

Probability review

Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

September 7, 2016

(日) (同) (三) (三)

Sigma algebras and probability spaces

Conditional probability, independence, total probability, Bayes's rule

Random variables

Discrete random variables

Commonly used discrete random variables

Continuous random variables

Commonly used continuous random variables

Expected values

Discrete random variables Continuous random variables Functions of random variables

Image: Image:

글 🖌 🔺 글 🕨

- An event is a thing that happens
- A random event is one that is not certain
- ► The probability of an event measures how likely it is to occur

Example

- ▶ I've written a student's name in a piece of paper. Who is she/he?
- Event(s): Student x's name is written in the paper
- Probability(ies): P(x) how likely is x's name to be the one written
- Probability is a measurement tool

(a)

- ► Given a space or universe *S*
 - E.g., all students in the class $S = \{x_1, x_2, \dots, x_N\}$ (x_n denote names)
- An event E is a subset of S
 - E.g. $\{x_1\}$, student with name x_1 ,
 - Or in general {x_n}, student with name x_n
 - ▶ But also {*x*₁, *x*₄}, students with names *x*₁ and *x*₄
- ▶ A sigma-Algebra \mathcal{F} is a collection of events $E \subseteq S$ such that
 - Not empty: $\mathcal{F} \neq \emptyset$
 - Closed under complement: If $E \in \mathcal{F}$, then $E^c \in \mathcal{F}$
 - ▶ Closed under countable unions: If $E_i \in \mathcal{F} \cup_{i=1}^{\infty} E_i \in \mathcal{F}$
- Note that \mathcal{F} is a set of sets

・ロト ・回ト ・ヨト ・ヨト

Example

▶ No student and all students, i.e., $\mathcal{F}_0 := \{\emptyset, S\}$

Example

► Empty set, women, men, all students, i.e., *F*₁ := {Ø, Women, Men, *S*}

Example

- \mathcal{F} including the empty set plus
- All events (sets) with one student $\{x_1\}, \ldots, \{x_N\}$ plus
- All events with two students $\{x_1, x_2\}, \{x_1, x_3\}, \dots, \{x_1, x_N\}, \{x_2, x_3\}, \dots, \{x_2, x_N\}, \{x_2, x_N\}, \dots, \{x_N\}, \dots, (x_N\}, \dots, (x_N), \dots, (x$

 $\{x_{N-1}, x_N\}$ plus

・ロト ・回ト ・ヨト ・ヨト

. . .

> All events with three students, four, \ldots , N students.

- ▶ Define a function P(E) from a sigma-Algebra \mathcal{F} to the real numbers
- P(E) is a probability if
 - \Rightarrow Probability range $\Rightarrow 0 \le P(E) \le 1$
 - \Rightarrow Probability of universe \Rightarrow P(S) = 1
 - \Rightarrow Additivity \Rightarrow Given sequence of disjoint events E_1, E_2, \dots

$$P\left(\bigcup_{i=1}^{\infty}E_{i}\right)=\sum_{i=1}^{\infty}P\left(E_{i}\right)$$

 \Rightarrow Probability of union is the sum of individual probabilities

- In additivity property number of events is possibly infinite
- Disjoint events means $E_i \cap E_j = \emptyset$

Probability example

- Sigma-algebra with all combinations of students
- Names are equiprobable $\Rightarrow P(x_n) = 1/N$ for all *n*.
 - \Rightarrow Is this function a probability? Is there enough information given?
- Sets with two students (for $n \neq m$):

$$P(\{x_n, x_m\}) = P(\{x_n\}) + P(\{x_m\}) = 2/N$$

 \Rightarrow Is this function a probability? Is there enough information given?

Have to specify probability for all elements of the sigma-algebra

 \Rightarrow Sets with 3 students \Rightarrow 3/N. Sets with 4 students \Rightarrow 4/N ...

$$\Rightarrow \text{ For universe } S \Rightarrow P(S) = P\left(\bigcup_{n=1}^{N} \{x_n\}\right) = 1$$

► Is this function a probability? ⇒ Verify properties (range, universe, additivity)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Sigma algebras and probability spaces

Conditional probability, independence, total probability, Bayes's rule

Random variables

Discrete random variables

Commonly used discrete random variables

Continuous random variables

Commonly used continuous random variables

Expected values

Discrete random variables Continuous random variables Functions of random variables

