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Probability

I An event is a thing that happens

I A random event is one that is not certain

I The probability of an event measures how likely it is to occur

Example

I I’ve written a student’s name in a piece of paper. Who is she/he?

I Event(s): Student x ’s name is written in the paper

I Probability(ies): P(x) how likely is x ’s name to be the one written

I Probability is a measurement tool

Stoch. Systems Analysis Introduction 3



Sigma-Algebra

I Given a space or universe S
I E.g., all students in the class S = {x

1

, x
2

, . . . , x
N

} (x
n

denote names)

I An event E is a subset of S
I E.g. {x

1

}, student with name x
1

,
I Or in general {x

n

}, student with name x
n

I But also {x
1

, x
4

}, students with names x
1

and x
4

I A sigma-Algebra F is a collection of events E ✓ S such that
I Not empty: F 6= ;
I Closed under complement: If E 2 F , then E c 2 F
I Closed under countable unions: If E

i

2 F [1
i=1

E
i

2 F

I Note that F is a set of sets

Stoch. Systems Analysis Introduction 4



Examples of Sigma-Algebras

Example

I No student and all students, i.e., F
0

:= {;, S}

Example

I Empty set, women, men, all students, i.e.,
F

1

:= {;,Women,Men, S}

Example

I F including the empty set plus

I All events (sets) with one student {x
1

}, . . . , {x
N

} plus

I All events with two students {x
1

, x
2

}, {x
1

, x
3

}, . . ., {x
1

, x
N

},
{x

2

, x
3

}, . . ., {x
2

, x
N

},
. . .

{x
N�1

, x
N

} plus

I All events with three students, four, . . ., N students.
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Axioms of probability

I Define a function P(E ) from a sigma-Algebra F to the real numbers

I P(E ) is a probability if

) Probability range ) 0  P(E )  1

) Probability of universe ) P(S) = 1

) Additivity ) Given sequence of disjoint events E
1

,E
2

, . . .

P

 1[

i=1

E
i

!
=

1X

i=1

P (E
i

)

) Probability of union is the sum of individual probabilities

I In additivity property number of events is possibly infinite

I Disjoint events means E
i

\ E
j

= ;
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Probability example

I Sigma-algebra with all combinations of students

I Names are equiprobable ) P(x
n

) = 1/N for all n.

) Is this function a probability? Is there enough information given?

I Sets with two students (for n 6= m):

P({x
n

, x
m

}) = P({x
n

}) + P({x
m

}) = 2/N

) Is this function a probability? Is there enough information given?

I Have to specify probability for all elements of the sigma-algebra

) Sets with 3 students ) 3/N. Sets with 4 students ) 4/N ...

) For universe S ) P(S) = P

 
N[

n=1

{x
n

}
!

= 1

I Is this function a probability? ) Verify properties (range, universe, additivity)
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Conditional probability

I Partial information about the event (E.g. Name is male)

I The event E belongs to a set F

I Define the conditional probability of E given F as

P(E
��F ) = P(E \ F )

P(F )

I Renormalize probabilities to the set F

I Discard a piece of S

I May discard a piece of E as well

I Need to have P(F ) > 0 S

F

E
1

E
2

\ F E
2
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Conditional probability example

I The name I wrote is male. What is the probability of name x
n

?

I Assume male names are F = {x
1

, . . . , x
M

}
I Probability of F is P(F ) = M/N (true by definition)

I If name is male, x
n

2 F and we have for event E = {x
n

}

P(E \ F ) = P({x
n

}) = 1/N

I Conditional probability is as you would expect

P(E
��F ) = P(E \ F )

P(F )
=

1/N

M/N
=

1

M

I If name is female x
n

/2 F , then P(E \ F ) = P(;) = 0

I As you would expect, then P(E
��F ) = 0
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Independence

I Events E and F are said independent if P(E \ F ) = P(E )P(F )

I According to definition of conditional probability

P(E
��F ) = P(E \ F )

P(F )
=

P(E )P(F )

P(F )
= P(E )

I Knowing F does not alter our perception of E

I F has no information about E

I The symmetric is also true P(F
��E ) = P(F )

I Events that are not independent are dependent
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Independence example

I Wrote one name, asked a friend to write another (possibly the same)

