

Probability review

Alejandro Ribeiro
Dept. of Electrical and Systems Engineering
University of Pennsylvania
aribeiro@seas.upenn.edu
http://www.seas.upenn.edu/users/~aribeiro/

August 31, 2015

Joint probability distributions

Joint probability distributions

Joint expectations Independence

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Joint cdf

- ▶ Want to study problems with more than one RV. Say, e.g., X and Y
- Probability distributions of X and Y are not sufficient
 - \Rightarrow Joint probability distribution of (X, Y). Joint cdf defined as

$$F_{XY}(x,y) = P[X \le x, Y \le y]$$

- ▶ If X, Y clear from context omit subindex to write $F_{XY}(x,y) = F(x,y)$
- \blacktriangleright Can write $F_X(x)$ by considering all possible values of Y

$$F_X(x) = P[X \le x] = P[X \le x, Y \le \infty] = F_{XY}(x, \infty)$$

- ▶ Likewise $\Rightarrow F_Y(y) = F_{XY}(\infty, y)$
- ▶ In this context $F_X(x)$ and $F_Y(y)$ are called marginal cdfs

◆ロ > ← 日 > ← 目 > ← 目 → り へ ○

Joint pmf

- ▶ Discrete RVs X with possible values $\mathcal{X} := \{x_1, x_2, \ldots\}$ and Y with possible values $\mathcal{Y} := \{y_1, y_2, \ldots\}$
- ▶ Joint pmf of (X, Y) defined as

$$p_{XY}(x,y) = P[X = x, Y = y]$$

- ▶ Possible values (x, y) are elements of the Cartesian product $\mathcal{X} \times \mathcal{Y}$
 - $(x_1, y_1), (x_1, y_2), ..., (x_2, y_1), (x_2, y_2), ..., (x_3, y_1), (x_3, y_2), ...$
- \triangleright $p_X(x)$ obtained by summing over all possible values of Y

$$p_X(x) = P[X = x] = \sum_{y \in \mathcal{Y}} P[X = x, Y = y] = \sum_{y \in \mathcal{Y}} p_{XY}(x, y)$$

- ► Likewise $\Rightarrow p_Y(y) = \sum_{x \in \mathcal{X}} p_{XY}(x, y)$
- Marginal pmfs

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Joint pdf

- ▶ Continuous variables X, Y. Arbitrary sets $A \in \mathbb{R}^2$
- ▶ Joint pdf is a function $f_{XY}(x,y): \mathbb{R}^2 \to \mathbb{R}^+$ such that

$$P[(X,Y) \in A] = \iint_{A} f_{XY}(x,y) \, dxdy$$

▶ Marginalization. There are two ways of writing $P[X \in X]$

$$P[X \in \mathcal{X}] = P[X \in \mathcal{X}, Y \in \mathbb{R}] = \int_{X \in \mathcal{X}} \int_{-\infty}^{+\infty} f_{XY}(x, y) \, dy \, dx$$

- ▶ From the definition of $f_X(x) \Rightarrow P[X \in \mathcal{X}] = \int_{X \in \mathcal{X}} f_X(x) dx$
- ► Lipstick on a pig (same thing written differently is still same thing)

$$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x,y) dy$$
, $f_Y(y) = \int_{-\infty}^{+\infty} f_{XY}(x,y) dx$

Example

- \triangleright Draw two Bernoulli RVs B_1, B_2 with the same parameter p
- ▶ Define $X = B_1$ and $Y = B_1 + B_2$
- ▶ The probability distribution of X is

$$p_X(0) = 1 - p, \quad p_X(1) = p$$

Probability distribution of Y is

$$p_Y(0) = (1-p)^2$$
, $p_X(1) = 2p(1-p)$, $p_X(2) = p^2$

▶ Joint probability distribution of X and Y

$$p_{XY}(0,0) = (1-p)^2$$
, $p_{XY}(0,1) = p(1-p)$, $p_{XY}(0,2) = 0$
 $p_{XY}(1,0) = 0$, $p_{XY}(1,1) = p(1-p)$, $p_{XY}(1,2) = p^2$

◆ロ → ◆昼 → ◆昼 → ● ● のへで Stoch. Systems Analysis

Introduction

Random vectors

- For convenience arrange RVs in a vector.
- ▶ Prob. distribution of vector is joint distribution of its components
- ▶ Consider, e.g., two RVs X and Y. Random vector is $\mathbf{X} = [X, Y]^T$
- ▶ If X and Y are discrete, vector variable X is discrete with pmf

