

Markov Chains

Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

September 15, 2014

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Markov chains. Definition and examples

- Chapman Kolmogorov equations
- Gambler's ruin problem
- Queues in communication networks: Transition probabilities
- Classes of States
- Limiting distributions
- Ergodicity

Queues in communication networks: Limit probabilities

< □ > < 同 >

- Consider time index n = 0, 1, 2, ... & time dependent random state X_n
- State X_n takes values on a countable number of states
 - ▶ In general denotes states as *i* = 0, 1, 2, ...
 - Might change with problem
- Denote the history of the process $\mathbf{X}_n = [X_n, X_{n-1}, \dots, X_0]^T$
- Denote stochastic process as $X_{\mathbb{N}}$
- The stochastic process $X_{\mathbb{N}}$ is a Markov chain (MC) if

$$P[X_{n+1} = j | X_n = i, \mathbf{X}_{n-1}] = P[X_{n+1} = j | X_n = i] = P_{ij}$$

▶ Future depends only on current state X_n

< ロ > < 同 > < 回 > < 回 > < □ > <

- Process's history X_{n-1} irrelevant for future evolution of the process
- Probabilities P_{ij} are constant for all times (time invariant)
- \blacktriangleright From the definition we have that for arbitrary m

$$\mathsf{P}\left[X_{n+m} \mid X_n, \mathbf{X}_{n-1}\right] = \mathsf{P}\left[X_{n+m} \mid X_n\right]$$

- ► X_{n+m} depends only on X_{n+m-1} , which depends only onX_{n+m-2} , ... which depends only on X_n
- Since P_{ij} 's are probabilities they're positive and sum up to 1

$$P_{ij} \geq 0$$
 $\sum_{j=1}^{\infty} P_{ij} = 1$

<ロ> <部> < 部> < き> < き> < き</p>

▶ Group transition probabilities *P*_{ij} in a "matrix" **P**

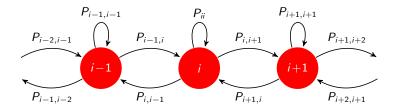
$$\mathbf{P} := \begin{pmatrix} P_{00} & P_{01} & P_{02} & \dots \\ P_{10} & P_{11} & P_{12} & \dots \\ \vdots & \vdots & \vdots & \vdots \\ P_{i0} & P_{i1} & P_{i2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Not really a matrix if number of states is infinite

æ

《曰》《聞》《臣》《臣》

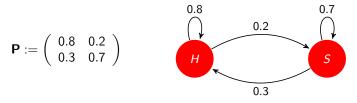
A graph representation is also used



Useful when number of states is infinite

< ∃ >

- I can be happy $(X_n = 0)$ or sad $(X_n = 1)$.
- Happiness tomorrow affected by happiness today only
- Model as Markov chain with transition probabilities



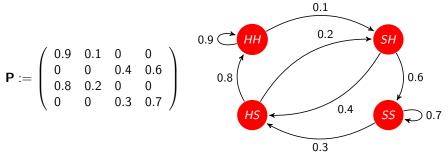
▶ Inertia ⇒ happy or sad today, likely to stay happy or sad tomorrow ($P_{00} = 0.8, P_{11} = 0.7$)

• But when sad, a little less likely so $(P_{00} > P_{11})$

・ロト ・回ト ・ヨト ・ヨト

Example: Happy - Sad, version 2

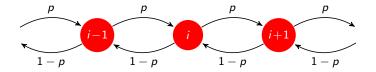
- Happiness tomorrow affected by today and yesterday
- ► Define double states HH (happy-happy), HS (happy-sad), SH, SS
- Only some transitions are possible
 - ► HH and SH can only become HH or HS
 - HS and SS can only become SH or SS



- More time happy or sad increases likelihood of staying happy or sad
- ► State augmentation ⇒ Capture longer time memory

Random (drunkard's) walk

• Step to the right with probability p, to the left with prob. (1-p)

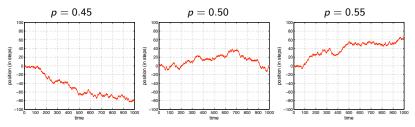


- States are $0, \pm 1, \pm 2, \ldots$, number of states is infinite
- Transition probabilities are

$$P_{i,i+1} = p,$$
 $P_{i,i-1} = 1 - p,$

Random (drunkard's) walk - continued

▶ Random walks behave differently if p < 1/2, p = 1/2 or p > 1/2



- With p > 1/2 diverges to the right (grows unbounded almost surely)
- With p < 1/2 diverges to the left
- With p = 1/2 always come back to visit origin (almost surely)
- Because number of states is infinite we can have all states transient
 - They are not revisited after some time (more later)

<ロト <部ト < 注ト < 注ト

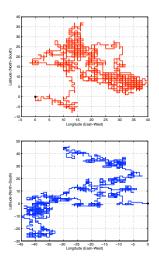
- Take a step in random direction East, West, South or North
 - \Rightarrow E, W, S, N chosen with equal probability
- States are pairs of coordinates (x, y)
 - $x = 0, \pm 1, \pm 2, \dots$ and $y = 0, \pm 1, \pm 2, \dots$
- Transiton probabilities are not zero only for points adjacent in the grid

$$P[x(t+1) = i+1, y(t+1) = j | x(t) = i, y(t) = j] = \frac{1}{4}$$

$$P[x(t+1) = i-1, y(t+1) = j | x(t) = i, y(t) = j] = \frac{1}{4}$$

$$P[x(t+1) = i, y(t+1) = j+1 | x(t) = i, y(t) = j] = \frac{1}{4}$$

$$P[x(t+1) = i, y(t+1) = j-1 | x(t) = i, y(t) = j] = \frac{1}{4}$$

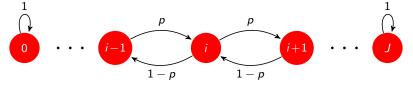


11

- Some random facts of life for equiprobable random walks
- \blacktriangleright In one and two dimensions probability of returning to origin is 1
- Will almost surely return home
- In more than two dimensions, probability of returning to origin is less than 1
- In three dimensions probability of returning to origin is 0.34
- ▶ Then 0.19, 0.14, 0.10, 0.08, ...