< □ > < 同 >

프 () () ()

- Partial information about the event (E.g. Name is male)
- The event E belongs to a set F
- Define the conditional probability of E given F as

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

- Renormalize probabilities to the set F
- ► Discard a piece of S
- ▶ May discard a piece of *E* as well
- ▶ Need to have P(F) > 0

< □ > < 同 >

Conditional probability example

- The name I wrote is male. What is the probability of name x_n ?
- Assume male names are $F = \{x_1, \ldots, x_M\}$
- Probability of F is P(F) = M/N (true by definition)
- ▶ If name is male, $x_n \in F$ and we have for event $E = \{x_n\}$

$$P(E \cap F) = P(\{x_n\}) = 1/N$$

Conditional probability is as you would expect

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)} = \frac{1/N}{M/N} = \frac{1}{M}$$

- ▶ If name is female $x_n \notin F$, then $P(E \cap F) = P(\emptyset) = 0$
- As you would expect, then P(E | F) = 0

ヘロン 人間 とくほと 人ほとう

- Events *E* and *F* are said independent if $P(E \cap F) = P(E)P(F)$
- According to definition of conditional probability

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)} = \frac{P(E)P(F)}{P(F)} = P(E)$$

- Knowing F does not alter our perception of E
- F has no information about E
- The symmetric is also true P(F | E) = P(F)
- Events that are not independent are dependent

イロト イポト イヨト イヨト

- Wrote one name, asked a friend to write another (possibly the same)
- Space S is sets of all pairs of names $[x_n(1), x_n(2)]$
- Sigma-algebra is cartesian product $\mathcal{F} \times \mathcal{F}$
- Pair of names chosen without coordination

$$P(\{(x_1, x_2)\}) = P(\{x_1\})P(\{x_2\}) = \frac{1}{N^2}$$

Dependent events: I wrote one name, then another name

Image: Image:

글 🖌 🖌 글 🕨

Total probability

- Consider event E and events F and F^c
- ▶ *F* and *F^c* are a partition of the space *S* (*F* \cup *F^c* = *S*, *F* \cap *F^c* = \emptyset)
- Because $F \cup F^c = S$ cover space S can write the set E as

$$E = E \cap S = E \cap (F \cup F^c) = (E \cap F) \cup (E \cap F^c)$$

▶ Because $F \cap F^c = \emptyset$ are disjoint, so is $(E \cap F) \cap (E \cap F^c) = \emptyset$. Thus

$$\mathsf{P}[E] = \mathsf{P}[(E \cap F) \cup (E \cap F^c)] = \mathsf{P}[E \cap F] + \mathsf{P}[E \cap F^c]$$

Use definition of conditional probability

 $\mathsf{P}[E] = \mathsf{P}[E \mid F] \mathsf{P}[F] + \mathsf{P}[E \mid F^{c}] \mathsf{P}[F^{c}]$

► Translate conditional information, P [E | F] and P [E | F^c] ⇒ Into unconditional information P [E]

< 日 > < 四 > < 回 > < 回 > < 回 > <

Total probability - continued

Penn 🐼

- In general, consider (possibly infinite) partition F_i, i = 1, 2, ... of S
- Sets are disjoint \Rightarrow $F_i \cap F_j = \emptyset$, $i \neq j$
- Sets F_i cover the space $\Rightarrow \bigcup_{i=1}^{\infty} F_i = S$

・ロン ・回 と ・ ヨ と ・ ヨ と …

▶ As before, because $\cup_{i=1}^{\infty} F_i = S$ cover space S can write the set E as

$$E = E \cap S = E \cap \left(\bigcup_{i=1}^{\infty} F_i\right) = \bigcup_{i=1}^{\infty} E \cap F_i$$

▶ Because $F_i \cap F_j = \emptyset$ are disjoint, so is $(E \cap F_i) \cap (E \cap F_j) = \emptyset$. Thus

$$\mathsf{P}[\boldsymbol{E}] = \mathsf{P}\left[\bigcup_{i=1}^{\infty} \boldsymbol{E} \cap \boldsymbol{F}_i\right] = \sum_{i=1}^{\infty} \mathsf{P}\left[\boldsymbol{E} \cap \boldsymbol{F}_i\right] = \sum_{i=1}^{\infty} \mathsf{P}\left[\boldsymbol{E} \mid \boldsymbol{F}_i\right] \mathsf{P}\left[\boldsymbol{F}_i\right]$$