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{X}}([x, y]^T) = p_{XY}(x, y)$$

▶ If *X*, *Y* continuous, **X** continuous

$$f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{X}}([x, y]^T) = f_{XY}(x, y)$$

- ▶ Vector cdf is $\Rightarrow F_{\mathbf{X}}(\mathbf{x}) = F_{\mathbf{X}}([x, y]^T) = F_{XY}(x, y)$
- ▶ In general, can define *n*-dimensional RVs $\mathbf{X} := [X_1, X_2, \dots, X_n]^T$
- Just a matter of notation

Joint expectations

Joint probability distributions

Joint expectations Independence

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Joint expectations

- ▶ RVs X and Y and function g(X, Y). Function g(X, Y) also a RV
- \blacktriangleright Expected value of g(X, Y) when X and Y discrete can be written as

$$\mathbb{E}\left[g(X,Y)\right] = \sum_{x,y:p_{XY}(x,y)>0} g(x,y)p_{XY}(x,y)$$

▶ When X and Y are continuous

$$\mathbb{E}\left[g(X,Y)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) \, dx dy$$

▶ Can have more than two RVs. Can use vector notation

Example

▶ Linear transformation of a vector RV $\mathbf{X} \in \mathbb{R}^n$: $g(\mathbf{X}) = \mathbf{a}^T \mathbf{X}$

$$\Rightarrow \mathbb{E}\left[\mathbf{a}^{\mathsf{T}}\mathbf{X}\right] = \int_{\mathbb{R}^n} \mathbf{a}^{\mathsf{T}}\mathbf{X} f_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x}$$

Expected value of a sum of random variables

Expected value of the sum of two RVs,

$$\mathbb{E}[X+Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y) f_{XY}(x,y) \, dxdy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, f_{XY}(x,y) \, dxdy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \, f_{XY}(x,y) \, dxdy$$

Remove x (y) from innermost integral in first (second) summand

$$\mathbb{E}[X+Y] = \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{XY}(x,y) \, dy \, dx + \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{XY}(x,y) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} x f_X(x) \, dx + \int_{-\infty}^{\infty} y f_Y(y) \, dy$$
$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

- ▶ Used marginal expressions
- ▶ Expectation \leftrightarrow summation $\Rightarrow \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$

Expected value is a linear operator

▶ Combining with earlier result $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$ proves that

$$\mathbb{E}\left[a_{X}X + a_{Y}Y + b\right] = a_{X}\mathbb{E}\left[X\right] + a_{Y}\mathbb{E}\left[Y\right] + b$$

▶ Better yet, using vector notation (with $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{X} \in \mathbb{R}^n$, b a scalar)

$$\mathbb{E}\left[\mathbf{a}^{T}\mathbf{X}+b\right]=\mathbf{a}^{T}\mathbb{E}\left[\mathbf{X}\right]+b$$

▶ Also, if **A** is an $m \times n$ matrix with rows $\mathbf{a}_1^T, \dots, \mathbf{a}_m^T$ and $\mathbf{b} \in \mathbb{R}^m$ a vector with elements b_1, \dots, b_m we can write

$$\mathbb{E}\left[\mathbf{A}^{T}\mathbf{X} + \mathbf{b}\right] = \begin{pmatrix} \mathbb{E}\left[\mathbf{a}_{1}^{T}\mathbf{X} + b_{1}\right] \\ \mathbb{E}\left[\mathbf{a}_{2}^{T}\mathbf{X} + b_{2}\right] \\ \vdots \\ \mathbb{E}\left[\mathbf{a}_{m}^{T}\mathbf{X}\right] + b_{m} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{1}^{T}\mathbb{E}\left[\mathbf{X}\right] + b_{1} \\ \mathbf{a}_{2}^{T}\mathbb{E}\left[\mathbf{X}\right] + b_{2} \\ \vdots \\ \mathbf{a}_{m}^{T}\mathbb{E}\left[\mathbf{X}\right] + b_{m} \end{pmatrix} = \mathbf{A}^{T}\mathbb{E}\left[\mathbf{X}\right] + \mathbf{b}$$