Random walk with borders (gambling)

- As a random walk, but stop moving when i = 0 or i = J
 - Models a gambler that stops playing when ruined, $X_n = 0$
 - Or when reaches target gains $X_n = J$



▶ States are 0, 1, ..., J. Finite number of states (J). Transition probs.

$$P_{i,i+1} = p, \quad P_{i,i-1} = 1 - p, \qquad P_{00} = 1, \quad P_{JJ} = 1$$

• $P_{ij} = 0$ for all other transitions

- ▶ States 0 and J are called absorbing. Once there stay there forever
- The rest are transient states. Visits stop almost surely

・ロン ・回 と ・ ヨ と ・ ヨ と …

Markov chains. Definition and examples

- Chapman Kolmogorov equations
- Gambler's ruin problem
- Queues in communication networks: Transition probabilities
- Classes of States
- Limiting distributions
- Ergodicity

Queues in communication networks: Limit probabilities

- What can be said about multiple transitions ?
- Transition probabilities between two time slots

$$P_{ij}^2 := \mathsf{P}\left[X_{m+2} = j \mid X_m = i\right]$$

▶ Probabilities of X_{m+n} given $X_n \Rightarrow n$ -step transition probabilities

$$P_{ij}^{n} := \mathsf{P}\left[X_{m+n} = j \mid X_m = i\right]$$

- ▶ Relation between *n*-step, *m*-step and (m + n)-step transition probs.
 - Write P^{m+n}_{ij} in terms of P^m_{ij} and Pⁿ_{ij}
- All questions answered by Chapman-Kolmogorov's equations

イロト イポト イヨト イヨト

2-step transition probabilities

Start considering transition probs. between two time slots

$$P_{ij}^2 = \mathsf{P}\left[X_{n+2} = j \mid X_n = i\right]$$

Using the theorem of total probability

$$P_{ij}^{2} = \sum_{k=1}^{\infty} P\left[X_{n+2} = j \mid X_{n+1} = k, X_{n} = i\right] P\left[X_{n+1} = k \mid X_{n} = i\right]$$

▶ In the first probability, conditioning on $X_n = i$ is unnecessary. Thus

$$P_{ij}^{2} = \sum_{k=1}^{\infty} P\left[X_{n+2} = j \mid X_{n+1} = k\right] P\left[X_{n+1} = k \mid X_{n} = i\right]$$

Which by definition yields

$$P_{ij}^2 = \sum_{k=1}^{\infty} P_{kj} P_{ik}$$

 Identical argument can be made (condition on X₀ to simplify notation, possible because of time invariance)

$$P_{ij}^{m+n} = \mathsf{P}\left[X_{n+m} = j \mid X_0 = i\right]$$

Use theorem of total probability, remove unnecessary conditioning and use definitions of *n*-step and *m*-step transition probabilities

$$P_{ij}^{m+n} = \sum_{k=1}^{\infty} P[X_{m+n} = j | X_m = k, X_0 = i] P[X_m = k | X_0 = i]$$

$$P_{ij}^{m+n} = \sum_{k=1}^{\infty} P[X_{m+n} = j | X_m = k] P[X_m = k | X_0 = i]$$

$$P_{ij}^{m+n} = \sum_{k=1}^{\infty} P_{kj}^n P_{ik}^m$$

Chapman Kolmogorov is intuitive. Recall

$$P_{ij}^{m+n} = \sum_{k=1}^{\infty} P_{kj}^n P_{ik}^m$$

- Between times 0 and m + n time m occurred
- At time m, the chain is in some state X_m = k
 ⇒ P^m_{ik} is the probability of going from X₀ = i to X_m = k
 ⇒ Pⁿ_{kj} is the probability of going from X_m = k to X_{m+n} = j
 ⇒ Product P^m_{ik}Pⁿ_{kj} is then the probability of going from X₀ = i to X_{m+n} = j passing through X_m = k at time m
 Since any k might have occurred sum over all k

・ロト ・四ト ・ヨト ・ヨト

- ▶ Define matrices $\mathbf{P}^{(m)}$ with elements P_{ij}^m , $\mathbf{P}^{(n)}$ with elements P_{ij}^n and $\mathbf{P}^{(m+n)}$ with elements P_{ij}^{m+n}
- $\sum_{k=1}^{\infty} P_{kj}^n P_{ik}^m$ is the (i,j)-th element of matrix product $\mathbf{P}^{(m)} \mathbf{P}^{(n)}$

Chapman Kolmogorov in matrix form

$$\mathbf{P}^{(m+n)} = \mathbf{P}^{(m)}\mathbf{P}^{(n)}$$

• Matrix of (n + m)-step transitions is product of *n*-step and *m*-step

◆□ → ◆□ → ◆ □ → ◆ □ → ○ □

• For m = n = 1 (2-step transition probabilities) matrix form is

 $\mathbf{P}^{(2)} = \mathbf{P}\mathbf{P} = \mathbf{P}^2$

Proceed recursively backwards from n

$$\mathbf{P}^{(n)} = \mathbf{P}^{(n-1)}\mathbf{P} = \mathbf{P}^{(n-2)}\mathbf{P}\mathbf{P} = \ldots = \mathbf{P}^n$$