- ▶ In this class seniors get an A with probability 0.9
- Juniors get an A with probability 0.8
- ► For a exchange student, we estimate its standing as being senior with prob. 0.7 and junior with prob. 0.3
- What is the probability of the exchange student scoring an A?
- Let A = "exchange student gets an A," S denote senior standing and J junior standing
- Use total probability

$$\mathsf{P}[A] = \mathsf{P}[A \mid S] \mathsf{P}[S] + \mathsf{P}[A \mid J] \mathsf{P}[J]$$

Or in numbers

$$P[A] = 0.9 \times 0.7 + 0.8 \times 0.3 = 0.87$$

(日) (同) (三) (三)

Bayes's Rule

From the definition of conditional probability

 $P(E \mid F)P(F) = P(E \cap F)$

▶ Likewise, for *F* conditioned on *E*, we have

 $P(F \mid E)P(E) = P(F \cap E)$

Quantities above are equal, then

$$P(E \mid F) = \frac{P(F \mid E)P(E)}{P(F)}$$

▶ Bayes's rule allows time reversion. If F (future) comes after E (past),
 ⇒ P(E | F), probability of past (E) having seen the future (F)
 ⇒ P(F | E), probability of future (F) having seen past (E)
 ▶ Models often describe present | past. Interest is often in past | present

・ロ・・ (日・・ (日・・ 日・・ 日・・

Sigma algebras and probability spaces

Conditional probability, independence, total probability, Bayes's rule

Random variables

Discrete random variables

Commonly used discrete random variables

Continuous random variables

Commonly used continuous random variables

Expected values

Discrete random variables Continuous random variables Functions of random variables

< □ > < 同 >

프 () () ()

- A RV X is a function that assigns a number to a random event
- Think of RVs as measurements.
- ▶ Event is something that happens, RV is an associated measurement
- Probabilities of RVs inferred from probabilities of underlying events

Example

- Throw a ball inside a $1m \times 1m$ square. Interested in ball position
- Random event is the place where the ball falls
- Random variables are x and y position coordinates

- ► Throw coin for head (*H*) or tail (*T*). Coin is fair P[*H*] = 1/2, P[*T*] = 1/2. Pay \$1 for *H*, charge \$1 for *T*. Earnings?
- Events are H and T
- ▶ To measure earnings define RV X with values

$$X(H) = 1, \qquad X(T) = -1$$

Probabilities of the RV are

$$P[X = 1] = P[H] = 1/2,$$

 $P[X = -1] = P[T] = 1/2$

• We also have P[X = a] = 0 for all other $a \neq 1$, $a \neq -1$

・ロン ・部 と ・ ヨ と ・ ヨ と …

- ▶ Throw 2 coins. Pay \$1 for each *H*, charge \$1 for each *T*.
- ▶ Events are *HH* and *HT*, *TH*, *TT*
- ► To measure earnings define RV Y with values

$$Y(HH) = 2$$
, $Y(HT) = 0$, $Y(TH) = 0$, $Y(TT) = -2$

Probabilities are

$$\begin{array}{l} {\sf P} \left[{X = 2} \right] &= {\sf P} \left[{HH} \right] &= 1/4, \\ {\sf P} \left[{X = 0} \right] &= {\sf P} \left[{HT} \right] + {\sf P} \left[{TH} \right] = 1/2, \\ {\sf P} \left[{X = -2} \right] = {\sf P} \left[{HT} \right] &= 1/4, \end{array}$$

э

- RVs are easier to manipulate than events
- Let $E_1 \in \{H, T\}$ be outcome of coin 1 and $E_2 \in \{H, T\}$ of coin 2
- ► Can relate X and Y as

$$Y(E_1, E_2) = X(E_1) + X(E_2)$$

- ► Throw *N* coins. Earnings?
- Enumeration becomes cumbersome
- Let $E_n \in \{H, T\}$ be outcome of *n*-th coin and define

$$Y(E_1, E_2, \ldots, E_n) = \sum_{n=1}^N X(E_n)$$

イロト イポト イヨト イヨト

- Throw a coin until landing heads for the first time. P(H) = p
- Number of throws until the first head?
- ▶ Events are *H*, *TH*, *TTH*, *TTTH*, ...
 - We stop throwing coins at first head (thus *THT* not a possible event)
- ▶ Let *N* be RV with number of throws.
- ▶ N = n if we land T in the first n 1 throws and H in the *n*-th

