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Joint cdf

I Want to study problems with more than one RV. Say, e.g., X and Y

I Probability distributions of X and Y are not sufficient

⇒ Joint probability distribution of (X ,Y ). Joint cdf defined as

FXY (x , y) = P [X ≤ x ,Y ≤ y ]

I If X ,Y clear from context omit subindex to write FXY (x , y) = F (x , y)

I Can write FX (x) by considering all possible values of Y

FX (x) = P [X ≤ x ] = P [X ≤ x ,Y ≤ ∞] = FXY (x ,∞)

I Likewise ⇒ FY (y) = FXY (∞, y)

I In this context FX (x) and FY (y) are called marginal cdfs
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Joint pmf

I Discrete RVs X with possible values X := {x1, x2, . . .} and Y with
possible values Y := {y1, y2, . . .}

I Joint pmf of (X ,Y ) defined as

pXY (x , y) = P [X = x ,Y = y ]

I Possible values (x , y) are elements of the Cartesian product X × Y
I (x1, y1), (x1, y2), . . ., (x2, y1), (x2, y2), . . ., (x3, y1), (x3, y2), . . .

I pX (x) obtained by summing over all possible values of Y

pX (x) = P [X = x ] =
∑
y∈Y

P [X = x ,Y = y ] =
∑
y∈Y

pXY (x , y)

I Likewise ⇒ pY (y) =
∑
x∈X

pXY (x , y)

I Marginal pmfs
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Joint pdf

I Continuous variables X , Y . Arbitrary sets A ∈ R2

I Joint pdf is a function fXY (x , y) : R2 → R+ such that

P [(X ,Y ) ∈ A] =

∫∫
A
fXY (x , y) dxdy

I Marginalization. There are two ways of writing P [X ∈ X ]

P [X ∈ X ] = P [X ∈ X ,Y ∈ R] =

∫
X∈X

∫ +∞

−∞
fXY (x , y) dydx

I From the definition of fX (x) ⇒ P [X ∈ X ] =
∫
X∈X fX (x) dx

I Lipstick on a pig (same thing written differently is still same thing)

fX (x) =

∫ +∞

−∞
fXY (x , y) dy , fY (y) =

∫ +∞

−∞
fXY (x , y) dx
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Example

I Draw two Bernoulli RVs B1,B2 with the same parameter p

I Define X = B1 and Y = B1 + B2

I The probability distribution of X is

pX (0) = 1− p, pX (1) = p

I Probability distribution of Y is

pY (0) = (1− p)2, pX (1) = 2p(1− p), pX (2) = p2

I Joint probability distribution of X and Y

pXY (0, 0) = (1− p)2, pXY (0, 1) = p(1− p), pXY (0, 2) = 0

pXY (1, 0) = 0, pXY (1, 1) = p(1− p), pXY (1, 2) = p2
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Random vectors

I For convenience arrange RVs in a vector.

I Prob. distribution of vector is joint distribution of its components

I Consider, e.g., two RVs X and Y . Random vector is X = [X ,Y ]T

I If X and Y are discrete, vector variable X is discrete with pmf

pX(x) = pX
(
[x , y ]T

)
= pXY (x , y)

I If X , Y continuous, X continuous

fX(x) = fX
(
[x , y ]T

)
= fXY (x , y)

I Vector cdf is ⇒ FX(x) = FX

(
[x , y ]T

)
= FXY (x , y))

I In general, can define n-dimensional RVs X := [X1,X2, . . . ,Xn]T

I Just a matter of notation
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Joint expectations

I RVs X and Y and function g(X ,Y ). Function g(X ,Y ) also a RV

I Expected value of g(X ,Y ) when X and Y discrete can be written as

E [g(X ,Y )] =
∑

x,y :pXY (x,y)>0

g(x , y)pXY (x , y)

I When X and Y are continuous

E [g(X ,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x , y)fXY (x , y) dxdy

I Can have more than two RVs. Can use vector notation

Example

I Linear transformation of a vector RV X ∈ Rn: g(X) = aTX

⇒ E
[
aTX

]
=

∫
Rn

aTXfX(x) dx
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Expected value of a sum of random variables

