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Markov’s inequality

I RV X with finite expected value E(X ) <∞

I Markov’s inequality states ⇒ P [|X | ≥ a] ≤ E(|X |)
a

I I {|X | ≥ a} = 1 when X ≥ a and 0
else. Then (figure to the right)

aI {|X | ≥ a} ≤ |X |

I Expected value. Linearity of E [·]

aE(I {|X | ≥ a}) ≤ E(|X |) X

|X |

aa

a

I Indicator function’s expectation = Probability of event

aP [|X | ≥ a] ≤ E(|X |)
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Chebyshev’s inequality

I RV X with finite mean E(X ) = µ and variance E
[
(X − µ)2

]
= σ2

I Chebyshev’s inequality ⇒ P [|X − µ| ≥ k] ≤ σ2

k2

I Markov’s inequality for the RV Z = (X − µ)2 and constant a = k2

P
[
(X − µ)2 ≥ k2

]
= P

[
|Z | ≥ k2

]
≤ E [|Z |]

k2
=

E
[
(X − µ)2

]
k2

I Notice that (X − µ)2 ≥ k2 if and only if |X − µ| ≥ k thus

P [|X − µ| ≥ k] ≤
E
[
(X − µ)2

]
k2

I Chebyshev’s inequality follows from definition of variance
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Comments & observations

I Markov and Chebyshev’s inequalities hold for all RVs

I If absolute expected value is finite E [|X |] <∞
⇒ RV’s cdf decreases at least linearly (Markov’s)

I If mean E(X ) and variance E
[
(X − µ)2

]
are finite

⇒ RV’s cdf decreases at least quadratically (Chebyshev’s)

I Most cdfs decrease exponentially (e.g. e−x2

for normal)

⇒ linear and quadratic bounds are loose but still useful
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Limits

I Sequence of RVs XN = X1,X2, . . . ,Xn, . . .

I Distinguish between stochastic process XN and realizations xN

I Say something about Xn for n large? ⇒ Not clear, Xn is a RV

I Say something about xn for n large? ⇒ Certainly, look at lim
n→∞

xn

I Say something about P [Xn] for n large? ⇒ Yes, lim
n→∞

P [Xn]

I Translate what we now about regular limits to definitions for RVs

I Can start from convergence of sequences: limn→∞ xn

I Sure and almost sure convergence

I Or from convergence of probabilities: limn→∞ P [Xn]
I Convergence in probability, mean square sense and distribution
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Convergence of sequences and sure convergence

I Denote sequence of variables xN = x1, x2, . . . , xn, . . .

I Sequence xN converges to the value x if given any ε > 0

⇒ There exists n0 such that for all n > n0, |xn − x | < ε

I Sequence xn comes close to its limit ⇒ |xn − x | < ε

I And stays close to its limit ⇒ for all n > n0

I Stochastic process (sequence of RVs) XN = X1,X2, . . . ,Xn, . . .

I Realizations of XN are sequences xN

I We say SP XN converges surely to RV X if ⇒ lim
n→∞

xn = x

I For all realizations xN of XN

I Not really adequate. Even an event that happens with vanishingly
small probability prevents sure convergence
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Almost sure convergence

I RV X and stochastic process XN = X1,X2, . . . ,Xn, . . .

I We say SP XN converges almost surely to RV X if

P
[

lim
n→∞

Xn = X
]

= 1

I Almost all sequences converge, except for a set of measure 0

I Almost sure convergence denoted as ⇒ lim
n→∞

Xn = X a.s.

I Limit X is a random variable

Example

I X0 ∼ N (0, 1) (normal, mean 0, variance 1)

I Zn Bernoulli parameter p

I Define ⇒ Xn = X0 −
Zn

n
I Zn/n→ 0, then limn→∞ Xn = X0 a.s.
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Convergence in probability

I We say SP XN converges in probability to RV X if for any ε > 0

lim
n→∞

P [|Xn − X | < ε] = 1

I Probability of distance |Xn − X | becoming smaller than ε tends to 1

I Statement is about probabilities, not about processes

I The probability converges

I Realizations xN of XN might or might not converge

I Limit and probability interchanged with respect to a.s. convergence

I a.s. convergence implies convergence in probability
I If limn→∞ Xn = X then for any ε > 0 there is n0 such that
|Xn − X | < ε for all n ≥ n0