Have proved the following

Theorem

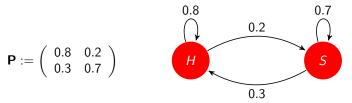
The matrix of n-step transition probabilities $P^{(n)}$ is given by the n-th power of the transition probability matrix **P**. *i.e.*,

 $\mathbf{P}^{(n)}=\mathbf{P}^n$

Henceforth we write \mathbf{P}^n

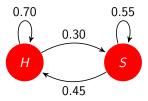
イロン 不同 とくほう イロン

Happiness transitions in one day (not the same as earlier example)



> Transition probabilities between today and the day after tomorrow?

$$\mathbf{P}^2 := \left(\begin{array}{cc} 0.70 & 0.30 \\ 0.45 & 0.55 \end{array} \right)$$



A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

문어 귀엽어

... After a week and after a month

$$\mathbf{P}^7 := \left(\begin{array}{ccc} 0.6031 & 0.3969 \\ 0.5953 & 0.4047 \end{array} \right) \qquad \qquad \mathbf{P}^{30} := \left(\begin{array}{ccc} 0.6000 & 0.4000 \\ 0.6000 & 0.4000 \end{array} \right)$$

▶ Matrices \mathbf{P}^7 and \mathbf{P}^{30} almost identical $\Rightarrow \lim_{n\to\infty} \mathbf{P}^n$ exists

Note that this is a regular limit

- After a month transition from H to H with prob. 0.6 and from S to H also 0.6
- State becomes independent of initial condition
- ▶ Rationale: 1-step memory \Rightarrow initial condition eventually forgotten

イロン 不同 とくほう イロン

Unconditional probabilities

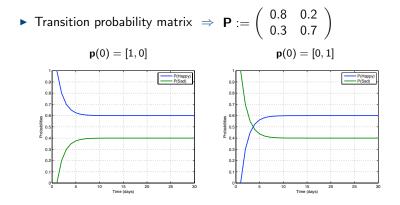
- ► All probabilities so far are conditional, i.e., $P[X_n = j | X_0 = i]$
- Want unconditional probabilities $p_j(n) := P[X_n = j]$
- Requires specification of initial conditions p_i(0) := P [X₀ = i]
- Using theorem of total probability and definitions of P_{ij}^n and $p_j(n)$

$$p_j(n) := P[X_n = j] = \sum_{i=1}^{\infty} P[X_n = j | X_0 = i] P[X_0 = i]$$
$$= \sum_{i=1}^{\infty} P_{ij}^n p_i(0)$$

• Or in matrix form (define vector $\mathbf{p}(n) := [p_1(n), p_2(n), \ldots]^T)$

$$\mathbf{p}(n) = \mathbf{P}^{n\,T}\mathbf{p}(0)$$

Example: Happy-Sad



For large *n* probabilities $\mathbf{p}(t)$ are independent of initial state $\mathbf{p}(0)$

《口》《聞》《臣》《臣》

Markov chains. Definition and examples

- Chapman Kolmogorov equations
- Gambler's ruin problem
- Queues in communication networks: Transition probabilities
- Classes of States
- Limiting distributions
- Ergodicity

Queues in communication networks: Limit probabilities

Gambler's ruin problem

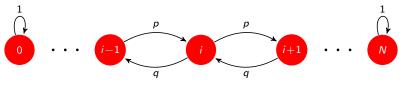
- You place \$1 bets,
 - (a) With probability p you gain \$1 and
 - (b) With probability q = (1 p) you loose your \$1 bet
- Start with an initial wealth of \$i₀
- Define bias factor $\alpha := q/p$
 - If $\alpha > 1$ more likely to loose than win (biased against gambler)
 - lpha < 1 favors gambler (more likely to win than loose)
 - $\alpha = 1/2$ game is fair
- You keep playing until
 - (a) You go broke (loose all your money)
 - (b) You reach a wealth of N
- Prob. S_i of reaching \$N before going broke for initial wealth \$i?
 - S stands for success

・ロン ・回 と ・ ヨ と ・ ヨ と …

• Model as Markov chain $X_{\mathbb{N}}$. Transition probabilities

$$P_{i,i+1} = p, \quad P_{i,i-1} = q, \quad P_{00} = P_{NN} = 1$$

• Realizations $x_{\mathbb{N}}$. Initial state = initial wealth = i_0



▶ Sates 0 and N said absorbing. Eventually end up in one of them

- Remaining states said transient (visits eventually stop)
- Being absorbing states says something about the limit wealth

$$\lim_{n\to\infty} x_n = 0, \text{ or } \lim_{n\to\infty} x_n = N, \quad \Rightarrow \quad S_i := \mathsf{P}\left(\lim_{n\to\infty} X_n = N \mid X_0 = i\right)$$

- Prob. S_i of successful betting run depends on current state *i* only
- We can relate probabilities of SBR from adjacent states

$$S_i = S_{i+1}P_{i,i+1} + S_{i-1}P_{i,i-1} = S_{i+1}p + S_{i-1}q$$

• Recall p + q = 1. Reorder terms

$$p(S_{i+1}-S_i) = q(S_i-S_{i-1})$$

• Recall definition of bias $\alpha = q/p$

$$S_{i+1}-S_i=\alpha(S_i-S_{i-1})$$

< □ > < 同 >

▶ ★ 문 ▶

Recursive relations (continued)