I Expected value of the sum of two RVs,

E [X + Y ] =

∫ ∞
−∞

∫ ∞
−∞

(x + y)fXY (x , y) dxdy

=

∫ ∞
−∞

∫ ∞
−∞

x fXY (x , y) dxdy +

∫ ∞
−∞

∫ ∞
−∞

y fXY (x , y) dxdy

I Remove x (y) from innermost integral in first (second) summand

E [X + Y ] =

∫ ∞
−∞

x

∫ ∞
−∞

fXY (x , y) dy dx +

∫ ∞
−∞

y

∫ ∞
−∞

fXY (x , y) dx dy

=

∫ ∞
−∞

xfX (x) dx +

∫ ∞
−∞

yfY (y) dy

= E [X ] + E [Y ]

I Used marginal expressions

I Expectation ↔ summation ⇒ E [X + Y ] = E [X ] + E [Y ]
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Expected value is a linear operator

I Combining with earlier result E [aX + b] = aE [X ] + b proves that

E [axX + ayY + b] = axE [X ] + ayE [Y ] + b

I Better yet, using vector notation (with a ∈ Rn, X ∈ Rn, b a scalar)

E
[
aTX + b

]
= aTE [X] + b

I Also, if A is an m × n matrix with rows aT1 , . . . , a
T
m and b ∈ Rm a

vector with elements b1, . . . , bm we can write

E
[
ATX + b

]
=


E
[
aT1 X + b1

]
E
[
aT2 X + b2

]
...

E
[
aTmX

]
+ bm

=


aT1 E [X] + b1
aT2 E [X] + b2

...
aTmE [X] + bm

= ATE [X] + b

I Expected value operator can be interchanged with linear operations
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Expected value of a binomial RV

I Binomial RVs count number of successes in n Bernoulli trials

I Let Xi i = 1, . . . n be n independent Bernouilli RVs

I Can write binomial X as ⇒ X =
n∑

i=1

Xi

I Expected value of binomial then ⇒ E [X ] =
n∑

i=1

E [Xi ] = np

I Expected nr. successes = nr. trials × prob. individual success
I Same interpretation that we observed for Poisson RVs

I Correlated Bernoulli trials ⇒ X =
n∑

i=1

Xi but Xi are not independent

I Expected nr. successes is still E [Xi ] = np
I Linearity of expectation does not require independence. Have not

even defined independence for RVs yet
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Independence

I Events E and F are independent if P [E ∩ F ] = P [E ] P [F ]

I RVs X and Y are independent if events X ≤ x and Y ≤ y are
independent for all x and y , i.e.

P [X ≤ x ,Y ≤ y ] = P [X ≤ x ] P [Y ≤ y ]

I Obviously equivalent to FXY (x , y) = FX (x)FY (y)

I For discrete RVs equivalent to analogous relation between pmfs

pXY (x , y) = FX (x)FY (y)

I For continuous RVs the analogous is true for pdfs

fXY (x , y) = fX (x)fY (y)
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Example: Sum of independent Poisson RVs

I Consider two Poisson RVs X and Y with parameters λx and λy
I Probability distribution of the sum RV Z := X + Y ?

I Z = n only if X = k , Y = n− k for some 0 ≤ k ≤ n (independence,
Poisson pmf definition, rearrange terms, binomial theorem)

pZ (n) =
n∑

k=0

P [X = k,Y = n − k] =
n∑

k=0

P [X = k] P [Y = n − k]

=
n∑

k=0

e−λx λ
k
x

k!
e−λy

λn−k
y

(n − k)!
=

e−(λx+λy )

n!

n∑
k=0

n!

(n − k)!k!
λk
xλ

n−k
y

=
e−(λx+λy )

n!
(λx + λy )n

I Z is Poisson with parameter λz := λx + λy

⇒ Sum of independent Poissons is Poisson (parameters added)
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Expected value of a product of independent RVs

Theorem
For independent RVs X and Y , and arbitrary functions g(X ) and h(Y ):

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

The expected value of the product is the product of the expected values

I As a particular case, when g(X ) = X and h(Y ) = Y we have

E [XY ] = E [X ]E [Y ]

I Expectation and product can be interchanged if RVs are independent

I Different from interchange with linear operations (always possible)
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Expected value of a product of independent RVs

Proof.

