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Joint cdf

v

Want to study problems with more than one RV. Say, e.g.,, X and Y

v

Probability distributions of X and Y are not sufficient
= Joint probability distribution of (X, Y. Joint cdf defined as

Fxy(x,y) =P[X <x,Y <y]

v

Can write Fx(x) by considering all possible values of Y

Fx(x)=P[X <x]=P[X <x,Y < o0] = Fxy(x,00)

v

Likewise = Fy(y) = Fxy (oo, y)

v

In this context Fx(x) and Fy(y) are called marginal cdfs
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Joint pmf

» Discrete RVs X with possible values X := {x1, x2,...} and Y with
possible values YV := {y1,y»,...}
» Joint pmf of (X, Y) defined as

pr(X7y):P[X:X,Y:y]

» Possible values (x,y) are elements of the Cartesian product X' x )
> (), Gy ye), - Geon) (2 y2), - (i), (s, y2),

> px(x) obtained by summing over all possible values of Y

pX(x):P[X:X]:ZP[X:x,Y:y]:pry(x,y)

yey yey
> Likewise = py(y) = ZPXY(X y)
xXEX

» Marginal pmfs
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Joint pdf

v

Continuous variables X, Y. Arbitrary sets A € R?
Joint pdf is a function fxy(x,y) : R? — R such that

v

P V) e A= [ /A fcw (, ) dxdy

v

Marginalization. There are two ways of writing P [X € X]

400
P[XGX]:P[XGX,YGR]:/ / Fey (x, y) dydx
XeXJ—oco

v

From the definition of fx(x) = P[X € X] = [, fx(x)dx
Lipstick on a pig (same thing written differently is still same thing)

v

+o0

+o0o
fx(x) = / fxy(x,y)dy, fy(y)= / fxy(x,y) dx

— 00 — 0o
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Example

v

Draw two Bernoulli RVs By, B, with the same parameter p
Define X =By and Y =By + B>

v

v

The probability distribution of X is

px(0)=1—-p, px(1)=p

v

Probability distribution of Y is
py(0) = (1= p)%  px(1)=2p(1-p), px(2)=p?

Joint probability distribution of X and Y

v

pxy(0,0) = (1 - p)2’ pxv(0,1) = p(1—p), pxy(0,2) =0
pxy(1,0) =0, pxy(1,1) =p(1—p), pxv(1,2)=p°
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Random vectors

» For convenience arrange RVs in a vector.
» Prob. distribution of vector is joint distribution of its components
» Consider, e.g., two RVs X and Y. Random vector is X = [X, Y]"

» If X and Y are discrete, vector variable X is discrete with pmf
px(x) = px ([x:¥]7) = pxv (x,¥)

» If X, Y continuous, X continuous
(%) = (b, ¥17) = fier (%)

> Vector cdf is = Fx(x) = Fx ([x,y]T) = Fxy (x,y))

» In general, can define n-dimensional RVs X := [X1, Xz, ..., X,]T

» Just a matter of notation
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Joint expectations

» RVs X and Y and function g(X, Y). Function g(X, Y) also a RV

> Expected value of g(X, Y) when X and Y discrete can be written as

Elg(X, V)= > &by)pxv(xy)
x,y:pxy (x,y)>0

» When X and Y are continuous
E[g(X, Y]—/ / g(x,y)fxy(x,y) dxdy

» Can have more than two RVs. Can use vector notation

Example

» Linear transformation of a vector RV X € R": g(X) =a’X

= E[a"X] :/ a’ Xfx(x) dx
Rn
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Expected value of a sum of random variables

» Expected value of the sum of two RVs,

E[X + Y] */ / (x + y)fxv(x,y) dxdy

/ / x fxy(x, y) dxdy +/ / y fxy(x,y) dxdy

» Remove x (y) from innermost integral in first (second) summand
E[X+Y]= /00 x/OO fxy(x,y)dyder/Oo y/OO fxy(x,y) dx dy
= /00 xfx(x) dx+/ yfy(y) dy
=E[X]+E[Y]
» Used marginal expressions
> Expectation <> summation = E[X + Y] =E[X]+E[Y]
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Expected value is a linear operator

» Combining with earlier result E [aX + b] = aE [X] + b proves that
ElaxX+a, Y+ bl =aE[X]+aE[Y]+b
> Better yet, using vector notation (with a € R", X € R", b a scalar)

E[a"™X+b] =a’E[X]+b

» Also, if A is an m x n matrix with rows a/ ,...,al and b€ R™ a
vector with elements by, ..., b, we can write
E [a X + b1] alE[X] + by
E[ATX+b]: E[a{):wbz} = azT]Ep:(HbQ =ATE[X] +b
E [a;xj + b EYA ) [X] + bm

