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Conditional pmf and cdf for discrete RVs

I Recall definition of conditional probability for events E and F

P(E
∣∣F ) =

P(E ∩ F )

P(F )

I Change in likelihoods when information is given, renormalization

I Define the conditional pmf of RV X given Y as (both RVs discrete)

pX |Y (x
∣∣ y) = P

[
X = x

∣∣Y = y
]

=
P [X = x ,Y = y ]

P [Y = y ]

I Can rewrite as ⇒ pX |Y (x
∣∣ y) =

P [X = x ,Y = y ]

P [Y = y ]
=

pXY (x , y)

pY (y)

I Pmf for random variable x , given parameter y (“Y not random anymore”)

I Define conditional cdf as (a range of X conditional on a value of Y )

FX |Y (x
∣∣ y) = P

[
X ≤ x

∣∣Y = y
]

=
∑
z≤x

pX |Y (z
∣∣ y)
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Example

Example

I Independent Bernoulli Y and Z , variable X = Y + Z

I Conditional pmf of X given Y ? For X = 0, Y = 0

pX |Y (X = 0
∣∣Y = 0) =

P [X = 0,Y = 0]

P [Y = 0]
=

(1− p)2

1− p
= 1− p

I Or, from joint and marginal pdfs (just a matter of definition)

pX |Y (X = 0
∣∣Y = 0) =

pXY (0, 0)

pY (0)
=

(1− p)2

1− p
= 1− p

I Can compute the rest analogously

pX |Y (0|0) = (1− p), pX |Y (1|0) = p, pX |Y (2|0) = 0

pX |Y (0|1) = 0, pX |Y (1|1) = 1− p, pX |Y (2|1) = p
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Conditional pdf and cdf for continuous RVs

I Define conditional pdf of RV X given Y as (both RVs continuous)

fX |Y (x
∣∣ y) =

fXY (x , y)

fY (y)

I For motivation, define intervals ∆x = [x , x+dx ] and ∆y = [y , y+dy ]

I Can approximate conditional probability P
[
X ∈ ∆x

∣∣Y ∈ ∆y
]

as

P
[
X ∈ ∆x

∣∣Y ∈ ∆y
]

=
P [X ∈ ∆x ,Y ∈ ∆y ]

P [Y ∈ ∆y ]
≈ fXY (x , y)dxdy

fY (y)dy

I From definition of conditional pdf it follows after simplifying terms

P
[
X ∈ ∆x

∣∣Y ∈ ∆y
]
≈ fX |Y (x

∣∣ y)dx

I Which is what we would expect of a density

I Conditional cdf defined as ⇒ FX |Y (x) =

∫ x

−∞
fX |Y (u

∣∣ y)du
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Example: Communications channel

I Random message (RV) Y , transmit signal y (realization of Y )

I Received signal is x = y + z (z realization of random noise)

I Can model communication system as a relation between RVs

X = Y + Z

I Model communication noise as Z ∼ N (0, σ2) independent of Y

I Conditional pdf of X given Y . Use definition:

fX |Y (x
∣∣ y) =

fXY (x , y)

fY (y)
=

?

fY (y)

I Problem is we don’t know fXY (x , y). Have to calculate

I Computing conditional probs. typically easier than computing joints
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Example: Communications channel (continued)

I If Y = y is given, then “Y not random anymore” (Dorothy’s principle)

⇒ It still is random in reality, we are thinking of it as given

I If Y were not random, say Y = y with y given then ...

X = y + Z

I Cdf of X, now easily obtained

P [X ≤ x ] = P [y + Z ≤ x ] = P [Z ≤ x − y ] =

∫ x−y

−∞
pZ (z) dz

I But since Z is normal with 0 mean and variance σ2

P [X ≤ x ] =
1√
2πσ

∫ x−y

−∞
e−z

2/2σ2

dz =
1√
2πσ

∫ x

−∞
e−(z−y)

2/2σ2

dz

I X is normal with mean y and variance σ2
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Digital communications channel

I Conditioning is a common tool to compute probabilities

I Message 1 (prob. p) ⇒ Transmit Y = 1

I Message 2 (prob. q) ⇒ Transmit Y = −1

I Received signal ⇒ X = Y + Z

+ XY = ±1

Z ∼ N (0, σ2)

I Decoding rule ⇒ Ŷ = 1 if X ≥ 0, Ŷ = −1 if X < 0

I What is the probability of error, Pe := P
[
Ŷ 6= Y

]
?