I For the case of X and Y continuos RVs. Use definition of
independence to write

E [g(X )h(Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fXY (x , y) dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX (x)fY (y) dxdy

I Integrand is product of a function of x and a function of y

E [g(X )h(Y )] =

∫ ∞
−∞

g(x)fX (x) dx

∫ ∞
−∞

h(y)fY (y) dy

= E [g(X )]E [h(Y )]
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Variance of a sum of independent RVs

I N Independent RVs X1, . . . ,XN

I Mean E [Xn] = µn and Variance E
[
(Xn − µn)2

]
= var [Xn]

I Variance of sum X :=
∑N

n=1 Xn?

I Notice that mean of X is E [X ] =
∑N

n=1 µn. Then

var [X ] = E

( N∑
n=1

Xn −
N∑

n=1

µn

)2
 = E

( N∑
n=1

Xn − µn

)2


I Expand square and interchange summation and expectation

var [X ] =
N∑

n=1

N∑
m=1

E
[
(Xn − µn)(Xm − µm)

]
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Variance of a sum of independent RVs (continued)

I Separate terms in sum. Use independence, definition of individual
variances and E(Xn − µn) = 0

var [X ] =
N∑

n=1,n 6=m

N∑
m

E
[
(Xn − µn)(Xm − µm)

]
+

N∑
n=1

E
[
(Xn − µn)2

]

=
N∑

n=1,n 6=m

N∑
m

E(Xn − µn)E(Xm − µm) +
N∑

n=1

E
[
(Xn − µn)2

]

=
N∑

n=1

var [Xn]

I If variables are independent ⇒ Variance of sum is sum of variances

Stoch. Systems Analysis Introduction 18



Covariance

I The covariance of X and Y is (generalizes variance to pairs of RVs)

cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])] = E [XY ]− E [X ]E [Y ]

I If cov(X ,Y ) = 0 variables X and Y are said to be uncorrelated

I If X , Y independent then E [XY ] = E [X ]E [Y ] and cov(X ,Y ) = 0

⇒ Independence implies uncorrelated RVs

I Opposite is not true, may have cov(X ,Y ) = 0 for dependent X , Y

I E.g., X Uniform in [−a, a] and Y = X 2

I But uncorrelation implies independence if X , Y are normal

I If cov(X ,Y ) > 0 then X and Y tend to move in the same direction

⇒ Positive correlation

I If cov(X ,Y ) < 0 then X and Y tend to move in opposite directions

⇒ Negative correlation
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Markov’s inequality

I RV X with finite expected value E(X ) <∞

I Markov’s inequality states ⇒ P [|X | ≥ a] ≤ E(|X |)
a

I I {|X | ≥ a} = 1 when X ≥ a and 0
else. Then (figure to the right)

aI {|X | ≥ a} ≤ |X |

I Expected value. Linearity of E [·]

aE(I {|X | ≥ a}) ≤ E(|X |) X

|X |

aa

a

I Indicator function’s expectation = Probability of event

aP [|X | ≥ a] ≤ E(|X |)
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Chebyshev’s inequality

I RV X with finite mean E(X ) = µ and variance E
[
(X − µ)2

]
= σ2

I Chebyshev’s inequality ⇒ P [|X − µ| ≥ k] ≤ σ2

k2

I Markov’s inequality for the RV Z = (X − µ)2 and constant a = k2

P
[
(X − µ)2 ≥ k2

]
= P

[
|Z | ≥ k2

]
≤ E [|Z |]

k2
=

E
[
(X − µ)2

]
k2

I Notice that (X − µ)2 ≥ k2 if and only if |X − µ| ≥ k thus

P [|X − µ| ≥ k] ≤
E
[
(X − µ)2

]
k2

I Chebyshev’s inequality follows from definition of variance
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Comments & observations

I Markov and Chebyshev’s inequalities hold for all RVs

I If absolute expected value is finite E [|X |] <∞
⇒ RV’s cdf decreases at least linearly (Markov’s)

I If mean E(X ) and variance E
[
(X − µ)2

]
are finite

⇒ RV’s cdf decreases at least quadratically (Chebyshev’s)

I Most cdfs decrease exponentially (e.g. e−x
2

for normal)

⇒ linear and quadratic bounds are loose but still useful
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Limits

I Sequence of RVs XN = X1,X2, . . . ,Xn, . . .