► Expected value operator can be interchanged with linear operations

Expected value of a binomial RV

- ▶ Binomial RVs count number of successes in *n* Bernoulli trials
- ▶ Let X_i i = 1, ... n be n independent Bernouilli RVs
- ► Can write binomial X as $\Rightarrow X = \sum_{i=1}^{n} X_i$
- ▶ Expected value of binomial then $\Rightarrow \mathbb{E}\left[X\right] = \sum_{i=1}^{"} \mathbb{E}\left[X_i\right] = np$
- ► Expected nr. successes = nr. trials × prob. individual success
 - Same interpretation that we observed for Poisson RVs
- ▶ Correlated Bernoulli trials $\Rightarrow X = \sum_{i=1}^{n} X_i$ but X_i are not independent
- ▶ Expected nr. successes is still $\mathbb{E}[X_i] = np$
 - Linearity of expectation does not require independence. Have not even defined independence for RVs yet

- ▶ Events E and F are independent if $P[E \cap F] = P[E]P[F]$
- ▶ RVs X and Y are independent if events $X \le x$ and $Y \le y$ are independent for all x and y, i.e.

$$P[X \le x, Y \le y] = P[X \le x]P[Y \le y]$$

- ▶ Obviously equivalent to $F_{XY}(x,y) = F_X(x)F_Y(y)$
- ► For discrete RVs equivalent to analogous relation between pmfs

$$p_{XY}(x,y) = F_X(x)F_Y(y)$$

► For continuous RVs the analogous is true for pdfs

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

Stoch. Systems Analysis Introduction

Example: Sum of independent Poisson RVs

- ▶ Consider two Poisson RVs X and Y with parameters λ_x and λ_y
- ▶ Probability distribution of the sum RV Z := X + Y ?
- ▶ Z = n only if X = k, Y = n k for some $0 \le k \le n$ (independence, Poisson pmf definition, rearrange terms, binomial theorem)

$$\rho_{Z}(n) = \sum_{k=0}^{n} P[X = k, Y = n - k] = \sum_{k=0}^{n} P[X = k] P[Y = n - k]
= \sum_{k=0}^{n} e^{-\lambda_{x}} \frac{\lambda_{x}^{k}}{k!} e^{-\lambda_{y}} \frac{\lambda_{y}^{n-k}}{(n-k)!} = \frac{e^{-(\lambda_{x} + \lambda_{y})}}{n!} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} \lambda_{x}^{k} \lambda_{y}^{n-k}
= \frac{e^{-(\lambda_{x} + \lambda_{y})}}{n!} (\lambda_{x} + \lambda_{y})^{n}$$

- ▶ Z is Poisson with parameter $\lambda_z := \lambda_x + \lambda_y$
 - ⇒ Sum of independent Poissons is Poisson (parameters added)

Introduction

Theorem

For independent RVs X and Y, and arbitrary functions g(X) and h(Y):

$$\mathbb{E}\left[g(X)h(Y)\right] = \mathbb{E}\left[g(X)\right]\mathbb{E}\left[h(Y)\right]$$

The expected value of the product is the product of the expected values

▶ As a particular case, when g(X) = X and h(Y) = Y we have

$$\mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

- ► Expectation and product can be interchanged if RVs are independent
- ▶ Different from interchange with linear operations (always possible)

Expected value of a product of independent RVs

Proof.

► For the case of *X* and *Y* continuos RVs. Use definition of independence to write

$$\mathbb{E}\left[g(X)h(Y)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{XY}(x,y) \, dxdy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{X}(x)f_{Y}(y) \, dxdy$$

▶ Integrand is product of a function of *x* and a function of *y*

$$\mathbb{E}[g(X)h(Y)] = \int_{-\infty}^{\infty} g(x)f_X(x) dx \int_{-\infty}^{\infty} h(y)f_Y(y) dy$$
$$= \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$$

ш

Variance of a sum of independent RVs

- ▶ *N* Independent RVs $X_1, ..., X_N$
- ▶ Mean $\mathbb{E}[X_n] = \mu_n$ and Variance $\mathbb{E}[(X_n \mu_n)^2] = \text{var}[X_n]$
- ▶ Variance of sum $X := \sum_{n=1}^{N} X_n$?
- ▶ Notice that mean of X is $\mathbb{E}[X] = \sum_{n=1}^{N} \mu_n$. Then

$$\operatorname{var}[X] = \mathbb{E}\left[\left(\sum_{n=1}^{N} X_n - \sum_{n=1}^{N} \mu_n\right)^2\right] = \mathbb{E}\left[\left(\sum_{n=1}^{N} X_n - \mu_n\right)^2\right]$$