• If current state is 0 then $S_i = S_0 = 0$. Can write

$$S_2 - S_1 = \alpha(S_1 - S_0) = \alpha S_1$$

• Substitute this in the expression for $S_3 - S_2$

$$S_3 - S_2 = \alpha(S_2 - S_1) = \alpha^2 S_1$$

• Apply recursively backwards from $S_i - S_{i-1}$

$$S_i - S_{i-1} = \alpha(S_{i-1} - S_{i-2}) = \ldots = \alpha^{i-1}S_1$$

Sum up all of the former to obtain

$$S_i - S_1 = S_1 \left(\alpha + \alpha^2 + \ldots + \alpha^{i-1} \right)$$

The latter can be written as a geometric series

$$S_i = S_1 \left(1 + \alpha + \alpha^2 + \ldots + \alpha^{i-1} \right)$$

• Geometric series can be summed. Assuming $\alpha \neq 1$

$$S_i = \frac{1 - \alpha^i}{1 - \alpha} S_1$$

• Write for i = 1. When in state N, $S_N = 1$

$$1 = S_N = \frac{1 - \alpha^N}{1 - \alpha} S_1$$

Compute S₁ from latter and substitute into expression for S_i

$$S_i = \frac{1 - \alpha^i}{1 - \alpha^N}$$

► For
$$\alpha = 1 \implies S_i = iS_1$$
, $1 = S_N = NS_1$, $\implies S_i = (i/N)$

æ

► Consider exit bound *N* arbitrarily large.

• For
$$\alpha \geq 1$$
, $S_i \approx (\alpha^i - 1)/\alpha^N \to 0$

- If win prob. does not exceed loose probability will almost surely loose all money
- For $\alpha < 1$, $P_i \rightarrow 1 \alpha^i$
- If win prob. exceeds loose probability might win
- If initial wealth i sufficiently high, will most likely win
 - \Rightarrow Which explains what we saw on first lecture and homework

Markov chains. Definition and examples

- Chapman Kolmogorov equations
- Gambler's ruin problem
- Queues in communication networks: Transition probabilities
- Classes of States
- Limiting distributions
- Ergodicity

Queues in communication networks: Limit probabilities

- Communication systems goal
 - \Rightarrow Move packets from generating sources to intended destinations
- Between arrival and departure we hold packets in a memory buffer
- Want to design buffers appropriately

< □ > < 同 >

(E) < E)</p>

- Time slotted in intervals of duration Δt
- *n*-th slot between times $n\Delta t$ and $(n+1)\Delta t$
- Average arrival rate is $\bar{\lambda}$ packets per unit time
- During slot of duration Δt probability of packet arrival is $\lambda = \overline{\lambda} \Delta t$
- Packets are transmitted (depart) at a rate of $\bar{\mu}$ packets per unit time
- During interval Δt probability of packet departure is $\mu = \bar{\mu} \Delta t$
- Assume no simultaneous arrival and departure (no concurrence)
 - Reasonable for small Δt (μ and λ are likely small)

Queue evolution equations

- q_n denotes number of packets in queue in *n*-th time slot
- ▶ $A_n = nr$. of packet arrivals, $\mathbb{D}_n = nr$. of departures (during *n*-th slot)
- If there are no packets in queue $q_n = 0$ then there are no departures
- Queue length at time n + 1 can be written as

$$q_{n+1} = q_n + \mathbb{A}_n, \quad \text{if } q_n = 0$$

• If $q_n > 0$, departures and arrivals may happen

$$q_{n+1} = \left[q_n + \mathbb{A}_n - \mathbb{D}_n\right]^+, \quad \text{if } q_n > 0$$

• $\mathbb{A}_n \in \{0,1\}$, $\mathbb{D}_n \in \{0,1\}$ and either $\mathbb{A}_n = 1$ or $\mathbb{D}_n = 1$ but not both • Arrival and departure probabilities are

$$\mathsf{P}\left[\mathbb{A}_n=1\right]=\lambda,\qquad\mathsf{P}\left[\mathbb{D}_n=1\right]=\mu$$

ヘロン 人間 とくほと 人ほとう

- Future queue lengths depend on current length only
- Probability of queue length increasing

$$\mathsf{P}\left[q_{n+1}=i+1 \mid q_n=i\right] = \mathsf{P}\left[\mathbb{A}_n=1\right] = \lambda, \quad \text{for all } i$$

• Queue length might decrease only if $q_n > 0$. Probability is

$$\mathsf{P}\left[q_{n+1}=i-1 \mid q_n=i\right] = \mathsf{P}\left[\mathbb{D}_n=1\right] = \mu, \qquad \text{for all } i > 0$$

Queue length stays the same if it neither increases nor decreases

$$\mathsf{P}\left[q_{n+1}=i \mid q_n=i\right] = 1 - \lambda - \mu, \quad \text{for all } i > 0 \\ \mathsf{P}\left[q_{n+1}=0 \mid q_n=0\right] = 1 - \lambda$$

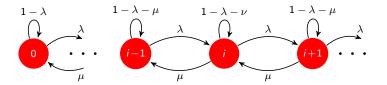
• No departures when $q_n = 0$ explain second equation

(a)

- MC with states $0, 1, 2, \ldots$ Identify states with queue lengths
- Transition probabilities for $i \neq 0$ are