I Distinguish between stochastic process XN and realizations xN

I Say something about Xn for n large? ⇒ Not clear, Xn is a RV

I Say something about xn for n large? ⇒ Certainly, look at lim
n→∞

xn

I Say something about P [Xn] for n large? ⇒ Yes, lim
n→∞

P [Xn]

I Translate what we now about regular limits to definitions for RVs

I Can start from convergence of sequences: limn→∞ xn
I Sure and almost sure convergence

I Or from convergence of probabilities: limn→∞ P [Xn]
I Convergence in probability, mean square sense and distribution
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Convergence of sequences and sure convergence

I Denote sequence of variables xN = x1, x2, . . . , xn, . . .

I Sequence xN converges to the value x if given any ε > 0

⇒ There exists n0 such that for all n > n0, |xn − x | < ε

I Sequence xn comes close to its limit ⇒ |xn − x | < ε

I And stays close to its limit ⇒ for all n > n0

I Stochastic process (sequence of RVs) XN = X1,X2, . . . ,Xn, . . .

I Realizations of XN are sequences xN
I We say SP XN converges surely to RV X if ⇒ lim

n→∞
xn = x

I For all realizations xN of XN

I Not really adequate. Even an event that happens with vanishingly
small probability prevents sure convergence

Stoch. Systems Analysis Introduction 26



Almost sure convergence

I RV X and stochastic process XN = X1,X2, . . . ,Xn, . . .

I We say SP XN converges almost surely to RV X if

P
[

lim
n→∞

Xn = X
]

= 1

I Almost all sequences converge, except for a set of measure 0

I Almost sure convergence denoted as ⇒ lim
n→∞

Xn = X a.s.

I Limit X is a random variable

Example

I X0 ∼ N (0, 1) (normal, mean 0, variance 1)

I Zn Bernoulli parameter p

I Define ⇒ Xn = X0 −
Zn

n
I Zn/n→ 0, then limn→∞ Xn = X0 a.s.
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Convergence in probability

I We say SP XN converges in probability to RV X if for any ε > 0

lim
n→∞

P [|Xn − X | < ε] = 1

I Probability of distance |Xn − X | becoming smaller than ε tends to 1

I Statement is about probabilities, not about processes

I The probability converges

I Realizations xN of XN might or might not converge

I Limit and probability interchanged with respect to a.s. convergence

I a.s. convergence implies convergence in probability
I If limn→∞ Xn = X then for any ε > 0 there is n0 such that
|Xn − X | < ε for all n ≥ n0

I This is true for all almost all sequences then P [|Xn − X | < ε]→ 1
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Convergence in probability (continued)

Example

I X0 ∼ N (0, 1) (normal, mean 0, variance 1)

I Zn Bernoulli parameter 1/n

I Define ⇒ Xn = X0 − Zn

I Xn converges in probability to X0 because

P [|Xn − X0| < ε] = P [|Zn| < ε]

= 1− P [Zn = 1]

= 1− 1

n
→ 1

I Plot of path xn up to n = 102, n = 103, n = 104

I Zn = 1 becomes ever rarer but still happens
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Difference between a.s. and p

I Almost sure convergence implies that almost all sequences converge

I Convergence in probability does not imply convergence of sequences

I Latter example: Xn = X0 − Zn, Zn is Bernoulli with parameter 1/n

I As we’ve seen it converges in probability

P [|Xn − X0| < ε] = 1− 1

n
→ 1

I But for almost all sequences, the lim
n→∞

Xn does not exist

I Almost sure convergence ⇒ disturbances stop happening

I Convergence in prob. ⇒ disturbances happen with vanishing freq.

I Difference not irrelevant.
I Interpret Yn as rate of change in savings
I with a.s. convergence risk is eliminated
I with convergence in probability risk decreases but does not disappear
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Mean square convergence

I We say SP XN converges in mean square to RV X if

lim
n→∞

E
[
|Xn − X |2

]
= 0

I Sometimes (very) easy to check

I Convergence in mean square implies convergence in probability

I From Markov’s inequality

P [|Xn − X | ≥ ε] = P
[
|Xn − X |2 ≥ ε2

]
≤

E
[
|Xn − X |2

]
ε2

I If Xn → X in mean square sense, E
[
|Xn − X |2

]
/ε2 → 0 for all ε

I Almost sure and mean square ⇒ neither implies the other
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Convergence in distribution

I Stochastic process XN. Cdf of Xn is Fn(x)

I The SP converges in distribution to RV X with distribution FX (x) if

lim
n→∞

Fn(x) = FX (x)