$$P[N = 1] = P[H] = p$$

$$P[N = 2] = P[TH] = (1 - p)p$$
:
$$P[X = n] = P[TT \dots TH] = (1 - p)^{n-1}p$$

<ロ> <部> < 部> < き> < き> <</p>

- It should be $\sum_{n=1}^{\infty} P[N=n] = 1$
- ▶ This is true because $\sum_{n=1}^{\infty} (1-p)^{n-1}$ is a geometric sum. Then

$$\sum_{n=1}^{\infty} (1-p)^{n-1} = 1 + (1-p) + (1-p)^2 + \ldots = \frac{1}{1-(1-p)} = \frac{1}{p}$$

Using this for the sum of probabilities

$$\sum_{n=1}^{\infty} P[N = n] = p \sum_{n=1}^{\infty} (1-p)^n = p \frac{1}{p} = 1.$$

イロト イヨト イヨト イヨト 三日

Indicator function

- The indicator function is a random variable
- ▶ Let *E* be an event. Let *e* be the outcome of a random event

 $\mathbb{I} \{ E \} = 1 \quad \text{if } e \in E$ $\mathbb{I} \{ E \} = 0 \quad \text{if } e \notin E$

 \blacktriangleright It indicates that outcome *e* belongs to set *E*, by taking value 1

Example

- > Number of throws N until first H. Interested on N exceeding N_0
- Event is $\{N : N > N_0\}$. Possible outcomes are N = 1, 2, ...
- ▶ Denote indicator function as $\Rightarrow \mathbb{I}_{N_0} = \mathbb{I}\{N : N > N_0\}$
- ▶ The probability $\mathsf{P}\left[\mathbb{I}_{N_0}=1\right]=\mathsf{P}\left[N>N_0\right]=(1-p)^{N_0}$

 \Rightarrow For N to exceed N₀ need N₀ consecutive tails

 \Rightarrow Doesn't matter what happens afterwards

< ロ > < 同 > < 回 > < 回 > < □ > <

Sigma algebras and probability spaces

Conditional probability, independence, total probability, Bayes's rule

Random variables

Discrete random variables

Commonly used discrete random variables

Continuous random variables

Commonly used continuous random variables

Expected values

Discrete random variables Continuous random variables Functions of random variables

글 > - < 글 >

- A discrete RV takes on, at most, a countable number of values
- Probability mass function (pmf) $p_X(x) = P[X = x]$
 - If the RV is clear from context we just write $p_X(x) = p(x)$
- If X take values in $\{x_1, x_2, \ldots\}$ pmf satisfies
 - $p(x_i) > 0$ for i = 1, 2, ...
 - p(x) = 0 for all other $x \neq x_i$
 - $\sum_{i=1}^{\infty} p(x_i) = 1$
- Pmf for "throw to first head" (p=0.3)
- Cumulative distribution function (cdf) is

$$F_X(x) = \mathsf{P}\left[X \le x\right] = \sum_{i:x_i \le x} p(x_i)$$

- Staircase function with jumps at each x_i
- ▶ Cdf for "throw to first head" (p=0.3)

0.05			 					
0.3								
0.25								
0.2								
0.15			 					
0.1			 					
0.05								
0.05			 					
								i i i
0	1	2	 	. ,	5 6		7 5	 3 10
			 -			-		
10			 					
1								
1 0.9			 					
1 0.9								
1 0.9 0.8			 					
1 0.9 0.8								
1 0.9 0.8								
1 0.9 0.8 0.7			 					
1 0.9 0.8 0.7			 					
1 0.9 0.8 0.7								
1 0.9 0.8 0.7 0.6								
1 0.9 0.8 0.7 0.6 0.5								
1 0.9 0.8 0.7 0.6 0.5								
1 0.9 0.8 0.7 0.6 0.5								
1 0.9 0.7 0.6 0.5 0.5								
1 0.8 0.7 0.5 0.4 0.3								
1 0.8 0.7 0.5 0.4 0.3 0.3								
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2								
1 0.9 0.7 0.6 0.5 0.4 0.3 0.2 0.2								
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.2								
1 0.9 0.7 0.5 0.5 0.3 0.3 0.2 0.1								10