I Space S is sets of all pairs of names [x
n

(1), x
n

(2)]

I Sigma-algebra is cartesian product F ⇥ F

I Pair of names chosen without coordination

P
�
{(x

1

, x
2

)}
�
= P

�
{x

1

})P
�
{x

2

}
�
=

1

N2

I Dependent events: I wrote one name, then another name
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Total probability

I Consider event E and events F and F c

I F and F c are a partition of the space S (F [ F c = S , F \ F c = ;)

I Because F [ F c = S cover space S can write the set E as

E = E \ S = E \ (F [ F c) = (E \ F ) [ (E \ F c)

I Because F \ F c = ; are disjoint, so is (E \ F )\ (E \ F c) = ;. Thus

P [E ] = P [(E \ F ) [ (E \ F c)] = P [E \ F ] + P [E \ F c ]

I Use definition of conditional probability

P [E ] = P
⇥
E
��F
⇤
P [F ] + P

⇥
E
��F c

⇤
P [F c ]

I Translate conditional information, P
⇥
E
��F
⇤
and P

⇥
E
��F c

⇤

) Into unconditional information P [E ]

Stoch. Systems Analysis Introduction 13



Total probability - continued

I In general, consider (possibly infinite)
partition F

i

, i = 1, 2, . . . of S

I Sets are disjoint ) F
i

\ F
j

= ;, i 6= j

I Sets F
i

cover the space ) [1
i=1

F
i

= S

F

1

F

2

F

3

E \ F

1

E \ F

2

E \ F

3

I As before, because [1
i=1

F
i

= S cover space S can write the set E as

E = E \ S = E \
⇣ 1[

i=1

F
i

⌘
=

1[

i=1

E \ F
i

I Because F
i

\ F
j

= ; are disjoint, so is (E \ F
i

) \ (E \ F
j

) = ;. Thus

P [E ] = P

"1[

i=1

E \ F
i

#
=

1X

i=1

P [E \ F
i

] =
1X

i=1

P
⇥
E
��F

i

⇤
P [F

i

]
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Total probability example

I In this class seniors get an A with probability 0.9

I Juniors get an A with probability 0.8

I For a exchange student, we estimate its standing as being senior
with prob. 0.7 and junior with prob. 0.3

I What is the probability of the exchange student scoring an A?

I Let A = “exchange student gets an A,” S denote senior standing
and J junior standing

I Use total probability

P [A] = P
⇥
A
�� S
⇤
P [S ] + P

⇥
A
�� J
⇤
P [J]

I Or in numbers

P [A] = 0.9⇥ 0.7 + 0.8⇥ 0.3 = 0.87
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Bayes’s Rule

I From the definition of conditional probability

P(E
��F )P(F ) = P(E \ F )

I Likewise, for F conditioned on E , we have

P(F
��E )P(E ) = P(F \ E )

I Quantities above are equal, then

P(E
��F ) =

P(F
��E )P(E )
P(F )

I Bayes’s rule allows time reversion. If F (future) comes after E (past),

) P(E
��F ), probability of past (E ) having seen the future (F )

) P(F
��E ), probability of future (F ) having seen past (E )

I Models often describe present
�� past. Interest is often in past

�� present
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Random variables (RV) definition

I A RV X is a function that assigns a number to a random event

I Think of RVs as measurements.

I Event is something that happens, RV is an associated measurement

I Probabilities of RVs inferred from probabilities of underlying events

Example

I Throw a ball inside a 1m ⇥ 1m square. Interested in ball position

I Random event is the place where the ball falls

I Random variables are x and y position coordinates
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Example 1

I Throw coin for head (H) or tail (T ). Coin is fair P [H] = 1/2,
P [T ] = 1/2. Pay $1 for H, charge $1 for T . Earnings?

I Events are H and T

I To measure earnings define RV X with values

X (H) = 1, X (T ) = �1

I Probabilities of the RV are

P [X = 1] = P [H] = 1/2,

P [X = �1] = P [T ] = 1/2

I We also have P [X = a] = 0 for all other a 6= 1, a 6= �1
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Example 2

I Throw 2 coins. Pay $1 for each H, charge $1 for each T .