I This is true for all almost all sequences then P [|Xn − X | < ε]→ 1
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Convergence in probability (continued)

Example

I X0 ∼ N (0, 1) (normal, mean 0, variance 1)

I Zn Bernoulli parameter 1/n

I Define ⇒ Xn = X0 − Zn

I Xn converges in probability to X0 because

P [|Xn − X0| < ε] = P [|Zn| < ε]

= 1− P [Zn = 1]

= 1− 1

n
→ 1

I Plot of path xn up to n = 102, n = 103, n = 104

I Zn = 1 becomes ever rarer but still happens
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Difference between a.s. and p

I Almost sure convergence implies that almost all sequences converge

I Convergence in probability does not imply convergence of sequences

I Latter example: Xn = X0 − Zn, Zn is Bernoulli with parameter 1/n

I As we’ve seen it converges in probability

P [|Xn − X0| < ε] = 1− 1

n
→ 1

I But for almost all sequences, the lim
n→∞

Xn does not exist

I Almost sure convergence ⇒ disturbances stop happening

I Convergence in prob. ⇒ disturbances happen with vanishing freq.

I Difference not irrelevant.
I Interpret Yn as rate of change in savings
I with a.s. convergence risk is eliminated
I with convergence in probability risk decreases but does not disappear

Stoch. Systems Analysis Introduction 12



Mean square convergence

I We say SP XN converges in mean square to RV X if

lim
n→∞

E
[
|Xn − X |2

]
= 0

I Sometimes (very) easy to check

I Convergence in mean square implies convergence in probability

I From Markov’s inequality

P [|Xn − X | ≥ ε] = P
[
|Xn − X |2 ≥ ε2

]
≤

E
[
|Xn − X |2

]
ε2

I If Xn → X in mean square sense, E
[
|Xn − X |2

]
/ε2 → 0 for all ε

I Almost sure and mean square ⇒ neither implies the other
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Convergence in distribution

I Stochastic process XN. Cdf of Xn is Fn(x)

I The SP converges in distribution to RV X with distribution FX (x) if

lim
n→∞

Fn(x) = FX (x)

I For all x at which FX (x) is continuous

I Again, no claim about individual sequences, just the cdf of Xn

I Weakest form of convergence covered,

I Implied by almost sure, in probability, and mean square convergence

Example

I Yn ∼ N (0, 1)

I Zn Bernoulli parameter p

I Define ⇒ Xn = Yn − 10Zn/n

I Zn/n→ 0, then limn→∞ Fn(x) = N (0, 1) 10 20 30 40 50 60 70 80 90 100
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Convergence in distribution (continued)

I Individual sequences xn do not converge in any sense

⇒ It is the distribution that converges

n = 1 n = 10 n = 100

−15 −10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

I As the effect of Zn/n vanishes pdf of Xn converges to pdf of Yn

I Standard normal N (0, 1)
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Implications

I Sure ⇒ almost sure ⇒ in probability ⇒ in distribution

I Mean square ⇒ in probability ⇒ in distribution

I In probability ⇒ in distribution

In distribution

In probability

Mean square

Almost sure

Sure
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Sum of independent identically distributed RVs

I Independent identically distributed (i.i.d.) RVs X1,X2, . . . ,Xn, . . .

I Mean E [Xn] = µ and variance E
ˆ
(Xn − µ)2

˜
= σ2 for all n

I What happens with sum SN :=
PN

n=1 Xn as N grows?