I Red dots to the left and blue dots to the right are errors

x
1−1 0

Ŷ = 1Ŷ = 1
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Output pdf

I From communications channel example we know
I If Y = 1, then X ∼ N (1, σ2), conditional pdf is

fX |Y (x , 1) =
1√
2πσ

e−(x−1)
2/2σ2

I If Y = −1, then X ∼ N (−1, σ2), conditional pdf is

fX |Y (x ,−1) =
1√
2πσ

e−(x+1)2/2σ2

−1 1

N (1, σ2)N (−1, σ2)

x

fX |Y (x)
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Error probability

I Write probability of error by conditioning on Y = ±1 (total probability)

Pe = P
{
Ŷ 6= Y

∣∣Y = 1
}
P
{
Y = 1

}
+ P

{
Ŷ 6= Y

∣∣Y = −1
}
P
{
Y = −1

}
= P

{
Ŷ =−1

∣∣Y = 1
}
p + P

{
Ŷ = 1

∣∣Y = −1
}
q

I But according to the decision rule

Pe = P
{
X < 0

∣∣Y = 1
}
p + P

{
X ≥ 0

∣∣Y = −1
}
q

I But X given Y is normally distributed, then

Pe =
p√
2πσ

∫ ∞
0

e−(x−1)2/2σ2

+
q√
2πσ

∫ 0

−∞
e−(x+1)2/2σ2

=
1√
2πσ

∫ −1

−∞
e−x2/2σ2

−1 1

N (1, σ2)N (−1, σ2)

x

fX |Y (x)
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Conditional expectation

Conditional probabilities

Conditional expectation
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Definition of conditional expectation

I For continuous RVs X , Y define conditional expectation as

E
[
X
∣∣ y] =

∫ ∞
−∞

x fX |Y (x |y) dx

I For discrete RVs X , Y conditional expectation is

E
[
X
∣∣ y] =

∑
x

x pX |Y (x |y)

I Defined for given y ⇒ E
[
X
∣∣ y] is a value

I All possible values y of Y ⇒ random variable E
[
X
∣∣Y ]

I Y is RV, E
[
X
∣∣ y] value associated with outcome Y = y
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Double expectation

I If E
[
X
∣∣Y ] is a RV, can compute expected value EY

[
EX

(
X
∣∣Y )]

I Subindices are for clarity purposes, innermost expectation is with
respect to X , outermost with respect to Y

I What is EY

[
EX

(
X
∣∣Y )]? Not surprisingly ⇒ E [X ] = EY

[
EX

(
X
∣∣Y )]

I Show for discrete RVs (write integrals for continuous)

EY

[
EX

(
X
∣∣Y )] =∑

y

EX

(
X
∣∣ y) pY (y) =

∑
y

[∑
x

x pX |Y (x |y)
]
pY (y)

=
∑
x

x

[∑
y

pX |Y (x |y)pY (y)

]
=
∑
x

x

[∑
y

pX ,Y (x , y)

]
=
∑
x

xpX (x) = E [X ]

I Yields a method to compute expected values

⇒ Condition on Y = y ⇒ X
∣∣ y

⇒ Compute expected value over X for given y ⇒ EX

(
X
∣∣ y)

⇒ Compute expected value over all values y of Y ⇒ EY

[
EX

(
X
∣∣Y ) ]
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Example

I Seniors get A = 4 with prob. 0.5, B = 3 with prob. 0.5

I Juniors get B = 3 with prob. 0.6, B = 2 with prob. 0.4

I Exchange student’s standing: senior (junior) with prob. 0.7 (0.3)

I Expectation of X = exchange student’s grade?

I Begin conditioning on standing

E
[
X
∣∣Senior

]
= 0.5× 4 + 0.5× 3 = 3.5

E
[
X
∣∣ Junior

]
= 0.6× 3 + 0.4× 2 = 2.6

I Now sum over standing’s probability

E [X ] = E
[
X
∣∣Senior

]
P [Senior] + E

[
X
∣∣ Junior

]
P [Junior]

= 3.5× 0.7 + 2.6× 0.3

= 3.23
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Conditioning to compute expectations

I As with probabilities conditioning is useful to compute expectations.

⇒ Spreads difficulty into simpler problems

Example

I A baseball player hits Xi runs per game

I Expected number of runs is E [Xi ] = E [X ] independently of game

I Player plays N games in the season. N is random (playoffs, injuries?)

I Expected value of number of games is E [N]

I What is the expected number of runs in the season ? ⇒ E
[ N∑

i=1

Xi

]
I Both, N and Xi are random
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Sum of random number of random quantities

Step 1: Condition on N = n then[( N∑
i=1

Xi

) ∣∣N = n

]
=

n∑
i=1

Xi

Step 2: Compute expected value with respect to Xi

EXi

[( N∑
i=1

Xi

) ∣∣N = n

]
= E

[ n∑
i=1

Xi

]
= nE [X ]

Second equality possible because n is a number (not a RV like N)

Step 3: Conpute expected value with respect to values n of N

EN

[
EXi

[( N∑
i=1

Xi

) ∣∣N]] = EN

[
NE [X ]

]
= E [N]E [X ]

Yielding result ⇒ E
[ N∑

i=1

Xi

]
= E [N]E [X ]
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