently can say
$$\Rightarrow \sum_{n=1}^{N} x_n \sim \mathcal{N}(N\mu, N\sigma^2)$$

- Sum of large number of i.i.d. RVs has a normal distribution
 - Cannot take a meaningful limit here.
 - But intuitively, this is what the CLT states

Example

- Binomial RV X with parameters (n, p)
- Write as $X = \sum_{i=1}^{n} X_i$ with X_i Bernoulli with parameter p
- Mean $\mathbb{E}[X_i] = p$ and variance var $[X_i] = p(1-p)$
- For sufficiently large $n \Rightarrow X \sim \mathcal{N}(n\mu, np(1-p))$

イロン イボン イヨン イヨン

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Conditional probabilities

Conditional expectation

メロト メ団ト メヨト メヨト

Conditional pmf and cdf for discrete RVs

 \blacktriangleright Recall definition of conditional probability for events E and F

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

- Change in likelihoods when information is given, renormalization
- Define the conditional pmf of RV X given Y as (both RVs discrete)

$$p_{X|Y}(x | y) = P[X = x | Y = y] = \frac{P[X = x, Y = y]}{P[Y = y]}$$

Which we can rewrite as

$$p_{X|Y}(x \mid y) = \frac{\mathsf{P}[X = x, Y = y]}{\mathsf{P}[Y = y]} = \frac{p_{XY}(x, y)}{p_Y(y)}$$

- Pmf for random variable x, given parameter y ("Y not random anymore")
- Define conditional cdf as (a range of X conditional on a value of Y)

$$F_{X|Y}(x \mid y) = \mathsf{P}\left[X \le x \mid \frac{Y}{y} = y\right] = \sum_{z \le x} p_{X|Y}(z \mid y)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Example

- Independent Bernoulli Y and Z, variable X = Y + Z
- Conditional pmf of X given Y? For X = 0, Y = 0

$$p_{X|Y}(X = 0 | Y = 0) = \frac{P[X = 0, Y = 0]}{P[Y = 0]} = \frac{(1 - p)^2}{1 - p} = 1 - p$$

Or, from joint and marginal pdfs (just a matter of definition)

$$p_{X|Y}(X=0 \mid Y=0) = \frac{p_{XY}(0,0)}{p_Y(0)} = \frac{(1-p)^2}{1-p} = 1-p$$

Can compute the rest analogously

$$p_{X|Y}(0|0) = (1-p), \quad p_{X|Y}(1|0) = p, \qquad p_{X|Y}(2|0) = 0$$

$$p_{X|Y}(0|1) = 0, \qquad p_{X|Y}(1|1) = 1-p, \quad p_{X|Y}(2|1) = p$$

э

Conditional pdf and cdf for continuous RVs

▶ Define conditional pdf of RV X given Y as (both RVs continuous)

$$f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_Y(y)}$$

- ► For motivation, define intervals $\Delta x = [x, x+dx]$ and $\Delta y = [y, y+dy]$
- Can approximate conditional probability $\mathsf{P}\left[X \in \Delta x \mid Y \in \Delta y\right]$ as

$$\mathsf{P}\left[X \in \Delta x \mid Y \in \Delta y\right] = \frac{\mathsf{P}\left[X \in \Delta x, Y \in \Delta y\right]}{\mathsf{P}\left[Y \in \Delta y\right]} \approx \frac{f_{XY}(x, y)dxdy}{f_Y(y)dy}$$

▶ From definition of conditional pdf it follows after simplifying terms

$$\mathsf{P}\left[X \in \Delta x \mid Y \in \Delta y\right] \approx f_{X|Y}(x \mid y) dx$$

Which is what we would expect of a density

• Conditional cdf defined as
$$\Rightarrow F_{X|Y}(x) = \int_{-\infty}^{x} f_{X|Y}(u \mid y) du$$

(日) (同) (三) (三)

- Random message (RV) Y, transmit signal y (realization of Y)
- Received signal is x = y + z (z realization of random noise)
- Can model communication system as a relation between RVs

$$X = Y + Z$$

- ▶ Model communication noise as $Z \sim \mathcal{N}(0, \sigma^2)$ independent of Y
- ► Conditional pdf of X given Y. Use definition:

$$f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_Y(y)} = \frac{?}{f_Y(y)}$$