I For all x at which FX (x) is continuous

I Again, no claim about individual sequences, just the cdf of Xn

I Weakest form of convergence covered,

I Implied by almost sure, in probability, and mean square convergence

Example

I Yn ∼ N (0, 1)

I Zn Bernoulli parameter p

I Define ⇒ Xn = Yn − 10Zn/n

I Zn/n→ 0, then limn→∞ Fn(x) = N (0, 1) 10 20 30 40 50 60 70 80 90 100
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Convergence in distribution (continued)

I Individual sequences xn do not converge in any sense

⇒ It is the distribution that converges

n = 1 n = 10 n = 100

−15 −10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

I As the effect of Zn/n vanishes pdf of Xn converges to pdf of Yn

I Standard normal N (0, 1)
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Implications

I Sure ⇒ almost sure ⇒ in probability ⇒ in distribution

I Mean square ⇒ in probability ⇒ in distribution

I In probability ⇒ in distribution

In distribution

In probability

Mean square

Almost sure

Sure
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Sum of independent identically distributed RVs

I Independent identically distributed (i.i.d.) RVs X1,X2, . . . ,Xn, . . .

I Mean E [Xn] = µ and variance E
[
(Xn − µ)2

]
= σ2 for all n

I What happens with sum SN :=
∑N

n=1 Xn as N grows?

I Expected value of sum is E [SN ] = Nµ ⇒ Diverges if µ 6= 0

I Variance is E
[
(SN − Nµ)2

]
= Nσ

⇒ Diverges if σ 6= 0 (alwyas true unless Xn is a constant)

I One interesting normalization ⇒ X̄N := (1/N)
∑N

n=1 xn

I Now E [ZN ] = µ and var [ZN ] = σ2/N

I Law of large numbers (weak and strong)

I Another interesting normalization ⇒ ZN :=

∑N
n=1 xn − Nµ

σ
√
N

I Now E [ZN ] = 0 and var [ZN ] = 1 for all values of N

I Central limit theorem
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Weak law of large numbers

I i.i.d. sequence or RVs X1,X2, . . . ,Xn, . . . with mean µ = E [Xn]

I Define sample average X̄N := (1/N)
∑N

n=1 xn

I Weak law of large numbers

I Sample average X̄N converges in probability to µ = E [Xn]

lim
N→∞

P
[
|X̄N − µ| > ε

]
= 1, for all ε > 0

I Strong law of large numbers

I Sample average X̄N converges almost surely to µ = E [Xn]

P

[
lim

N→∞
X̄N = µ

]
= 1

I Strong law implies weak law. Can forget weak law if so wished
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Proof of weak law of large numbers

I Weak law of large numbers is very simple to prove

Proof.

I Variance of X̄n vanishes for N large

var
[
X̄N

]
=

1

N2

n∑
n=1

var [Xn] =
σ2

N
→ 0

I But, what is the variance of X̄N?

0← σ2

N
= var

[
X̄N

]
= E

[
(X̄n − µ)2

]
I Then, |X̄N − µ| converges in mean square sense

⇒ Which implies convergence in probability

I Strong law is a little more challenging
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Central limit theorem (CLT)

Theorem

I i.i.d. sequence of RVs X1,X2, . . . ,Xn, . . .

I Mean E [Xn] = µ and variance E
[
(Xn − µ)2

]
= σ2 for all n

I Then ⇒ lim
N→∞

P

[∑N
n=1 xn − Nµ

σ
√
N

≤ x

]
=

1√
2π

∫ x

−∞
e−u

2/2 du

I Former statement implies that for N sufficiently large

ZN :=

∑N
n=1 xn − Nµ

σ
√
N

∼ N (0, 1)

I ∼ means “distributed like”

I ZN converges in distribution to a standard normal RV
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CLT (continued)

I Equivalently can say ⇒
N∑

n=1

xn ∼ N (Nµ,Nσ2)

I Sum of large number of i.i.d. RVs has a normal distribution
I Cannot take a meaningful limit here.
I But intuitively, this is what the CLT states

Example

I Binomial RV X with parameters (n, p)

I Write as X =
∑n

i=1 Xi with Xi Bernoulli with parameter p

I Mean E [Xi ] = p and variance var [Xi ] = p(1− p)

I For sufficiently large n ⇒ X ∼ N (nµ, np(1− p))
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