» Expected value operator can be interchanged with linear operations
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Expected value of a binomial RV

» Binomial RVs count number of successes in n Bernoulli trials
» Let X; i =1,...n be nindependent Bernouilli RVs
n
» Can write binomial X as = X = ZX,-
i=1
n
» Expected value of binomial then = E[X] = Z]E [Xi] = np
i=1
» Expected nr. successes = nr. trials x prob. individual success
> Same interpretation that we observed for Poisson RVs
n
» Correlated Bernoulli trials = X = ZX,- but X; are not independent
i=1
» Expected nr. successes is still E[X;] = np

> Linearity of expectation does not require independence. Have not
even defined independence for RVs yet
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Independence

» Events E and F are independent if P[EN F] = P[E]P[F]

» RVs X and Y are independent if events X < x and Y <y are
independent for all x and y, i.e.

PIX<x,Y<y]=P[X<x]P[Y <y]
» Obviously equivalent to Fxy(x,y) = Fx(x)Fy(y)
» For discrete RVs equivalent to analogous relation between pmfs
pxy (x,y) = Fx(x)Fy(y)

» For continuous RVs the analogous is true for pdfs

fxy (x,y) = fx(x)fy(y)

Stoch. Systems Analysis Introduction 13



Example: Sum of independent Poisson RVs

> Consider two Poisson RVs X and Y with parameters A, and A,
» Probability distribution of the sum RV Z: =X+ Y ?

» Z=nonlyif X =k, Y =n—k for some 0 < k < n (independence,
Poisson pmf definition, rearrange terms, binomial theorem)

pz(n):iP[X:k,Y:n—k] iP[X:k]P[Y:n—k]

k=0 k=0
)\",k ef()\)d»)\y) n nl
_ 7)\)( X 7)\}/ y _ )\ An k
Ze T € (n— k)! ol Z( — k)Ik!
k=0
e (Ax*‘)\y) .
=)

> Z is Poisson with parameter A\, := A, + A,

= Sum of independent Poissons is Poisson (parameters added)
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Expected value of a product of independent RVs

Theorem
For independent RVs X and Y, and arbitrary functions g(X) and h(Y):

Elg(X)h(Y)] = E[g(X) E[h(Y)]

The expected value of the product is the product of the expected values

> As a particular case, when g(X) = X and h(Y) = Y we have
E[XY]=E[X]E[Y]

» Expectation and product can be interchanged if RVs are independent

» Different from interchange with linear operations (always possible)
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Expected value of a product of independent RVs

Proof.

» For the case of X and Y continuos RVs. Use definition of
independence to write

Eg(X)h(Y)] = / / V() e (x, ) dicly

/ / () (y) dxdly

» Integrand is product of a function of x and a function of y

BRI = [ elstax [ hf)dy

— 00 — 00

=E[g(X)]E[A(Y)]
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Variance of a sum of independent RVs

v

N Independent RVs Xi,..., Xy
Mean E [X,] = p, and Variance E [(X, — pn)?] = var [X,]

Variance of sum X := ZnN:I Xa?

v

v

v

Notice that mean of X is E [X] = ZQ’ZI tn. Then

var[X] =E <ZX,,—Z/J,,,> =F (ZX,,—/;,,)

Expand square and interchange summation and expectation

2

v

N N
var (X = 37 3 B[ — 1) (Xor — )]

n=1 m=1
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» Separate terms in sum. Use independence, definition of individual
variances and E(X, — u,) =0

var[X]z XN: zN: { Mn X _Mm)}+zN:E{(Xn_Mn)2}
Z,,,Zm: -

;1
Zvar [Xn]

> If variables are independent =- Variance of sum is sum of variances
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Covariance

> The covariance of X and Y is (generalizes variance to pairs of RVs)

cov(X,Y) =E[(X —E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]

> If cov(X, Y) = 0 variables X and Y are said to be uncorrelated

> If X, Y independent then E [XY] =E[X]E[Y] and cov(X,Y) =0
= Independence implies uncorrelated RVs

> Opposite is not true, may have cov(X, Y) = 0 for dependent X, Y
» E.g., X Uniform in [-a,a] and Y = X?

» But uncorrelation implies independence if X, Y are normal

> If cov(X, Y) > 0 then X and Y tend to move in the same direction

= Positive correlation

> If cov(X,Y) < 0 then X and Y tend to move in opposite directions

= Negative correlation
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Markov's inequality

» RV X with finite expected value E(X) < oo

E(X])
a

> Markov's inequality states = P [|X| > a] <

» I{|X|>a}=1when X >aand0 X
else. Then (figure to the right)

al{|X| > a} < |X|

> Expected value. Linearity of E[]

aB(I{|X| = a}) <E(|X]) a a X

» Indicator function's expectation = Probability of event

aP[|X| > a] < E(|X])
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Chebyshev's inequality

v

RV X with finite mean E(X) = y and variance E [(X — p)?] = o2
2
Chebyshev's inequality = P[|X — u| > k] < %

v

v

Markov's inequality for the RV Z = (X — u)? and constant a = k?