・ロン ・四 と ・ ヨ と ・ ヨ と …

Bernoulli

- ► An experiment/bet can succeed with probability p or fail with probability (1 - p) (e.g., coin throws, any indication of an event)
- ► Bernoulli X can be 0 or 1. Pmf values $\Rightarrow p(1) = p$ $\Rightarrow p(0) = q = 1 - p$
- ► For the cdf we have $\Rightarrow F(x) = 0$ for x < 0 $\Rightarrow F(x) = q$ for $0 \le x < 1$ $\Rightarrow F(x) = 1$ for 1 < x

・ロト ・回ト ・ヨト ・ヨト

э

Geometric

- Count number of Bernoulli trials needed to register first success
- Trials succeed with probability p
- Number of trials X until success is geometric with parameter p
- Pmf is $\Rightarrow p(i) = p(1-p)^{i-1}$
 - i-1 failures plus one success. Throws are independent
- Cdf is $\Rightarrow F(i) = 1 (1 p)^i$

• reaches *i* only if first i - 1 trials fail; or just sum the geometric series

Binomial

- Count number of successes X in n Bernoulli trials
- ▶ *n* trials. Probability of success *p*. Probability of failure q = 1 p
- Then, binomial X with parameters (n, p) has pmf

$$p(i) = \binom{n}{i} p^{i} (1-p)^{n-i} = \frac{n!}{(n-i)! i!} p^{i} (1-p)^{n-i}$$

X = i if there are i successes (pⁱ) and n − i failures ((1 − p)^{n−i}).
 There are (ⁿ_i) ways of drawing i successes and n − i failures

Binomial continued

Let Y_i for i = 1,...n be Bernoulli RVs with parameter p ⇒ Y_i associated with independent events

• Can write binomial X with parameters (n, p) as $\Rightarrow X = \sum_{i=1}^{n} Y_i$

- Consider binomials Y and Z with parameters (n_Y, p) and (n_Z, p)
- Probability distribution of X = Y + Z?
- Write $Y = \sum_{i=1}^{n_Y} Y_i$ and $Z = \sum_{i=1}^{n_Z} Z_i$ with Y_i and Z_i Bernoulli with parameter p. Write X as

$$X = \sum_{i=1}^{n_Y} Y_i + \sum_{i=1}^{n_Z} Z_i$$

• Then X is binomial with parameter $(n_Y + n_Z, p)$

Poissson

Approximate a Binomial variable for large n

$$p(i) = e^{-\lambda} \frac{\lambda'}{i!}$$

- Is this a properly defined pmf? Yes
- Taylor's expansion of $e^x = 1 + x + x^2/2 + \ldots + x^i/i! + \ldots$ Then

$$\sum_{i=0}^{\infty} p(i) = e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{-\lambda} e^{\lambda} = 1$$

Poisson and binomial

- X is binomial with parameters (n, p)
- Let $n \to \infty$ while maintaining a constant product $np = \lambda$
 - If we just let $n \to \infty$ number of successes diverges. Boring.
- \blacktriangleright Compare with Poisson distribution with parameter λ

• $\lambda = 5 \ n = 6, 8, 10, 15, 20, 50$

- This is, in fact, the motivation for the definition of a Poisson RV
- Substituting $p = \lambda/n$ in the pmf of a binomial RV

$$p_n(i) = \frac{n!}{(n-i)!i!} \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$$
$$= \frac{n(n-1)\dots(n-i+1)}{n^i} \frac{\lambda^i}{i!} \frac{(1-\lambda/n)^i}{(1-\lambda/n)^i}$$

- Factorials' defs., $(1 \lambda/n)^{n-i} = (1 \lambda/n)^n/(1 \lambda/n)^i)$, reorder terms
- ▶ By definition red term is $\lim_{n \to \infty} (1 \lambda/n)^n = e^{-\lambda}$
- Black and blue terms converge to 1. From both observations

$$\lim_{n\to\infty}p_n(i)=1\frac{\lambda^i}{i!}\frac{e^{-\lambda}}{1}=e^{-\lambda}\frac{\lambda^i}{i!}$$

Limit is the pmf of a Poisson RV

- Binomial distribution is justified by counting successes
- The Poisson is an approximation for large number of trials *n*
- Poisson distribution is more tractable
- Sometimes called "law of rare events"
 - Individual events (successes) happen with small probability $p = \lambda/n$
 - ► The aggregate event, though, (number of successes) need not be rare
- Notice that all four RVs are related to coin tosses.