I Events are HH and HT , TH, TT

I To measure earnings define RV Y with values

Y (HH) = 2, Y (HT ) = 0, Y (TH) = 0, Y (TT ) = �2

I Probabilities are

P [X = 2] = P [HH] = 1/4,

P [X = 0] = P [HT ] + P [TH] = 1/2,

P [X = �2] = P [HT ] = 1/4,
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About Examples 1 & 2

I RVs are easier to manipulate than events

I Let E
1

2 {H,T} be outcome of coin 1 and E
2

2 {H,T} of coin 2

I Can relate X and Y as

Y (E
1

,E
2

) = X (E
1

) + X (E
2

)

I Throw N coins. Earnings?

I Enumeration becomes cumbersome

I Let E
n

2 {H,T} be outcome of n-th coin and define

Y (E
1

,E
2

, . . . ,E
n

) =
NX

n=1

X (E
n

)
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Example 3

I Throw a coin until landing heads for the first time. P(H) = p

I Number of throws until the first head?

I Events are H, TH, TTH, TTTH, . . .
I We stop throwing coins at first head (thus THT not a possible event)

I Let N be RV with number of throws.

I N = n if we land T in the first n � 1 throws and and H in the n-th

P [N = 1] = P [H] = p

P [N = 2] = P [TH] = (1� p)p

...

P [X = n] = P [TT . . .TH] = (1� p)n�1p
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Example 3 - continued

I It should be
P1

n=1

P [N=n] = 1

I This is true because
P1

n=1

(1� p)n�1 is a geometric sum. Then

1X

n=1

(1� p)n�1 = 1 + (1� p) + (1� p)2 + . . . =
1

1� (1� p)
=

1

p

I Using this for the sum of probabilities

1X

n=1

P [N = n] = p
1X

n=1

(1� p)n = p
1

p
= 1.
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Indicator function

I The indicator function is a random variable

I Let E be an event. Let e be the outcome of a random event

I {E} = 1 if e 2 E

I {E} = 0 if e /2 E

I It indicates that outcome e belongs to set E , by taking value 1

Example

I Number of throws N until first H. Interested on N exceeding N
0

I Event is {N : N > N
0

}. Possible outcomes are N = 1, 2, . . .

I Denote indicator function as ) I
N

0

= I {N : N > N
0

}
I The probability P [I

N

0

= 1] = P [N > N
0

] = (1� p)N0

) For N to exceed N
0

need N
0

consecutive tails

) Doesn’t matter what happens afterwards
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Probability mass & cumulative distribution functions

I A discrete RV takes on, at most, a countable number of values
I Probability mass function (pmf) p

X

(x) = P [X = x ]
I If the RV is clear from context we just write p

X

(x) = p(x)

I If X take values in {x
1

, x
2

, . . .} pmf satisfies
I p(x

i

) > 0 for i = 1, 2, . . .
I p(x) = 0 for all other x 6= x

i

I
P1

i=1

p(x
i

) = 1

I Pmf for “throw to first head” (p=0.3)

I Cumulative distribution function (cdf) is

F
X

(x) = P [X  x ] =
X

i :x

i

x

p(x
i

)

I Staircase function with jumps at each x
i

I Cdf for “throw to first head” (p=0.3)

1 2 3 4 5 6 7 8 9 10
0
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Bernoulli

I An experiment/bet can succeed with probability p or fail with
probability (1� p) (e.g., coin throws, any indication of an event)

I Bernoulli X can be 0 or 1. Pmf values ) p(1) = p
) p(0) = q = 1� p

I For the cdf we have ) F (x) = 0 for x < 0
) F (x) = q for 0  x < 1
) F (x) = 1 for 1 < x

pmf cdf

0 1
0

0.1

0.2

0.3
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0.5
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Geometric

I Count number of Bernoulli trials needed to register first success

I Trials succeed with probability p

I Number of trials X until success is geometric with parameter p
I Pmf is ) p(i) = p(1� p)i�1

I i � 1 failures plus one success. Throws are independent

I Cdf is ) F (i) = 1� (1� p)i

I reaches i only if first i � 1 trials fail; or just sum the geometric series

pmf cdf
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Binomial

I Count number of successes X in n Bernoulli trials

I n trials. Probability of success p. Probability of failure q = 1� p
I Then, binomial X with parameters (n, p) has pmf

p(i) =

✓
n

i

◆
pi (1� p)n�i =

n!