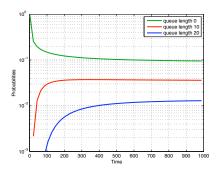
$$P_{i,i-1} = \lambda, \qquad P_{i,i} = 1 - \lambda - \mu, \qquad P_{i,i+1} = \mu$$

• For
$$i = 0$$
 $P_{0,0} = 1 - \lambda$ and $P_{01} = \lambda$



・ロト ・聞 ト ・ 臣 ト ・ 臣 ト

- Build matrix **P** truncating at maximum queue length L = 100
- Arrival rate $\lambda = 0.3$. Departure rate $\mu = 0.33$
- ▶ Initial probability distribution $\mathbf{p}(0) = [1, 0, 0, ...]^T$ (queue empty)



- Propagate probabilities with product Pⁿp(0)
- Probabilities obtained are

$$\mathsf{P}\left[q_n=i\,\big|\,q_0=0\right]=p_i(n)$$

- A few i's (0, 10, 20) shown
- Probability of empty queue ≈ 0.1 .
- Occupancy decrease with index

Markov chains. Definition and examples

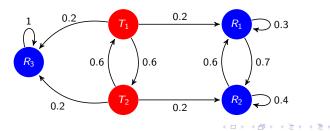
- Chapman Kolmogorov equations
- Gambler's ruin problem
- Queues in communication networks: Transition probabilities
- Classes of States
- Limiting distributions
- Ergodicity

Queues in communication networks: Limit probabilities

(a)

Transient and recurrent states

- States of a MC can be recurrent or transient
- Transient states might be visited at the beginning but eventually visits stop
- Almost surely, $X_n \neq i$ for *n* sufficiently large (qualifications needed)
- Visits to recurrent states keep happening forever
- ► Fix arbitrary *m*
- ▶ Almost surely, $X_n = i$ for some $n \ge m$ (qualifications needed)



• Let f_i be the probability that starting at i, MC ever reenters state i

$$f_i := \mathsf{P}\left[\bigcup_{n=1}^{\infty} X_n = i \, \big| \, X_0 = i\right] = \mathsf{P}\left[\bigcup_{n=m+1}^{\infty} X_n = i \, \big| \, X_m = i\right]$$

• State *i* is recurrent if $f_i = 1$

- ▶ Process reenters *i* again and again (almost surely). Infinitely often
- State *i* is transient if $f_i < 1$
- Positive probability $(1 f_i)$ of never coming back to *i*

< ロ > < 同 > < 三 > < 三 > .

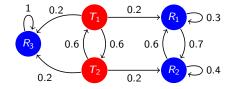
- State R_3 is recurrent because $P[X_1 = R_3 | X_0 = R_3] = 1$
- ► State R_1 is recurrent because $P \begin{bmatrix} X_1 = R_1 \mid X_0 = R_1 \end{bmatrix} = 0.3$ $P \begin{bmatrix} X_2 = R_1, X_1 \neq R_1 \mid X_0 = R_1 \end{bmatrix} = (0.7)(0.6)$ $P \begin{bmatrix} X_3 = R_1, X_2 \neq R_1, X_1 \neq R_1 \mid X_0 = R_1 \end{bmatrix} = (0.7)(0.4)(0.6)$ \vdots $P \begin{bmatrix} X_n = R_1, X_{n-1} \neq R_1, \dots, X_1 \neq R_1 \mid X_0 = R_1 \end{bmatrix} = (0.7)(0.4)^{n-1}(0.6)$

• Sum up:
$$f_i = \sum_{n=1}^{\infty} P\left[X_n = R_1, X_{n-1} \neq R_1, \dots, X_1 \neq R_1 \mid X_0 = R_1\right]$$

= 0.3 + 0.7 $\left(\sum_{n=1}^{\infty} 0.4^{n-1}\right)$ 0.6 = 0.3 + 0.7 $\left(\frac{1}{1-0.4}\right)$ 0.6 = 1

< □ > < 同 >

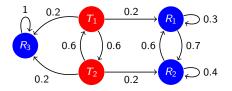
- States T_1 and T_2 are transient
- Probability of returning to T_1 is $f_{T_1} = (0.6)^2 = 0.36$
- Might come back to T_1 only if it goes to T_2 (with prob. 0.6)
- Will come back only if it moves back from T_2 to T_1 (with prob. 0.6)



• Likewise,
$$f_{T_2} = (0.6)^2 = 0.36$$

Accessibility

- State *j* is accessible from state *i* if $P_{ii}^n > 0$ for some $n \ge 0$
- It is possible to enter j if MC initialized at $X_0 = i$
- ► Since $P_{ii}^0 = P[X_0 = 1 | X_0 = i] = 1$, state *i* is accessible from itself



- All states accessible from T_1 and T_2
- Only R_1 and R_2 accessible from R_1 or R_2
- None other than itself accessible from R_3

Communication

- States *i* and *j* are said to communicate (*i* ↔ *j*) if
 ⇒ *i* is accessible from *j*, Pⁿ_{ij} > 0 for some *n*; and
 ⇒ *j* is accessible from *i*, P^m_{ii} > 0 for some *m*
- Communication is an equivalence relation
- Reflexivity: $i \leftrightarrow i$
 - true because $P_{ii}^0 = 1$
- **Symmetry**: If $i \leftrightarrow j$ then $j \leftrightarrow i$
 - If $i \leftrightarrow j$ then $P_{ij}^n > 0$ and $P_{ji}^m > 0$ from where $j \leftrightarrow i$
- Transitivity: If $i \leftrightarrow j$ and $j \leftrightarrow k$, then $i \leftrightarrow k$
 - Just notice that $P_{ik}^{n+m} \ge P_{ij}^n P_{jk}^m > 0$
- Partitions set of states into disjoint classes (as all equivalences do)
- What are these classes? (start with a brief detour)