Expand square and interchange summation and expectation

$$var[X] = \sum_{n=1}^{N} \sum_{m=1}^{N} \mathbb{E}[(X_n - \mu_n)(X_m - \mu_m)]$$

Variance of a sum of independent RVs (continued) Renn

► Separate terms in sum. Use independence, definition of individual variances and $\mathbb{E}(X_n - \mu_n) = 0$

$$var[X] = \sum_{n=1, n \neq m}^{N} \sum_{m}^{N} \mathbb{E} [(X_{n} - \mu_{n})(X_{m} - \mu_{m})] + \sum_{n=1}^{N} \mathbb{E} [(X_{n} - \mu_{n})^{2}]$$

$$= \sum_{n=1, n \neq m}^{N} \sum_{m}^{N} \mathbb{E} (X_{n} - \mu_{n}) \mathbb{E} (X_{m} - \mu_{m}) + \sum_{n=1}^{N} \mathbb{E} [(X_{n} - \mu_{n})^{2}]$$

$$= \sum_{n=1}^{N} var[X_{n}]$$

► If variables are independent ⇒ Variance of sum is sum of variances

Stoch. Systems Analysis

Covariance

▶ The covariance of X and Y is (generalizes variance to pairs of RVs)

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

- ▶ If cov(X, Y) = 0 variables X and Y are said to be uncorrelated
- ▶ If X, Y independent then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ and cov(X, Y) = 0
 - ⇒ Independence implies uncorrelated RVs
- ▶ Opposite is not true, may have cov(X, Y) = 0 for dependent X, Y
 - ▶ E.g., X Uniform in [-a, a] and $Y = X^2$
- ▶ But uncorrelation implies independence if *X*, *Y* are normal
- If cov(X, Y) > 0 then X and Y tend to move in the same direction
 - ⇒ Positive correlation
- ▶ If cov(X, Y) < 0 then X and Y tend to move in opposite directions
 - ⇒ Negative correlation

Markov and Chebyshev's Inequalities

Joint probability distributions

Joint expectations Independence

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Stoch. Systems Analysis

Markov's inequality

- ▶ RV X with finite expected value $\mathbb{E}(X) < \infty$
- ► Markov's inequality states $\Rightarrow P[|X| \ge a] \le \frac{\mathbb{E}(|X|)}{a}$
- ▶ $\mathbb{I}\{|X| \ge a\} = 1$ when $X \ge a$ and 0 else. Then (figure to the right)

$$a\mathbb{I}\{|X| \geq a\} \leq |X|$$

lacktriangle Expected value. Linearity of $\mathbb{E}\left[\cdot\right]$

$$a\mathbb{E}(\mathbb{I}\{|X|\geq a\})\leq \mathbb{E}(|X|)$$

▶ Indicator function's expectation = Probability of event

$$aP[|X| \geq a] \leq \mathbb{E}(|X|)$$

Chebyshev's inequality

- ▶ RV X with finite mean $\mathbb{E}(X) = \mu$ and variance $\mathbb{E}\left[(X \mu)^2\right] = \sigma^2$
- ► Chebyshev's inequality $\Rightarrow P[|X \mu| \ge k] \le \frac{\sigma^2}{L^2}$
- ▶ Markov's inequality for the RV $Z = (X \mu)^2$ and constant $a = k^2$

$$P\left[(X-\mu)^2 \ge k^2\right] = P\left[|Z| \ge k^2\right] \le \frac{\mathbb{E}\left[|Z|\right]}{k^2} = \frac{\mathbb{E}\left[(X-\mu)^2\right]}{k^2}$$