I Expected value of sum is E [SN ] = Nµ ⇒ Diverges if µ 6= 0

I Variance is E
ˆ
(SN − Nµ)2

˜
= Nσ

⇒ Diverges if σ 6= 0 (alwyas true unless Xn is a constant)

I One interesting normalization ⇒ X̄N := (1/N)
PN

n=1 xn

I Now E [ZN ] = µ and var [ZN ] = σ2/N

I Law of large numbers (weak and strong)

I Another interesting normalization ⇒ ZN :=

PN
n=1 xn − Nµ

σ
√

N

I Now E [ZN ] = 0 and var [ZN ] = 1 for all values of N

I Central limit theorem
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Weak law of large numbers

I i.i.d. sequence or RVs X1,X2, . . . ,Xn, . . . with mean µ = E [Xn]

I Define sample average X̄N := (1/N)
∑N

n=1 xn

I Weak law of large numbers

I Sample average X̄N converges in probability to µ = E [Xn]

lim
N→∞

P
[
|X̄N − µ| > ε

]
= 1, for all ε > 0

I Strong law of large numbers

I Sample average X̄N converges almost surely to µ = E [Xn]

P

[
lim

N→∞
X̄N = µ

]
= 1

I Strong law implies weak law. Can forget weak law if so wished
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Proof of weak law of large numbers

I Weak law of large numbers is very simple to prove

Proof.

I Variance of X̄n vanishes for N large

var
[
X̄N

]
=

1

N2

n∑
n=1

var [Xn] =
σ2

N
→ 0

I But, what is the variance of X̄N?

0← σ2

N
= var

[
X̄N

]
= E

[
(X̄n − µ)2

]
I Then, |X̄N − µ| converges in mean square sense

⇒ Which implies convergence in probability

I Strong law is a little more challenging
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Central limit theorem (CLT)

Theorem

I i.i.d. sequence of RVs X1,X2, . . . ,Xn, . . .

I Mean E [Xn] = µ and variance E
[
(Xn − µ)2

]
= σ2 for all n

I Then ⇒ lim
N→∞

P

[∑N
n=1 xn − Nµ

σ
√

N
≤ x

]
=

1√
2π

∫ x

−∞
e−u2/2 du

I Former statement implies that for N sufficiently large

ZN :=

∑N
n=1 xn − Nµ

σ
√

N
∼ N (0, 1)

I ∼ means “distributed like”

I ZN converges in distribution to a standard normal RV
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CLT (continued)

I Equivalently can say ⇒
N∑

n=1

xn ∼ N (Nµ,Nσ2)

I Sum of large number of i.i.d. RVs has a normal distribution
I Cannot take a meaningful limit here.
I But intuitively, this is what the CLT states

Example

I Binomial RV X with parameters (n, p)

I Write as X =
∑n

i=1 Xi with Xi Bernoulli with parameter p

I Mean E [Xi ] = p and variance var [Xi ] = p(1− p)

I For sufficiently large n ⇒ X ∼ N (nµ, np(1− p))
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Conditional pmf and cdf for discrete RVs

I Recall definition of conditional probability for events E and F

P(E
˛̨
F ) =

P(E ∩ F )

P(F )

I Change in likelihoods when information is given, renormalization

I Define the conditional pmf of RV X given Y as (both RVs discrete)

pX |Y (x
˛̨
y) = P

ˆ
X = x

˛̨
Y = y

˜
=

P [X = x ,Y = y ]

P [Y = y ]

I Which we can rewrite as

pX |Y (x
˛̨
y) =

P [X = x ,Y = y ]

P [Y = y ]
=

pXY (x , y)

pY (y)

I Pmf for random variable x , given parameter y (“Y not random anymore”)

I Define conditional cdf as (a range of X conditional on a value of Y )

FX |Y (x
˛̨
y) = P

ˆ
X ≤ x

˛̨
Y = y

˜
=
X
z≤x

pX |Y (z
˛̨
y)
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Example

Example

I Independent Bernoulli Y and Z , variable X = Y + Z

I Conditional pmf of X given Y ? For X = 0, Y = 0

pX |Y (X = 0
∣∣Y = 0) =

P [X = 0,Y = 0]

P [Y = 0]
=

(1− p)2

1− p
= 1− p

I Or, from joint and marginal pdfs (just a matter of definition)

pX |Y (X = 0
∣∣Y = 0) =

pXY (0, 0)

pY (0)
=

(1− p)2

1− p
= 1− p

I Can compute the rest analogously

pX |Y (0|0) = (1− p), pX |Y (1|0) = p, pX |Y (2|0) = 0

pX |Y (0|1) = 0, pX |Y (1|1) = 1− p, pX |Y (2|1) = p
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Conditional pdf and cdf for continuous RVs