E[(X — p)?]
k2

2 21 _ 5 E[Z]]
PI(X—p) 2K =P[1Z| 2 K] <= 5" =

» Notice that (X — p)? > k2 if and only if | X — pu| > k thus
E[(X —pu)
Pl > < S

v

Chebyshev's inequality follows from definition of variance
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Comments & observations

v

Markov and Chebyshev's inequalities hold for all RVs

v

If absolute expected value is finite E [|X|] < oo
= RV's cdf decreases at least linearly (Markov's)

v

If mean E(X) and variance E [(X — 12)?] are finite
= RV's cdf decreases at least quadratically (Chebyshev's)

v

. 2
Most cdfs decrease exponentially (e.g. e for normal)
= linear and quadratic bounds are loose but still useful
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Limits

» Sequence of RVs Xy = X1, X5, ..., X, ...

» Distinguish between stochastic process Xy and realizations xy
» Say something about X, for n large? = Not clear, X, is a RV

» Say something about x, for n large? = Certainly, look at lim x,
n—oo

» Say something about P [X,] for n large? = Yes, ILm P [Xn]

» Translate what we now about regular limits to definitions for RVs
» Can start from convergence of sequences: lim,_ oo Xp

> Sure and almost sure convergence
» Or from convergence of probabilities: lim,_ o P [X]

» Convergence in probability, mean square sense and distribution
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Convergence of sequences and sure convergence

» Denote sequence of variables xy = x1, X2, ..., Xp, - - -

» Sequence xy converges to the value x if given any € > 0
= There exists ng such that for all n > ng, |x, — x| < €

> Sequence x, comes close to its limit = |x, — x| <€

» And stays close to its limit = for all n > ng

» Stochastic process (sequence of RVs) Xy = X1, Xo,..., X, ...
» Realizations of Xy are sequences xy

» We say SP Xy converges surely to RV X if = lim x, = x

n—oo

» For all realizations xy of Xy

» Not really adequate. Even an event that happens with vanishingly
small probability prevents sure convergence

Stoch. Systems Analysis Introduction 26



Almost sure convergence

v

RV X and stochastic process Xy = X1, Xo,..., Xy, ...
We say SP Xy converges almost surely to RV X if

v

Pllim X, =X| =1

n—o00

v

Almost all sequences converge, except for a set of measure 0

» Almost sure convergence denoted as = |lim X, =X a.s.
n—o0o

» Limit X is a random variable

Example N
» Xo ~ N(0,1) (normal, mean 0, variance 1) °,c
» Z, Bernoulli parameter p o
) Z, -
» Define = X, =Xo — —
n
> Z,/n— 0, then im0 Xy = Xo a5 IS ..

Stoch. Systems Analysis Introduction 27



Convergence in probability

v

We say SP Xy converges in probability to RV X if for any ¢ > 0
lim P[|X,—X|<¢ =1
n—o0
Probability of distance | X, — X| becoming smaller than ¢ tends to 1

Statement is about probabilities, not about processes

The probability converges

vV v .vY

Realizations xy of Xy might or might not converge

v

Limit and probability interchanged with respect to a.s. convergence

> a.s. convergence implies convergence in probability

> If limy— 00 X = X then for any € > 0 there is ng such that
|Xn — X| < € for all n > ng
> This is true for all almost all sequences then P [|X, — X| <¢] — 1
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Convergence in probability (continued)

Example

v

Xo ~ N(0,1) (normal, mean 0, variance 1)
Z, Bernoulli parameter 1/n e
Define = X, = Xo — Z, .

v

v

v

X, converges in probability to Xy because

P[|Xn_XO| <6] = P[|Zn‘ <6]
—1-P[Z,=1]

1
=1--=1
n

v

Plot of path x, up to n = 10%, n = 103, n = 10*
Z, =1 becomes ever rarer but still happens

v

Toon 2000 7000 40m 5000 eI 7000 Aoon 5000 10oan
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Difference between a.s. and p

» Almost sure convergence implies that almost all sequences converge

» Convergence in probability does not imply convergence of sequences

> Latter example: X, = Xo — Z,, Z, is Bernoulli with parameter 1/n

» As we've seen it converges in probability
1
PlIXo—Xol <el=1-=—1
n

» But for almost all sequences, the lim X, does not exist
n—o0

» Almost sure convergence = disturbances stop happening
» Convergence in prob. = disturbances happen with vanishing freq.
» Difference not irrelevant.