Image: Image:

Sigma algebras and probability spaces

Conditional probability, independence, total probability, Bayes's rule

Random variables

Discrete random variables

Commonly used discrete random variables

Continuous random variables

Commonly used continuous random variables

Expected values

Discrete random variables Continuous random variables Functions of random variables

글 > - < 글 >

Continuous RVs, probability density function

- ▶ Possible values for continuous RV X form a dense subset $X \in \mathbb{R}$
- Uncountable infinite number of possible values

 \Rightarrow May have P [X = x] = 0 for all $x \in \mathcal{X}$ (most certainly will)

 The probability density function (pdf) is a function such that for any subset X ∈ ℝ (Normal pdf to the right)

$$\mathsf{P}\left[X\in\mathcal{X}\right]=\int_{\mathcal{X}}f_X(x)$$

 Cdf can be defined as before and related to the pdf (Normal cdf to the right)

$$F_X(x) = \Pr\left[X \le x\right] = \int_{-\infty}^x f_X(u) \, du$$

•
$$\mathsf{P}[X \leq \infty] = F_X(\infty) = \lim_{x \to \infty} F_X(x) = 1$$

More on cdfs and pdfs

• When the set $\mathcal{X} = [a, b]$ is an interval of the real line

 $\mathsf{P}\left[X\in[a,b]\right]=\mathsf{P}\left[X\leq b\right]-\mathsf{P}\left[X\leq a\right]=F_X(b)-F_X(a)$

Or in terms of the pdf can be written as

$$\mathsf{P}\left[X\in[a,b]\right]=\int_a^b f_X(x)\,dx$$

For small interval $[x_0, x_0 + \delta x]$, in particular

$$\mathsf{P}\left[X \in [x_0, x + \delta x]\right] = \int_{x_0}^{x + \delta x} f_X(x) \, dx \approx f_X(x_0) \delta x$$

- Probability is the "area under the pdf" (thus "density")
- Another relationship between pdf and cdf is $\Rightarrow \frac{\partial F_X(x)}{\partial x} = f_X(x)$

From fundamental theorem of calculus ("derivative inverse of integral")

Uniform

- ▶ Model problems with equal probability of landing on an interval [*a*, *b*]
- Pdf is f(x) = 0 outside the interval [a, b] and

$$f(x) = \frac{1}{b-a}$$
, for $a \le x \le b$

• Cdf is F(x) = (x - a)/(b - a) in the interval [a, b] (0 before, 1 after)

Prob. of interval [α, β] ⊆ [a, b] is ∫_α^β f(x) = (β − α)/(b − a)
 ⇒ Depends on interval's width β − α only. Not on its position

Exponential

- Model memoryless times (more later)
- Pdf is f(x) = 0 for x < 0 and $f(x) = \lambda e^{-\lambda x}$ for $0 \le x$
- CDF obtained by integrating pdf

$$F(x) = \int_{-\infty}^{x} f(u) \, du = \int_{0}^{x} \lambda e^{-\lambda u} \, du = -e^{-\lambda u} \Big|_{0}^{x} = 1 - e^{-\lambda x}$$

Image: Image:

'문▶' ★ 문≯

Normal / Gaussian

 Appears in phenomena where randomness arises from a large number of small random effects. Pdf is

$$f(x) = \frac{1}{\sqrt{2/\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

• μ is the mean of the Normal RV. Shifts pdf to right ($\mu > 0$) or left

- σ^2 is the variance, σ the standard deviation. Controls width of pdf
 - \blacktriangleright 0.68 prob. between $\mu\pm\sigma,$ 0.997 prob. in $\mu\pm3\sigma$

• The cdf F(x) cannot be expressed in terms of elementary functions

Sigma algebras and probability spaces

Conditional probability, independence, total probability, Bayes's rule

Random variables

Discrete random variables

Commonly used discrete random variables

Continuous random variables

Commonly used continuous random variables

Expected values

Discrete random variables Continuous random variables Functions of random variables

< □ > < 同 >

프 () () ()