(n � i)!i !
pi (1� p)n�i

I X = i if there are i successes (pi ) and n � i failures ((1� p)n�i ).
I There are

�
n

i

�
ways of drawing i successes and n � i failures

pmf cdf
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Binomial continued

I Let Y
i

for i = 1, . . . n be Bernoulli RVs with parameter p

) Y
i

associated with independent events

I Can write binomial X with parameters (n, p) as ) X =
nX

i=1

Y
i

I Consider binomials Y and Z with parameters (n
Y

, p) and (n
Z

, p)

I Probability distribution of X = Y + Z?

I Write Y =
P

n

Y

i=1

Y
i

and Z =
P

n

Z

i=1

Z
i

with Y
i

and Z
i

Bernoulli with
parameter p. Write X as

X =
n

YX

i=1

Y
i

+
n

ZX

i=1

Z
i

I Then X is binomial with parameter (n
Y

+ n
Z

, p)
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Poissson

I Approximate a Binomial variable for large n

p(i) = e���
i

i !
I Is this a properly defined pmf? Yes
I Taylor’s expansion of ex = 1 + x + x2/2 + . . .+ x i/i ! + . . .. Then

1X

i=0

p(i) = e��
1X

i=0

�i

i !
= e��e� = 1

pmf cdf
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Poisson and binomial

I X is binomial with parameters (n, p)
I Let n ! 1 while maintaining a constant product np = �

I If we just let n ! 1 number of successes diverges. Boring.
I Compare with Poisson distribution with parameter �

I � = 5 n = 6, 8, 10, 15, 20, 50
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0.05

0.1
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Poisson and binomial - continued

I This is, in fact, the motivation for the definition of a Poisson RV
I Substituting p = �/n in the pmf of a binomial RV

p
n

(i) =
n!

(n � i)!i !

✓
�
n

◆
i

✓
1� �

n

◆
n�i

=
n(n � 1) . . . (n � i + 1)

ni

�i

i !
(1� �/n)n

(1� �/n)i

I Factorials’ defs., (1� �/n)n�i = (1� �/n)n/(1� �/n)i ), reorder terms

I By definition red term is lim
n!1(1� �/n)n = e��

I Black and blue terms converge to 1. From both observations

lim
n!1

p
n

(i) = 1
�i

i !

e��

1
= e���

i

i !

I Limit is the pmf of a Poisson RV
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Poisson and binomial - continued

I Binomial distribution is justified by counting successes

I The Poisson is an approximation for large number of trials n

I Poisson distribution is more tractable

I Sometimes called “law of rare events”
I Individual events (successes) happen with small probability p = �/n
I The aggregate event, though, (number of successes) need not be rare

I Notice that all four RVs are related to coin tosses.
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Continuous RVs, probability density function

I Possible values for continuous RV X form a dense subset X 2 R
I Uncountable infinite number of possible values

) May have P [X = x ] = 0 for all x 2 X (most certainly will)

I The probability density function (pdf) is a
function such that for any subset X 2 R
(Normal pdf to the right)

P [X 2 X ] =

Z

X
f
X

(x)

I Cdf can be defined as before and related to
the pdf (Normal cdf to the right)

F
X

(x) = Pr [X  x ] =

Z
x

�1
f
X

(u) du

I P [X  1] = F
X

(1) = lim
x!1

F
X

(x) = 1
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More on cdfs and pdfs

I When the set X = [a, b] is an interval of the real line

P [X 2 [a, b]] = P [X  b]� P [X  a] = F
X

(b)� F
X

(a)

I Or in terms of the pdf can be written as

P [X 2 [a, b]] =

Z
b

a

f
X

(x) dx

I For small interval [x
0

, x
0

+ �x ], in particular

P [X 2 [x
0

, x + �x ]] =

Z
x+�x

x

0

f
X

(x) dx ⇡ f
X

(x
0

)�x

I Probability is the “area under the pdf” (thus “density”)

I Another relationship between pdf and cdf is ) @F
X

(x)
@x

= f
X

(x)

I From fundamental theorem of calculus (“derivative inverse of integral”)
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Uniform