・ロト ・四ト ・ヨト ・ヨト

• Define N_i as the number of visits to state *i* given that $X_0 = i$

$$N_i := \sum_{n=1}^{\infty} \mathbb{I}\left\{X_n = i\right\}$$

- If $X_n = i$, this is the last visit to *i* with probability $1 f_i$
- Prob. revisiting state *i* exactly *n* times is (*n* visits \times no more visits)

$$\mathsf{P}\left[N_i=n\right]=f_i^n(1-f_i)$$

- Number of visits N_i has a geometric distribution with parameter f_i
- Expected number of visits is

$$\mathbb{E}[N_i] = \sum_{n=1}^{\infty} nf_i^n(1-f_i) = \frac{1}{1-f_i}$$

▶ For recurrent states $N_i = \infty$ almost surely and $\mathbb{E}[N_i] = \infty$ $(f_i = 1)$

• Another way of writing $\mathbb{E}[N_i]$

$$\mathbb{E}[N_i] = \sum_{n=1}^{\infty} \mathbb{E}\Big[\mathbb{I}\{X_n = i\}\Big] = \sum_{n=1}^{\infty} P_{ii}^n$$

- ► Recall that: for transient states $\mathbb{E}[N_i] = 1/(1 f_1)$ for recurrent states $\mathbb{E}[N_i] = \infty$
- Therefore proving

Theorem

- State i is transient if and only if $\sum_{n=1}^{\infty} P_{ii}^n < \infty$
- State *i* is recurrent if and only if $\sum_{n=1}^{\infty} P_{ii}^n = \infty$
- Number of future visits to transient states is finite
- If number of states is finite some states have to be recurrent

Theorem

If state i is recurrent and $i \leftrightarrow j$, then j is recurrent

Proof.

- If $i \leftrightarrow j$ then there are I, m such that $P'_{ji} > 0$ and $P^m_{ij} > 0$
- ▶ Then, for any *n* we have

$$P_{jj}^{l+n+m} \ge P_{ji}^l P_{ii}^n P_{ij}^m$$

▶ Sum for all *n*. Note that since *i* is recurrent $\sum_{n=1}^{\infty} P_{ii}^n = \infty$

$$\sum_{n=1}^{\infty} P_{jj}^{l+n+m} \geq \sum_{n=1}^{\infty} P_{ji}^{l} P_{ii}^{n} P_{ij}^{m} = P_{ji}^{l} \left(\sum_{n=1}^{\infty} P_{ii}^{n} \right) P_{ij}^{m} = \infty$$

Which implies j is recurrent

イロト イポト イヨト イヨト

Corollary

If state i is transient and $i \leftrightarrow j$ then j is transient

Proof.

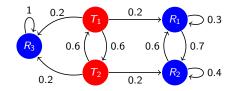
- If j were recurrent, then i would be recurrent from previous theorem
- Since communication defines classes and recurrence is shared by elements of this class, we say that recurrence is a class property
- Likewise, transience is also a class property
- States of a MC are separated in classes of transient and recurrent states

A MC is called irreducible if it has only one class

- All states communicate with each other
- If MC also has finite number of states the single class is recurrent
- If MC infinite, class might be transient
- When it has multiple classes (not irreducible)
 - Classes of transient states T_1, T_2, \ldots
 - Classes of recurrent states $\mathcal{R}_1, \mathcal{R}_2, \dots$
 - If MC initialized in a recurrent class \mathcal{R}_k , stays within the class
 - ► If starts in transient class T_k, might stay on T_k or end up in a recurrent class R_l
- ► For large time index *n*, MC restricted to one class
- Can be separated into irreducible components

(日) (同) (三) (三)

Example



- Three classes
 - $\Rightarrow \mathcal{T} := \{T_1, T_2\}$, class with transient states
 - $\Rightarrow \mathcal{R}_1 := \{R_1, R_2\}$, class with recurrent states
 - $\Rightarrow \mathcal{R}_2 := \{R_3\}$, class with recurrent states
- Asymptotically in n suffices to study behavior for the irreducible components R₁ and R₂

< □ > < 同 >

- ∢ ≣ →

- States of a MC can be transient of recurrent
- A MC can be partitioned in classes of states reachable from each other
- Elements of the class are either all recurrent or all transient
- A MC with only one class is irreducible
- If not irreducible can be separated in irreducible components

(D)

글 > - < 글 >

Markov chains. Definition and examples

- Chapman Kolmogorov equations
- Gambler's ruin problem
- Queues in communication networks: Transition probabilities
- Classes of States
- Limiting distributions
- Ergodicity

Queues in communication networks: Limit probabilities

(日) (同) (三) (三)

Limiting distributions

- MCs have one-step memory. Eventually they forget initial state
- ▶ What can we say about probabilities for large *n*?

$$\pi_j := \lim_{n \to \infty} \mathsf{P}\left[X_n = j \,\middle|\, X_0 = i\right] = \lim_{n \to \infty} \mathcal{P}_{ij}^n$$