▶ Notice that $(X - \mu)^2 \ge k^2$ if and only if $|X - \mu| \ge k$ thus

$$P[|X - \mu| \ge k] \le \frac{\mathbb{E}[(X - \mu)^2]}{k^2}$$

Chebyshev's inequality follows from definition of variance

◆□→ ◆圖→ ◆園→ ◆園→ ■ Stoch. Systems Analysis

Introduction

Comments & observations

- Markov and Chebyshev's inequalities hold for all RVs
- ▶ If absolute expected value is finite $\mathbb{E}[|X|] < \infty$
 - ⇒ RV's cdf decreases at least linearly (Markov's)
- ▶ If mean $\mathbb{E}(X)$ and variance $\mathbb{E}\left[(X \mu)^2\right]$ are finite
 - ⇒ RV's cdf decreases at least quadratically (Chebyshev's)
- ▶ Most cdfs decrease exponentially (e.g. e^{-x^2} for normal)
 - ⇒ linear and quadratic bounds are loose but still useful

Limits in probability

Joint probability distributions

Joint expectations Independence

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

- ▶ Sequence of RVs $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$
- ▶ Distinguish between stochastic process $X_{\mathbb{N}}$ and realizations $x_{\mathbb{N}}$
- ▶ Say something about X_n for n large? \Rightarrow Not clear, X_n is a RV
- ▶ Say something about x_n for n large? \Rightarrow Certainly, look at $\lim_{n\to\infty} x_n$
- ▶ Say something about $P[X_n]$ for n large? \Rightarrow Yes, $\lim_{n\to\infty} P[X_n]$
- Translate what we now about regular limits to definitions for RVs
- ▶ Can start from convergence of sequences: $\lim_{n\to\infty} x_n$
 - Sure and almost sure convergence
- ▶ Or from convergence of probabilities: $\lim_{n\to\infty} P[X_n]$
 - ► Convergence in probability, mean square sense and distribution

Convergence of sequences and sure convergence

- ▶ Denote sequence of variables $x_N = x_1, x_2, ..., x_n, ...$
- ▶ Sequence $x_{\mathbb{N}}$ converges to the value x if given any $\epsilon > 0$
 - \Rightarrow There exists n_0 such that for all $n > n_0$, $|x_n x| < \epsilon$
- ▶ Sequence x_n comes close to its limit $\Rightarrow |x_n x| < \epsilon$
- ▶ And stays close to its limit \Rightarrow for all $n > n_0$
- ▶ Stochastic process (sequence of RVs) $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$
- ▶ Realizations of $X_{\mathbb{N}}$ are sequences $x_{\mathbb{N}}$
- ▶ We say SP $X_{\mathbb{N}}$ converges surely to RV X if $\Rightarrow \lim_{n \to \infty} x_n = x$
- ▶ For all realizations $x_{\mathbb{N}}$ of $X_{\mathbb{N}}$

Stoch. Systems Analysis

► Not really adequate. Even an event that happens with vanishingly small probability prevents sure convergence

Introduction

Almost sure convergence

- ▶ RV X and stochastic process $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$
- ▶ We say SP $X_{\mathbb{N}}$ converges almost surely to RV X if

$$\mathsf{P}\left[\lim_{n\to\infty}X_n=X\right]=1$$

- Almost all sequences converge, except for a set of measure 0
- ▶ Almost sure convergence denoted as $\Rightarrow \lim_{n\to\infty} X_n = X$ a.s.
- ▶ Limit X is a random variable

Example

- $lacksquare X_0 \sim \mathcal{N}(0,1)$ (normal, mean 0, variance 1)
- $ightharpoonup Z_n$ Bernoulli parameter p
- ▶ Define $\Rightarrow X_n = X_0 \frac{Z_n}{n}$
- $ightharpoonup Z_n/n o 0$, then $\lim_{n \to \infty} X_n = X_0$ a.s.

Convergence in probability

▶ We say SP $X_{\mathbb{N}}$ converges in probability to RV X if for any $\epsilon > 0$

$$\lim_{n\to\infty} P\left[|X_n - X| < \epsilon\right] = 1$$

- ▶ Probability of distance $|X_n X|$ becoming smaller than ϵ tends to 1
- Statement is about probabilities, not about processes
- ▶ The probability converges
- ▶ Realizations x_N of X_N might or might not converge
- ▶ Limit and probability interchanged with respect to a.s. convergence
- ▶ a.s. convergence implies convergence in probability
 - If $\lim_{n\to\infty} X_n = X$ then for any $\epsilon>0$ there is n_0 such that $|X_n-X|<\epsilon$ for all $n\geq n_0$
 - lacktriangle This is true for all almost all sequences then $\mathsf{P}\left[|X_n-X|<\epsilon
 ight] o 1$