I Model problems with equal probability of landing on an interval [a, b]
I Pdf is f (x) = 0 outside the interval [a, b] and

f (x) =
1

b � a
, for a  x  b

I Cdf is F (x) = (x � a)/(b� a) in the interval [a, b] (0 before, 1 after)

I Prob. of interval [↵,�] ✓ [a, b] is
R �
↵ f (x) = (� � ↵)/(b � a)

) Depends on interval’s width � � ↵ only, Not on its position

pdf cdf
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Exponential

I Model memoryless times (more later)

I Pdf is f (x) = 0 for x < 0 and f (x) = �e��x for 0  x

I CDF obtained by integrating pdf

F (x) =

Z
x

�1
f (u) du =

Z
x

0

�e��u du = �e��u

����
x

0

= 1� e��x

pdf cdf
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Normal / Gaussian

I Appears in phenomena where randomness arises from a large
number of small random e↵ects. Pdf is

f (x) =
1p
2/⇡�

e�(x�µ)2/2�2

I µ is the mean of the Normal RV. Shifts pdf to right (µ > 0) or left
I �2 is the variance, � the standard deviation. Controls width of pdf

I 0.68 prob. between µ± �, 0.997 prob. in µ± 3�

I The cdf F (x) cannot be expressed in terms of elementary functions

pdf cdf
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Expected values
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Expected values

I We are asked to condense information about a RV in a single value

I What should this value be?

I If we are allowed a description with a few values

I What should they be?

I Expected values are convenient answers to these questions

I Beware: Expectations are condensed descriptions

I They necessarily overlook some aspects of the random phenomenon
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Definition for discrete RVs

I RV X taking on values x
i

, i = 1, 2, . . . with pmf p(x)

I The expected value of the RV X is

E [X ] :=
1X

i=1

x
i

p(x
i

) =
X

x :p(x)>0

xp(x)

I Weighted average of possible values x
i

I Common average if RV takes values x
i

, i = 1, . . . ,N equiprobably

E [X ] =
NX

i=1

x
i

p(x
i

) =
NX

i=1

x
i

1

N
=

1

N

NX

i=1

x
i
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Expected value of Bernoulli and geometric RVs

I For a Bernoulli RV p(1) = p, p(0) = 1� p p(x) = 0 elsewhere

I Expected value ) E [X ] = (1)p + (0)q = p

I For a geometric RV p(x) = p(1� p)x�1 = pqx�1, with q = 1� p

I Note that @qx/@q = xqx�1 and that derivatives are linear operators

E [X ] =
1X

x=1

xpqx�1 = p
1X

x=1

@qx

@q
= p

@

@q

✓ 1X

x=1

qx
◆

I Sum inside derivative is geometric. Sums to q/(1� q)

E [X ] = p
@

@q

✓
q

1� q

◆
=

p

(1� q)2
=

1

p

I Time to first success is inverse of success probability. Reasonable
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Expected value of Poisson RV

I For a Poisson RV p(x) = e��(�x/x!). Expected value is (First term
of sum is 0, pull � out, use x/x! = 1/(x � 1)!)

E [X ] =
1X

x=0

xe���
x

x!
= �e��

1X

x=1

�x�1

(x � 1)!
= �

I Sum is Taylor’s expansion of e� = 1 + �+ �2/2! + . . .�x/x!

E [X ] = �e��e�� = �

I Poisson is limit of binomial for large number of trials n with � = np

I Counts number of successes in n trials that succeed with prob. p

I Expected number of successes is � = np,

) Number of trials ⇥ probability of individual success
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Definition for continuous RVs

I Continuous RV X taking values on R with pdf f (x)

I The expected value of the RV X is

E [X ] :=

Z 1

�1
xf (x) dx

I Compare with E [X ] :=
P

x :p(x)>0

xp(x) in the discrete RV case
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Expected values of normal RV

I For a normal RV (add and subtract µ, separate integrals)

E [X ] =
1p
2⇡�

Z 1

�1
xe

(x�µ)

2

2�2

=
1p
2⇡�

Z 1

�1
(x + µ� µ)e

(x�µ)

2

2�2

= µ
1p
2⇡�

Z 1

�1
e

(x�µ)

2

2�2 +
1p
2⇡�

Z 1

�1
(x � µ)e

(x�µ)

2

2�2

I First integral is 1 because it integrates a pdf in the whole real line.