- Problem is we don't know $f_{XY}(x, y)$. Have to calculate
- Computing conditional probs. typically easier than computing joints

ヘロト ヘヨト ヘヨト ヘヨト

- If Y = y is given, then "Y not random anymore" (Dorothy's principle)
 ⇒ It still is random in reality, we are thinking of it as given
- If Y were not random, say Y = y with y given then ...

$$X = y + Z$$

Cdf of X, now easily obtained

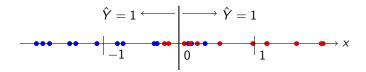
$$P[X \le x] = P[y + Z \le x] = P[Z \le x - y] = \int_{-\infty}^{x-y} p_Z(z) dz$$

• But since Z is normal with 0 mean and variance σ^2

$$\mathsf{P}[X \le x] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x-y} e^{-z^2/2\sigma^2} \, dz = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-(z-y)^2/2\sigma^2} \, dz$$

• X is normal with mean y and variance σ^2

- Conditioning is a common tool to compute probabilities
- Message 1 (prob. p) \Rightarrow Transmit Y = 1 $Y = \pm 1$
- Message 2 (prob. q) \Rightarrow Transmit Y = -1
- Received signal $\Rightarrow X = Y + Z$
- Decoding rule $\Rightarrow \hat{Y} = 1$ if $X \ge 0$, $\hat{Y} = 0$ if X < 0
- What is the probability of error, $P_e := \mathsf{P}\left[\hat{Y} \neq Y\right]$?
- Red dots to the left and blue dots to the right are errors



Output pdf

- From communications channel example we know
- If Y = 1, then $X \sim \mathcal{N}(1, \sigma^2)$, conditional pdf is

$$f_{X|Y}(x,1) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-1)^2/2\sigma^2}$$

▶ If Y = -1, then $X \sim \mathcal{N}(-1, \sigma^2)$, conditional pdf is

$$f_{X|Y}(x,-1) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x+1)^2/2\sigma^2}$$

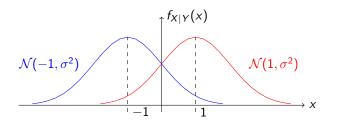


Image: Image:

< 문 ► < 문 ► .

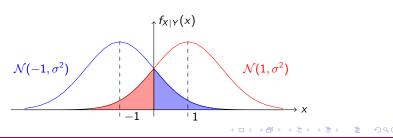
Error probability

- ► Write probability of error by conditioning on $Y = \pm 1$ (total probability) $P_e = P\{\hat{Y} \neq Y \mid Y = 1\}P\{Y = 1\} + P\{\hat{Y} \neq Y \mid Y = -1\}P\{Y = -1\}$ $= P\{\hat{Y} = -1 \mid Y = 1\}p$ $+ P\{\hat{Y} = 1 \mid Y = -1\}q$
- But according to the decision rule

$$P_e = P\{X < 0 \mid Y = 1\}p + P\{X \ge 0 \mid Y = -1\}q$$

But X given Y is normally distributed, then

$$P_e = \frac{p}{\sqrt{2\pi\sigma}} \int_0^\infty e^{-(x-1)^2/2\sigma^2} + \frac{q}{\sqrt{2\pi\sigma}} \int_{-\infty}^0 e^{-(x+1)^2/2\sigma^2} = \frac{q}{\sqrt{2\pi\sigma}} \int_{-\infty}^0 e^{-x^2/2\sigma^2}$$



Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Conditional probabilities

Conditional expectation

For continuous RVs X, Y define conditional expectation as

$$\mathbb{E}\left[X \mid y\right] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \, dx$$

For discrete RVs X, Y conditional expectation is

$$\mathbb{E}\left[X \mid y\right] = \sum_{x} x \, p_{X|Y}(x|y)$$

- Defined for given $y \Rightarrow \mathbb{E} [X | y]$ is a value
- All possible values y of $Y \Rightarrow$ random variable $\mathbb{E} \begin{bmatrix} X & Y \end{bmatrix}$
- Y is RV, $\mathbb{E}[X \mid y]$ value associated with outcome Y = y