- Implicitly assumed that limit is independent of initial state $X_0 = i$
- ▶ We've seen that this problem is related to the matrix power **P**ⁿ

$$\mathbf{P} := \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix} \qquad \mathbf{P}^7 := \begin{pmatrix} 0.6031 & 0.3969 \\ 0.5953 & 0.4047 \end{pmatrix}$$
$$\mathbf{P}^2 := \begin{pmatrix} 0.7 & 0.3 \\ 0.45 & 0.55 \end{pmatrix} \qquad \mathbf{P}^{30} := \begin{pmatrix} 0.6000 & 0.4000 \\ 0.6000 & 0.4000 \end{pmatrix}$$

- Matrix product converges \Rightarrow probs. independent of time (large *n*)
- All columns are equal \Rightarrow probs. independent of initial condition

・ロン ・四マ ・ヨマー

Periodicity

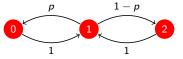
• The period of a state *i* is defined as (d is set of multiples of d)

$$d = \max\left\{d: P_{ii}^n = 0 \text{ for all } n \notin \dot{d}\right\}$$

State i is periodic with period d if and only if

$$\Rightarrow P_{ii}^n
eq 0$$
 only if *n* is a multiple of *d* $(n \in \dot{d})$

- \Rightarrow *d* is the largest number with this property
- Positive probability of returning to *i* only every *d* time steps
- If period d = 1 state is aperiodic (most often the case)
- Periodicity is a class property



- State 1 has period 2. So do 0 and 2 (class property)
- One dimensional random walk also has period 2

< 口 > < 同

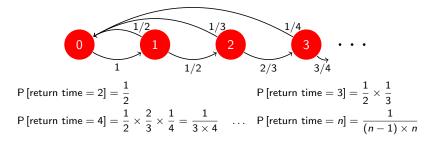
- ▶ Recall: state *i* is recurrent if chain returns to *i* with probability 1
- Proved it was equivalent to $\sum_{n=1}^{\infty} P_{ii}^n = \infty$
- Positive recurrent when expected value of return time is finite

$$\mathbb{E}\left[\text{return time}\right] = \sum_{n=1}^{\infty} n P_{ii}^n \prod_{m=0}^{n-1} (1 - P_{ii}^m) < \infty$$

- Null recurrent if recurrent but $\mathbb{E}[return time] = \infty$
- Positive and null recurrence are class properties
- Recurrent states in a finite-state MC are positive recurrent
- ► Ergodic states are those that are positive recurrent and aperiodic
- ► An irreducible MC with ergodic states is said to be an ergodic MC

< 日 > < 回 > < 回 > < 回 > < 回 > :

Example of a null recurrent MC



It is recurrent because probability of returning is 1 (use induction)

$$\sum_{m=2}^{n} \mathsf{P}\left[\text{return time} = m\right] = \sum_{m=2}^{n} \frac{1}{(m-1) \times m} = \frac{n-1}{n} \to 1$$

Null recurrent because expected return time is infinite

$$\sum_{n=2}^{\infty} n \mathbb{P}\left[\text{return time} = n\right] = \sum_{n=2}^{\infty} \frac{n}{(n-1) \times n} = \sum_{n=2}^{\infty} \frac{1}{(n-1)} = \infty$$

< 日 > < 四 > < 回 > < 回 > < 回 > <

Theorem

For an irreducible ergodic MC, $\lim_{n\to\infty}P_{ij}$ exists and is independent of the initial state i. That is

$$\pi_j = \lim_{n \to \infty} P_{ij}^n$$
 exists

Furthermore, steady state probabilities $\pi_j \ge 0$ are the unique nonnegative solution of the system of linear equations

$$\pi_j = \sum_{i=0}^\infty \pi_i P_{ij}, \qquad \sum_{j=0}^\infty \pi_j = 1$$

- As observed, limit probs. independent of initial condition exist
- Simple algebraic equations can be solved to find π_j
- ▶ No periodic states, transient states, multiple classes or null recurrent

- Difficult part of theorem is to prove that $\pi_j = \lim_{n \to \infty} P_{ii}^n$ exists
- ► To see that algebraic relation is true use theorem of total probability (omit conditioning on X₀ to simplify notation)

$$P[X_{n+1} = j] = \sum_{i=1}^{\infty} P[X_{n+1} = j | X_n = i] P[X_n = i]$$
$$= \sum_{i=1}^{\infty} P_{ij} P[X_n = i]$$

▶ If limits exists, $P[X_{n+1} = j] \approx P[X_n = j] \approx \pi_j$ (sufficiently large *n*)

$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}$$

• The other equation is true because the π_j are probabilities

ヘロト ヘヨト ヘヨト ヘヨト

Vector/matrix notation: Matrix limit

- More compact and illuminating on vector/matrix notation
- Finite MC with J states
- First part of theorem says that $\lim_{n\to\infty} \mathbf{P}^n$ exists and

$$\lim_{n \to \infty} \mathbf{P}^n = \begin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_J \\ \pi_1 & \pi_2 & \dots & \pi_J \\ \vdots & \vdots & \vdots & \vdots \\ \pi_1 & \pi_2 & \dots & \pi_J \end{pmatrix}$$

▶ Same probs. for all rows \Rightarrow independent of initial state

Probability distribution for large n.

$$\lim_{n\to\infty}\mathbf{p}(n) = \lim_{n\to\infty}\mathbf{P}^{T^n}\mathbf{p}(0) = [\pi_0, \pi_1, \dots, \pi_J]^T$$