I Second integral is 0 by symmetry

I Then ) E [X ] = µ

I The mean of a RV with a symmetric pdf is the point of symmetry
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Expected value of uniform and exponential RVs

I For a uniform RV f (x) = 1/(b � a) between a and b. Expectation is

E [X ] :=

Z 1

�1
xf (x) dx =

Z
b

a

x

b � a
dx =

b2 � a2

2(b � a)
= (a+ b)/2

I Of course, since pdf is symmetric around (a+ b)/2

I For an exponential RV (non symmetric) simply integrate by parts

E [X ] =

Z 1

0

xe��x dx = xe��x
���
1

0

+

Z 1

0

e��x dx

= xe��x
���
1

0

+
e��x

�

���
1

0

=
1

�
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Expected value of a function of a RV

I Consider a function g(X ) of a RV X . Expected value of g(X )?

I g(X) is also a RV, then it also has a pmf p
g(X )

�
g(X)

�

E [g(X )] =
X

g(x):p

g(X )

(g(x))>0

g(x)p
g(X )

�
g(x)

�

I If possible values of X are x
i

possible values of g(X ) are g(x
i

) and

p
g(X )

�
g(x

i

)
�
= p

X

(x
i

)

I Then we can write E [g(X )] as

E [g(X )] =
1X

i=1

g(x
i

)p
g(X )

�
g(x

i

)
�
=

1X

i=1

g(x
i

)p
X

(x
i

)

I Weighted average of functional values. No need to find pmf of g(X )

I Same thing can be proved for a continuous RV

E [g(X )] =

Z 1

�1
g(x)f

X

(x) dx

Stoch. Systems Analysis Introduction 49



Expected value of a linear transformation

I Consider a linear function (actually a�ne) g(X ) = aX + b

E [aX + b] =
1X

i=1

(ax
i

+ b)p
X

(x
i

)

=
1X

i=1

ax
i

p
X

(x
i

) +
1X

i=1

bp
X

(x
i

)

= a
1X

i=1

x
i

p
X

(x
i

) + b
1X

i=1

p
X

(x
i

)

= aE [X ] + b1

I Can interchange expectation with additive/multiplicative constants

) E [aX + b] = aE [X ] + b

Stoch. Systems Analysis Introduction 50



Expected value of an indicator function

I Indicator function indicates an event by taking value 1 and 0 else

I Let X be a set ) I {x 2 X} = 1, if x 2 X
) I {x 2 X} = 0, if x /2 X

I Expected value of I {x 2 X} (discrete case)

E [I {x 2 X}] =
X

x :p

X

(x)>0

I {x 2 X}p
X

(x) =
X

x2X
p
X

(x) = P [x 2 X ]

I Likewise in the continuous case

E [I {x 2 X}] =
Z 1

�1
I {x 2 X}f

X

(x) =

Z

x2X
f
X

(x) = P [x 2 X ]

I Expected value of indicator variable = Probability of indicated event

I Compare with expectation of Bernoulli RV (it “indicates success”)
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Moments, central moments & variance

I n-th moment of a RV is the expected value of its n-th power E [X n]

E [X n] =
1X

i=1

xn
i

p(x
i

)

I n-th central moment corrects for expected value E
h�
X � E [X ]

�
n

i

E
h�
X � E [X ]

�
n

i
=

1X

i=1

�
x
i

� E [X ]
�
n

p(x
i

)

I 0-th order moment is E
⇥
X 0

⇤
= 1; 1-st moment is the mean E [X ]

I Second central moment is the variance. Measures width of the pmf

var [X ] = E
h�
X � E [X ]

�
2

i
= E

⇥
X 2

⇤
� E2[X ]

I 3-rd moment measures skewness (0 if pmf symmetric around mean)

I 4-th moment measures heaviness of tails (related to kurtosis)

Stoch. Systems Analysis Introduction 52


	Sigma algebras and probability spaces
	Conditional probability, independence, total probability, Bayes's rule
	Random variables
	Discrete random variables
	Commonly used discrete random variables

	Continuous random variables
	Commonly used continuous random variables

	Expected values
	Discrete random variables
	Continuous random variables
	Functions of random variables