> Interpret Y, as rate of change in savings
> with a.s. convergence risk is eliminated
> with convergence in probability risk decreases but does not disappear
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Mean square convergence

v

We say SP Xy converges in mean square to RV X if
lim E[|X, — X|*] =0
n—oo

» Sometimes (very) easy to check

v

Convergence in mean square implies convergence in probability

v

From Markov's inequality

_ 2
P, = X| > d = P [, — X2 > &) < T 2 XE

€

v

If X, — X in mean square sense, E [|X, — X|?] /e — 0 for all €

v

Almost sure and mean square =- neither implies the other

Stoch. Systems Analysis Introduction il



Convergence in distribution

v

Stochastic process Xy. Cdf of X, is Fn(x)
The SP converges in distribution to RV X with distribution Fx(x) if

v

lim F,(x) = Fx(x)

n—o0o

» For all x at which Fx(x) is continuous

» Again, no claim about individual sequences, just the cdf of X,

» Weakest form of convergence covered,

» Implied by almost sure, in probability, and mean square convergence

Example ) lr\m'A | M .A. N Ak

> Y, ~N(0,1) M‘/ VIR Y
» Z, Bernoulli parameter p J
» Define = X, =Y, —10Z,/n

> Z,/n— 0, then lim,_, Fn(x) = N(0,1)
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Convergence in distribution (continued)

» Individual sequences x, do not converge in any sense

= It is the distribution that converges

n=1 ﬂ n=10 n =100

> As the effect of Z,/n vanishes pdf of X, converges to pdf of Y,
» Standard normal A/(0,1)
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Implications

» Sure = almost sure =- in probability = in distribution
» Mean square =- in probability = in distribution
> In probability =- in distribution

bal

Almost sure
Mean square

In probability

_In distribution
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Sum of independent identically distributed RVs

» Independent identically distributed (i.i.d.) RVs X1, Xz, ..., Xn, ...
> Mean E[X,] = p and variance E [(X, — n)?] = 0® for all n
» What happens with sum Sy := Z,’Yzl Xn as N grows?

> Expected value of sum is E [Sy] = Nu = Diverges if 4 # 0
» Variance is E [(SN — N,u)ﬂ — No

= Diverges if o # 0 (alwyas true unless X, is a constant)

> One interesting normalization = Xy := (1/N) 3" x,
» Now E[Zy] = p and var [Zy] = 0 /N
> Law of large numbers (weak and strong)
N
n— N
> Another interesting normalization = Zy := M
oVN

» Now E[Zy] = 0 and var [Zy] = 1 for all values of N

» Central limit theorem
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Weak law of large numbers

v

i.i.d. sequence or RVs X1, Xa, ..., X, ... with mean u =E[X,]

v

Define sample average Xy := (1/N) 2,1:1:1 Xn

v

Weak law of large numbers
Sample average Xy converges in probability to ;= E [X,]

v

lim P[|)_(N—,u| >6] =1, foralle>0
N— oo

v

Strong law of large numbers

Sample average Xy converges almost surely to = E[X,]

v

P[Iim )?N:M}zl

N—oco

v

Strong law implies weak law. Can forget weak law if so wished
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Proof of weak law of large numbers

> Weak law of large numbers is very simple to prove

Proof.

» Variance of X, vanishes for N Iarge

var [Xy] = " Zvar[X]—
» But, what is the variance of )_(N?
var [Xn] = E [(X, — 1)?]

» Then, | Xy — p| converges in mean square sense
= Which implies convergence in probability ]

» Strong law is a little more challenging
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Central limit theorem (CLT)

Theorem

> i.id. sequence of RVs X1, Xp,..., Xy, ...
> Mean E[X,] = p and variance E [(X, — p)?] = o2 for all n

ZNﬂ Xn — Nyt / —i’/2 4
Then = I|m p|l=r=_—_ - <x u/
—00 [ ov N o \/271'

Former statement implies that for N sufficiently large

v

v

ZNflxn_N:“
Zy = 2=t " Ar(0,1
v o/ 1)

~ means “distributed like"”

v

v

Zy converges in distribution to a standard normal RV
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continued)

N
» Equivalently can say = an ~ N(Np, No?)
n=1
» Sum of large number of i.i.d. RVs has a normal distribution

» Cannot take a meaningful limit here.
> But intuitively, this is what the CLT states

Example

» Binomial RV X with parameters (n, p)

» Write as X = 27:1 X; with X; Bernoulli with parameter p
» Mean E [X;] = p and variance var [X;] = p(1 — p)

» For sufficiently large n = X ~ N (nu, np(1 — p))
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