I Define conditional pdf of RV X given Y as (both RVs continuous)

fX |Y (x
∣∣ y) =

fXY (x , y)

fY (y)

I For motivation, define intervals ∆x = [x , x+dx ] and ∆y = [y , y+dy ]

I Can approximate conditional probability P
[
X ∈ ∆x

∣∣Y ∈ ∆y
]

as

P
[
X ∈ ∆x

∣∣Y ∈ ∆y
]

=
P [X ∈ ∆x ,Y ∈ ∆y ]

P [Y ∈ ∆y ]
≈ fXY (x , y)dxdy

fY (y)dy

I From definition of conditional pdf it follows after simplifying terms

P
[
X ∈ ∆x

∣∣Y ∈ ∆y
]
≈ fX |Y (x

∣∣ y)dx

I Which is what we would expect of a density

I Conditional cdf defined as ⇒ FX |Y (x) =

∫ x

−∞
fX |Y (u

∣∣ y)du
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Example: Communications channel

I Random message (RV) Y , transmit signal y (realization of Y )

I Received signal is x = y + z (z realization of random noise)

I Can model communication system as a relation between RVs

X = Y + Z

I Model communication noise as Z ∼ N (0, σ2) independent of Y

I Conditional pdf of X given Y . Use definition:

fX |Y (x
∣∣ y) =

fXY (x , y)

fY (y)
=

?

fY (y)

I Problem is we don’t know fXY (x , y). Have to calculate

I Computing conditional probs. typically easier than computing joints
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Example: Communications channel (continued)

I If Y = y is given, then “Y not random anymore” (Dorothy’s principle)

⇒ It still is random in reality, we are thinking of it as given

I If Y were not random, say Y = y with y given then ...

X = y + Z

I Cdf of X, now easily obtained

P [X ≤ x ] = P [y + Z ≤ x ] = P [Z ≤ x − y ] =

∫ x−y

−∞
pZ (z) dz

I But since Z is normal with 0 mean and variance σ2

P [X ≤ x ] =
1√
2πσ

∫ x−y

−∞
e−z2/2σ2

dz =
1√
2πσ

∫ x

−∞
e−(z−y)2/2σ2

dz

I X is normal with mean y and variance σ2
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Digital communications channel

I Conditioning is a common tool to compute probabilities

I Message 1 (prob. p) ⇒ Transmit Y = 1

I Message 2 (prob. q) ⇒ Transmit Y = −1

I Received signal ⇒ X = Y + Z

+ XY = ±1

Z ∼ N (0, σ2)

I Decoding rule ⇒ Ŷ = 1 if X ≥ 0, Ŷ = 0 if X < 0

I What is the probability of error, Pe := P
[
Ŷ 6= Y

]
?

I Red dots to the left and blue dots to the right are errors

x
1−1 0

Ŷ = 1Ŷ = 1

Stoch. Systems Analysis Introduction 29



Output pdf

I From communications channel example we know
I If Y = 1, then X ∼ N (1, σ2), conditional pdf is

fX |Y (x , 1) =
1√
2πσ

e−(x−1)2/2σ2

I If Y = −1, then X ∼ N (−1, σ2), conditional pdf is

fX |Y (x ,−1) =
1√
2πσ

e−(x+1)2/2σ2

x

fX |Y (x)

1−1

N (1, σ2)N (−1, σ2)
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Error probability

I Write probability of error by conditioning on Y = ±1 (total probability)

Pe = P
˘
Ŷ 6= Y

˛̨
Y = 1

¯
P
˘
Y = 1

¯
+ P

˘
Ŷ 6= Y

˛̨
Y = −1

¯
P
˘
Y = −1

¯
= P

˘
Ŷ =−1

˛̨
Y = 1

¯
p + P

˘
Ŷ = 1

˛̨
Y = −1

¯
q

I But according to the decision rule

Pe = P
˘
X < 0

˛̨
Y = 1

¯
p + P

˘
X ≥ 0

˛̨
Y = −1

¯
q

I But X given Y is normally distributed, then

Pe =
p√
2πσ

Z ∞
0

e−(x−1)2/2σ2

+
q√
2πσ

Z 0

−∞
e−(x+1)2/2σ2

=
q√
2πσ

Z 0

−∞
e−x2/2σ2

x

fX |Y (x)