Convergence in probability (continued)

Example

- ▶ $X_0 \sim \mathcal{N}(0,1)$ (normal, mean 0, variance 1)
- \triangleright Z_n Bernoulli parameter 1/n
- ▶ Define $\Rightarrow X_n = X_0 Z_n$
- $ightharpoonup X_n$ converges in probability to X_0 because

$$P[|X_n - X_0| < \epsilon] = P[|Z_n| < \epsilon]$$

$$= 1 - P[Z_n = 1]$$

$$= 1 - \frac{1}{n} \to 1$$

- ▶ Plot of path x_n up to $n = 10^2$, $n = 10^3$, $n = 10^4$
- $ightharpoonup Z_n = 1$ becomes ever rarer but still happens

Difference between a.s. and p

- ► Almost sure convergence implies that almost all sequences converge
- ► Convergence in probability does not imply convergence of sequences
- ▶ Latter example: $X_n = X_0 Z_n$, Z_n is Bernoulli with parameter 1/n
- ▶ As we've seen it converges in probability

$$P[|X_n - X_0| < \epsilon] = 1 - \frac{1}{n} \to 1$$

- ▶ But for almost all sequences, the $\lim_{n\to\infty} X_n$ does not exist
- ► Almost sure convergence ⇒ disturbances stop happening
- ► Convergence in prob. ⇒ disturbances happen with vanishing freq.
- Difference not irrelevant.
 - ▶ Interpret Y_n as rate of change in savings
 - with a.s. convergence risk is eliminated
 - ▶ with convergence in probability risk decreases but does not disappear

Mean square convergence

▶ We say SP $X_{\mathbb{N}}$ converges in mean square to RV X if

$$\lim_{n\to\infty}\mathbb{E}\left[|X_n-X|^2\right]=0$$

- ► Sometimes (very) easy to check
- ► Convergence in mean square implies convergence in probability
- ► From Markov's inequality

$$P[|X_n - X| \ge \epsilon] = P[|X_n - X|^2 \ge \epsilon^2] \le \frac{\mathbb{E}[|X_n - X|^2]}{\epsilon^2}$$

- ▶ If $X_n \to X$ in mean square sense, $\mathbb{E}\left[|X_n X|^2\right]/\epsilon^2 \to 0$ for all ϵ
- ▶ Almost sure and mean square ⇒ neither implies the other

Stoch. Systems Analysis Introduction 31

Convergence in distribution

- ▶ Stochastic process $X_{\mathbb{N}}$. Cdf of X_n is $F_n(x)$
- ▶ The SP converges in distribution to RV X with distribution $F_X(x)$ if

$$\lim_{n\to\infty}F_n(x)=F_X(x)$$

- ▶ For all x at which $F_X(x)$ is continuous
- \triangleright Again, no claim about individual sequences, just the cdf of X_n
- ▶ Weakest form of convergence covered,
- ▶ Implied by almost sure, in probability, and mean square convergence

Example

- $Y_n \sim \mathcal{N}(0,1)$
- \triangleright Z_n Bernoulli parameter p
- ▶ Define $\Rightarrow X_n = \frac{Y_n}{I} 10Z_n/n$
- $Z_n/n \to 0$, then $\lim_{n \to \infty} F_n(x) = \mathcal{N}(0,1)$

Convergence in distribution (continued)

- ▶ Individual sequences x_n do not converge in any sense
 - ⇒ It is the distribution that converges

- ▶ As the effect of Z_n/n vanishes pdf of X_n converges to pdf of Y_n
 - ▶ Standard normal $\mathcal{N}(0,1)$

Implications

- ▶ Sure \Rightarrow almost sure \Rightarrow in probability \Rightarrow in distribution
- ▶ Mean square \Rightarrow in probability \Rightarrow in distribution
- ▶ In probability ⇒ in distribution