- ▶ We are asked to condense information about a RV in a single value
- What should this value be?
- If we are allowed a description with a few values
- What should they be?
- Expected values are convenient answers to these questions
- Beware: Expectations are condensed descriptions
- They necessarily overlook some aspects of the random phenomenon

< □ > < 同 >

- RV X taking on values x_i , i = 1, 2, ... with pmf p(x)
- The expected value of the RV X is

$$\mathbb{E}[X] := \sum_{i=1}^{\infty} x_i p(x_i) = \sum_{x:p(x)>0} xp(x)$$

- Weighted average of possible values x_i
- Common average if RV takes values x_i , i = 1, ..., N equiprobably

$$\mathbb{E}[X] = \sum_{i=1}^{N} x_i p(x_i) = \sum_{i=1}^{N} x_i \frac{1}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

- For a Bernoulli RV p(1) = p, p(0) = 1 p p(x) = 0 elsewhere
- Expected value $\Rightarrow \mathbb{E}[X] = (1)p + (0)q = p$
- For a geometric RV $p(x) = p(1-p)^{x-1} = pq^{x-1}$, with q = 1 p
- ▶ Note that $\partial q^{\times} / \partial q = xq^{\times -1}$ and that derivatives are linear operators

$$\mathbb{E}[X] = \sum_{x=1}^{\infty} x p q^{x-1} = p \sum_{x=1}^{\infty} \frac{\partial q^x}{\partial q} = p \frac{\partial}{\partial q} \left(\sum_{x=1}^{\infty} q^x \right)$$

 \blacktriangleright Sum inside derivative is geometric. Sums to q/(1-q)

$$\mathbb{E}[X] = p \frac{\partial}{\partial q} \left(\frac{q}{1-q} \right) = \frac{p}{(1-q)^2} = \frac{1}{p}$$

Time to first success is inverse of success probability. Reasonable

< ロ > < 同 > < 回 > < 回 > < □ > <

For a Poisson RV p(x) = e^{-λ}(λ^x/x!). Expected value is (First term of sum is 0, pull λ out, use x/x! = 1/(x − 1)!)

$$\mathbb{E}[X] = \sum_{x=0}^{\infty} x e^{-\lambda} \frac{\lambda^x}{x!} = \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} = \lambda$$

• Sum is Taylor's expansion of $e^{\lambda} = 1 + \lambda + \lambda^2/2! + \dots \lambda^x/x!$

$$\mathbb{E}\left[X\right] = \lambda e^{-\lambda} e^{-\lambda} = \lambda$$

- ▶ Poisson is limit of binomial for large number of trials *n* with $\lambda = np$
- Counts number of successes in n trials that succeed with prob. p
- Expected number of successes is $\lambda = np$,

 \Rightarrow Number of trials \times probability of individual success

- Continuous RV X taking values on \mathbb{R} with pdf f(x)
- The expected value of the RV X is

$$\mathbb{E}\left[X\right] := \int_{-\infty}^{\infty} xf(x) \, dx$$

• Compare with $\mathbb{E}[X] := \sum_{x:p(x)>0} xp(x)$ in the discrete RV case

・ロン ・部 と ・ ヨ と ・ ヨ と …

For a normal RV (add and subtract μ , separate integrals)

$$\mathbb{E}[X] = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} x e^{\frac{(x-\mu)^2}{2\sigma^2}}$$
$$= \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} (x+\mu-\mu) e^{\frac{(x-\mu)^2}{2\sigma^2}}$$
$$= \mu \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{\frac{(x-\mu)^2}{2\sigma^2}} + \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} (x-\mu) e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

- First integral is 1 because it integrates a pdf in the whole real line.
- Second integral is 0 by symmetry
- Then $\Rightarrow \mathbb{E}[X] = \mu$
- ▶ The mean of a RV with a symmetric pdf is the point of symmetry

For a uniform RV f(x) = 1/(b-a) between a and b. Expectation is

$$\mathbb{E}[X] := \int_{-\infty}^{\infty} xf(x) \, dx = \int_{a}^{b} \frac{x}{b-a} \, dx = \frac{b^2 - a^2}{2(b-a)} = (a+b)/2$$

- Of course, since pdf is symmetric around (a + b)/2
- ▶ For an exponential RV (non symmetric) simply integrate by parts

$$\mathbb{E}[X] = \int_0^\infty x e^{-\lambda x} \, dx \qquad = x e^{-\lambda x} \Big|_0^\infty + \int_0^\infty e^{-\lambda x} \, dx$$
$$= x e^{-\lambda x} \Big|_0^\infty + \frac{e^{-\lambda x}}{\lambda} \Big|_0^\infty \qquad = \frac{1}{\lambda}$$