1−1

N (1, σ2)N (−1, σ2)
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Definition of conditional expectation

I For continuous RVs X , Y define conditional expectation as

E
[
X
∣∣ y] =

∫ ∞
−∞

x fX |Y (x |y) dx

F
¯

or discrete RVs X , Y conditional expectation is

E
[
X
∣∣ y] =

∑
x

x pX |Y (x |y)

I Defined for given y ⇒ E
[
X
∣∣ y] is a value

I All possible values y of Y ⇒ random variable E
[
X
∣∣Y ]

I Y is RV, E
[
X
∣∣ y] value associated with outcome Y = y
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Double expectation

I If E
ˆ
X
˛̨
Y
˜

is a RV, can compute expected value EY

ˆ
EX

`
X
˛̨
Y
´˜

I Subindices are for clarity purposes, innermost expectation is with
respect to X , outermost with respect to Y

I What is EY

ˆ
EX

`
X
˛̨
Y
´˜

? Not surprisingly ⇒ E [X ] = EY

ˆ
EX

`
X
˛̨
Y
´˜

I Show for discrete RVs (write integrals for continuous)

EY

ˆ
EX

`
X
˛̨
Y
´˜

=
X

y

EX

`
X
˛̨
y
´
pY (y) =

X
y

»X
x

x pX |Y (x |y)

–
pY (y)

=
X

x

x

»X
y

pX |Y (x |y)pY (y)

–
=
X

x

x

»X
y

pX ,Y (x , y)

–
=
X

x

xpX (x) = E [X ]

I Yields a method to compute expected values

⇒ Condition on Y = y ⇒ X
˛̨
y

⇒ Compute expected value over X for given y ⇒ EX

`
X
˛̨
y
´

⇒ Compute expected value over all values y of Y ⇒ EY

ˆ
EX

`
X
˛̨
Y
´ ˜
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Example

I Seniors get A = 4 with prob. 0.5, B = 3 with prob. 0.5

I Juniors get B = 3 with prob. 0.6, B = 2 with prob. 0.4

I Exchange student’s standing: senior (junior) with prob. 0.7 (0.3)

I Expectation of X = exchange student’s grade?

I Begin conditioning on standing

E
[
X
∣∣Senior

]
= 0.5× 4 + 0.5× 3 = 3.5

E
[
X
∣∣ Junior

]
= 0.6× 3 + 0.4× 2 = 2.6

I Now sum over standing’s probability

E [X ] = E
[
X
∣∣Senior

]
P [Senior] + E

[
X
∣∣ Junior

]
P [Junior]

= 3.5× 0.7 + 2.6× 0.3

= 3.23
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Conditioning to compute expectations

I As with probabilities conditioning is useful to compute expectations.

⇒ Spreads difficulty into simpler problems

Example

I A baseball player hits Xi runs per game

I Expected number of runs is E [Xi ] = E [X ] independently of game

I Player plays N games in the season. N is random (playoffs, injuries?)

I Expected value of number of games is E [N]

I What is the expected number of runs in the season ? ⇒ E
[ N∑

i=1

Xi

]
I Both, N and Xi are random
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Sum of random number of random quantities

Step 1: Condition on N = n then[( N∑
i=1

Xi

) ∣∣N = n

]
=

n∑
i=1

Xi

Step 2: Compute expected value with respect to Xi

EXi

[( N∑
i=1

Xi

) ∣∣N = n

]
= E

[ n∑
i=1

Xi

]
= nE [X ]

Second equality possible because n is a number (not a RV like N)

Step 3: Conpute expected value with respect to values n of N

EN

[
EXi

[( N∑
i=1

Xi

) ∣∣N]] = EN

[
NE [X ]

]
= E [N] E [X ]

Yielding result ⇒ E
[ N∑

i=1

Xi

]
= E [N] E [X ]
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