イロト イポト イヨト イヨト

Double expectation

- If $\mathbb{E}[X \mid Y]$ is a RV, can compute expected value $\mathbb{E}_{Y}[\mathbb{E}_{X}(X \mid Y)]$
 - Subindices are for clarity purposes, innermost expectation is with respect to X, outermost with respect to Y
- What is $\mathbb{E}_{Y} [\mathbb{E}_{X} (X \mid Y)]$? Not surprisingly $\Rightarrow \mathbb{E} [X] = \mathbb{E}_{Y} [\mathbb{E}_{X} (X \mid Y)]$
- Show for discrete RVs (write integrals for continuous)

$$\mathbb{E}_{Y} \left[\mathbb{E}_{X} \left(X \mid Y \right) \right] = \sum_{y} \mathbb{E}_{X} \left(X \mid y \right) p_{Y}(y) = \sum_{y} \left[\sum_{x} x p_{X|Y}(x|y) \right] p_{Y}(y)$$
$$= \sum_{x} x \left[\sum_{y} p_{X|Y}(x|y) p_{Y}(y) \right] = \sum_{x} x \left[\sum_{y} p_{X,Y}(x,y) \right]$$
$$= \sum_{x} x p_{X}(x) = \mathbb{E} \left[X \right]$$

- Yields a method to compute expected values

 - $\begin{array}{ll} \Rightarrow \text{ Condition on } Y = y & \Rightarrow X \mid y \\ \Rightarrow \text{ Compute expected value over } X \text{ for given } y & \Rightarrow \mathbb{E}_X (X \mid y) \\ \Rightarrow \text{ Compute expected value over all values } y \text{ of } Y & \Rightarrow \mathbb{E}_Y \big[\mathbb{E}_X (X \mid Y) \big] \end{array}$

Example

- Seniors get A = 4 with prob. 0.5, B = 3 with prob. 0.5
- ▶ Juniors get B = 3 with prob. 0.6, B = 2 with prob. 0.4
- ▶ Exchange student's standing: senior (junior) with prob. 0.7 (0.3)
- Expectation of X = exchange student's grade?
- Begin conditioning on standing

$$\mathbb{E} \left[X \mid \text{Senior} \right] = 0.5 \times 4 + 0.5 \times 3 = 3.5$$
$$\mathbb{E} \left[X \mid \text{Junior} \right] = 0.6 \times 3 + 0.4 \times 2 = 2.6$$

Now sum over standing's probability

$$\mathbb{E}[X] = \mathbb{E}[X | \text{Senior}] P [\text{Senior}] + \mathbb{E}[X | \text{Junior}] P [\text{Junior}]$$

= 3.5 × 0.7 + 2.6 × 0.3
= 3.23

• As with probabilities conditioning is useful to compute expectations.

 \Rightarrow Spreads difficulty into simpler problems

Example

- ► A baseball player hits X_i runs per game
- Expected number of runs is $\mathbb{E}[X_i] = \mathbb{E}[X]$ independently of game
- ▶ Player plays *N* games in the season. *N* is random (playoffs, injuries?)
- Expected value of number of games is $\mathbb{E}[N]$
- What is the expected number of runs in the season ?

$$\Rightarrow \mathbb{E}\bigg[\sum_{i=1}^N X_i\bigg]$$

(日) (同) (日) (日) (日)

▶ Both, *N* and *X_i* are random

Sum of random number of random quantities

Step 1: Condition on N = n then

$$\left[\left(\sum_{i=1}^{N} X_{i}\right) \mid N = n\right] = \sum_{i=1}^{n} X_{i}$$

Step 2: Compute expected value with respect to X_i

$$\mathbb{E}_{X_i}\left[\left(\sum_{i=1}^N X_i\right) \mid N=n\right] = \mathbb{E}\left[\sum_{i=1}^n X_i\right] = n\mathbb{E}\left[X\right]$$

Second equality possible because n is a number (not a RV like N) **Step 3:** Conpute expected value with respect to values n of N

$$\mathbb{E}_{N}\left[\mathbb{E}_{X_{i}}\left[\left(\sum_{i=1}^{N}X_{i}\right)\mid N\right]\right]=\mathbb{E}_{N}\left[N\mathbb{E}\left[X\right]\right]=\mathbb{E}\left[N\right]\mathbb{E}\left[X\right]$$

$$\mathsf{Yielding result} \ \Rightarrow \mathbb{E}\bigg[\sum_{i=1}^{N} X_i\bigg] = \mathbb{E}\left[N\right]\mathbb{E}\left[X\right]$$

(D)