Limit theorems

Joint probability distributions

Joint expectations Independence

Markov and Chebyshev's Inequalities

Limits in probability

Limit theorems

Sum of independent identically distributed RVs

- ▶ Independent identically distributed (i.i.d.) RVs $X_1, X_2, ..., X_n, ...$
- ▶ Mean $\mathbb{E}[X_n] = \mu$ and variance $\mathbb{E}[(X_n \mu)^2] = \sigma^2$ for all n
- ▶ What happens with sum $S_N := \sum_{n=1}^N X_n$ as N grows?
- ▶ Expected value of sum is $\mathbb{E}[S_N] = N\mu$ ⇒ Diverges if $\mu \neq 0$
- Variance is $\mathbb{E}\left[(S_N N\mu)^2\right] = N\sigma$
 - \Rightarrow Diverges if $\sigma \neq 0$ (always true unless X_n is a constant)
- One interesting normalization $\Rightarrow \bar{X}_N := (1/N) \sum_{n=1}^N x_n$
- Now $\mathbb{E}[Z_N] = \mu$ and $\text{var}[Z_N] = \sigma^2/N$
- Law of large numbers (weak and strong)
- ► Another interesting normalization $\Rightarrow Z_N := \frac{\sum_{n=1}^N x_n N\mu}{\sigma\sqrt{N}}$
- ▶ Now $\mathbb{E}[Z_N] = 0$ and var $[Z_N] = 1$ for all values of N
- ► Central limit theorem

Weak law of large numbers

- ▶ i.i.d. sequence or RVs $X_1, X_2, \dots, X_n, \dots$ with mean $\mu = \mathbb{E}[X_n]$
- ▶ Define sample average $\bar{X}_N := (1/N) \sum_{n=1}^N x_n$
- Weak law of large numbers
- ▶ Sample average \bar{X}_N converges in probability to $\mu = \mathbb{E}[X_n]$

$$\lim_{N\to\infty} \mathsf{P}\left[|\bar{X}_N - \mu| > \epsilon\right] = 1, \quad \text{for all } \epsilon > 0$$

- ► Strong law of large numbers
- ▶ Sample average \bar{X}_N converges almost surely to $\mu = \mathbb{E}[X_n]$

$$\mathsf{P}\left[\lim_{N\to\infty}\bar{X}_N=\mu\right]=1$$

▶ Strong law implies weak law. Can forget weak law if so wished

Proof of weak law of large numbers

▶ Weak law of large numbers is very simple to prove

Proof.

▶ Variance of \bar{X}_n vanishes for N large

$$\operatorname{var}\left[\bar{X}_{N}\right] = \frac{1}{N^{2}} \sum_{n=1}^{n} \operatorname{var}\left[X_{n}\right] = \frac{\sigma^{2}}{N} \to 0$$

▶ But, what is the variance of \bar{X}_N ?

$$0 \leftarrow \frac{\sigma^2}{N} = \operatorname{var}\left[\bar{X}_{N}\right] = \mathbb{E}\left[\left(\bar{X}_{n} - \mu\right)^2\right]$$

- ▶ Then, $|\bar{X}_N \mu|$ converges in mean square sense
 - ⇒ Which implies convergence in probability
- Strong law is a little more challenging

Central limit theorem (CLT)

Theorem

- \blacktriangleright i.i.d. sequence of RVs $X_1, X_2, \dots, X_n, \dots$
- Mean $\mathbb{E}[X_n] = \mu$ and variance $\mathbb{E}[(X_n \mu)^2] = \sigma^2$ for all n

► Then
$$\Rightarrow \lim_{N \to \infty} P\left[\frac{\sum_{n=1}^{N} x_n - N\mu}{\sigma\sqrt{N}} \le x\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

▶ Former statement implies that for *N* sufficiently large

$$Z_N := rac{\sum_{n=1}^N x_n - N\mu}{\sigma\sqrt{N}} \sim \mathcal{N}(0,1)$$

- ► ~ means "distributed like"
- $ightharpoonup Z_N$ converges in distribution to a standard normal RV

CLT (continued)

- ► Equivalently can say $\Rightarrow \sum_{n=1}^{N} x_n \sim \mathcal{N}(N\mu, N\sigma^2)$
- ▶ Sum of large number of i.i.d. RVs has a normal distribution
 - Cannot take a meaningful limit here.
 - But intuitively, this is what the CLT states

Example

- Binomial RV X with parameters (n, p)
- Write as $X = \sum_{i=1}^{n} X_i$ with X_i Bernoulli with parameter p
- ▶ Mean $\mathbb{E}[X_i] = p$ and variance var $[X_i] = p(1-p)$
- ▶ For sufficiently large $n \Rightarrow X \sim \mathcal{N}(n\mu, np(1-p))$