・ロト ・回ト ・ヨト ・ヨト

Expected value of a function of a RV

- Consider a function g(X) of a RV X. Expected value of g(X)?
- g(X) is also a RV, then it also has a pmf $p_{g(X)}(g(X))$

$$\mathbb{E}\left[g(X)\right] = \sum_{g(x): p_{g(X)}(g(x)) > 0} g(x) p_{g(X)}(g(x))$$

• If possible values of X are x_i possible values of g(X) are $g(x_i)$ and

$$p_{g(X)}(g(x_i)) = p_X(x_i)$$

• Then we can write $\mathbb{E}[g(X)]$ as

$$\mathbb{E}\left[g(X)\right] = \sum_{i=1}^{\infty} g(x_i) p_{g(X)}(g(x_i)) = \sum_{i=1}^{\infty} g(x_i) p_X(x_i)$$

- Weighted average of functional values. No need to find pmf of g(X)
- Same thing can be proved for a continuous RV

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$$

• Consider a linear function (actually affine) g(X) = aX + b

$$\mathbb{E}[aX + b] = \sum_{i=1}^{\infty} (ax_i + b)p_X(x_i)$$
$$= \sum_{i=1}^{\infty} ax_i p_X(x_i) + \sum_{i=1}^{\infty} bp_X(x_i)$$
$$= a\sum_{i=1}^{\infty} x_i p_X(x_i) + b\sum_{i=1}^{\infty} p_X(x_i)$$
$$= a\mathbb{E}[X] + b1$$

Can interchange expectation with additive/multiplicative constants
 ⇒ E [aX + b] = aE [X] + b

э

Expected value of an indicator function

Indicator function indicates an event by taking value 1 and 0 else

► Let
$$\mathcal{X}$$
 be a set $\Rightarrow \mathbb{I}\{x \in \mathcal{X}\} = 1$, if $x \in \mathcal{X}$
 $\Rightarrow \mathbb{I}\{x \in \mathcal{X}\} = 0$, if $x \notin \mathcal{X}$

• Expected value of $\mathbb{I}\{x \in \mathcal{X}\}$ (discrete case)

$$\mathbb{E}\left[\mathbb{I}\left\{x \in \mathcal{X}\right\}\right] = \sum_{x: p_X(x) > 0} \mathbb{I}\left\{x \in \mathcal{X}\right\} p_X(x) = \sum_{x \in \mathcal{X}} p_X(x) = \mathsf{P}\left[x \in \mathcal{X}\right]$$

Likewise in the continuous case

$$\mathbb{E}\left[\mathbb{I}\left\{x \in \mathcal{X}\right\}\right] = \int_{-\infty}^{\infty} \mathbb{I}\left\{x \in \mathcal{X}\right\} f_X(x) = \int_{x \in \mathcal{X}} f_X(x) = \mathsf{P}\left[x \in \mathcal{X}\right]$$

- Expected value of indicator variable = Probability of indicated event
- Compare with expectation of Bernoulli RV (it "indicates success")

(日) (同) (三) (三)

Moments, central moments & variance

▶ *n*-th moment of a RV is the expected value of its *n*-th power $\mathbb{E}[X^n]$

$$\mathbb{E}\left[X^{n}\right] = \sum_{i=1}^{\infty} x_{i}^{n} p(x_{i})$$

▶ *n*-th central moment corrects for expected value $\mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^n\right]$

$$\mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{n}\right] = \sum_{i=1}^{\infty} \left(x_{i} - \mathbb{E}\left[X\right]\right)^{n} p(x_{i})$$

- ▶ 0-th order moment is $\mathbb{E}[X^0] = 1$; 1-st moment is the mean $\mathbb{E}[X]$
- Second central moment is the variance. Measures width of the pmf

$$\operatorname{var}\left[X\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^{2}\right] = \mathbb{E}\left[X^{2}\right] - \mathbb{E}^{2}[X]$$

- 3-rd moment measures skewness (0 if pmf symmetric around mean)
- 4-th moment measures heaviness of tails (related to kurtosis)

< □> < □> < □> < □> < □>