Independent of initial condition

1

・ロン ・回 と ・ ヨ と ・ ヨ と …

- Define vector stationary distribution $\boldsymbol{\pi} := [\pi_0, \pi_1, \dots, \pi_J]^T$
- Limit distribution is unique solution of $(\mathbf{1} = [1, 1, \ldots]^T)$

$$\boldsymbol{\pi} = \mathbf{P}^T \boldsymbol{\pi}, \qquad \boldsymbol{\pi}^T \mathbf{1} = 1$$

- π eigenvector associated with eigenvalue 1 of \mathbf{P}^{T}
 - Eigenvectors are defined up to a constant
 - Normalize to sum 1
- ▶ All other eigenvectors of \mathbf{P}^{T} have modulus smaller than 1
 - ▶ If not, \mathbf{P}^n diverges, but we know \mathbf{P}^n contains *n*-step transition probs.
 - π eigenvector associated with largest eigenvalue of \mathbf{P}^{T}
- ► Computing *π* as eigenvector is computationally efficient and robust in some problems

• Can also write as (**I** is identity matrix, $\mathbf{0} = [0, 0, ...]^T$)

$$\left(\mathbf{I} - \mathbf{P}^{T}\right) \boldsymbol{\pi} = \mathbf{0} \qquad \boldsymbol{\pi}^{T} \mathbf{1} = 1$$

▶ π has J elements, but there are J+1 equations \Rightarrow overdetermined

- ▶ If 1 is eigenvalue of \mathbf{P}^{T} , then 0 is eigenvalue of $\mathbf{I} \mathbf{P}^{T}$
 - ▶ $\mathbf{I} \mathbf{P}^{\mathsf{T}}$ is rank deficient, in fact rank $(\mathbf{I} \mathbf{P}^{\mathsf{T}}) = J 1$
 - Then, there are in fact only J equations
- π is eigenvector associated with eigenvalue 0 of $I P^T$
 - π spans null space of $\mathbf{I} \mathbf{P}^T$ (not much significance)

MC with transition probability matrix

$$\mathbf{P} := \left(\begin{array}{ccc} 0 & 0.3 & 0.7 \\ 0.1 & 0.5 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{array} \right)$$

Does P correspond to an ergodic MC?

- All states communicate with state 2 (full row and column P_{2j} ≠ 0 and P_{j2} ≠ 0 for all j)
- No transient states (irreducible with one recurrent state and finite)
- Aperiodic (period of state 2 is 1)
- ▶ Then, there exist π_1 , π_2 and π_3 such that $\pi_j = \lim_{n\to\infty} P_{ij}^n$
- Limit is independent of *i*

(日) (同) (三) (三)

Example: Aperiodic, irreducible MC (continued)

- How do we determine limit probabilities π_j ?
- Solve system of linear equations $\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}$ and $\sum_{j=0}^{\infty} \pi_j = 1$

$$\begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0.1 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.7 & 0.4 & 0.7 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{pmatrix}$$

- The upper part of matrix above is P^T
- There are three variables and four equations
 - Some equations might be linearly dependent
 - Indeed, summing first three equations: $\pi_1 + \pi_2 + \pi_3 = \pi_1 + \pi_2 + \pi_3$
 - Always true, because probabilities in rows of P sum up to 1
 - This is because of rank deficiency of $I P^T$
- Solution yields $\pi_1 = 0.0909$, $\pi_2 = 0.2987$ and $\pi_3 = 0.6104$

Stationary distribution

- Limit distributions are sometimes called stationary distributions
- ► Select initial distribution such that $P[X_0 = i] = \pi_i$ for all *i*
- Probabilities at time n = 1 follow from theorem of total probability

$$P[X_1 = i] = \sum_{i=1}^{\infty} P[X_1 = j | X_0 = i] P[X_0 = i]$$

▶ Definitions of P_{ij} , and $P[X_0 = i] = \pi_i$. Algebraic property of π_j

$$\mathsf{P}\left[X_1=i\right]=\sum_{i=1}^{\infty}P_{ij}\pi_i=\pi_j$$

Probability distribution is unchanged

- ▶ Proceeding recursively, system initialized with $P[X_0 = i] = \pi_i$,
 - \Rightarrow Probability distribution constant, $P[X_n = i] = \pi_i$ for all n
- MC stationary in a probabilistic sense (states change, probs. do not)

<ロ> <回> <回> <回> <三</p>

Markov chains. Definition and examples

- Chapman Kolmogorov equations
- Gambler's ruin problem
- Queues in communication networks: Transition probabilities
- Classes of States
- Limiting distributions
- Ergodicity

Queues in communication networks: Limit probabilities

< ロ > < 同 > < 三 > < 三 > :

Ergodicity

• Define $T_i^{(n)}$ as fraction of time spent in *i*-th state up to time *n*

$$T_i^{(n)} := \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{ X_m = i \}$$

• Compute expected value of $T_i^{(n)}$

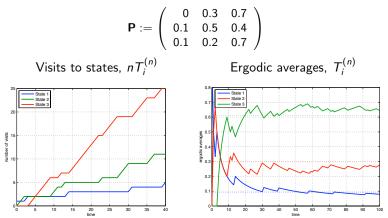
$$\mathbb{E}\left[T_i^{(n)}\right] = \frac{1}{n} \sum_{m=1}^n \mathbb{E}\left[\mathbb{I}\left\{X_m = i\right\}\right] = \frac{1}{n} \sum_{m=1}^n \mathbb{P}\left[X_m = i\right] \to \pi_i$$

► As time $n \to \infty$, probabilities $P[X_m = i]$ approach π_i . Then $\lim_{t \to \infty} \mathbb{E}\left[T_i^{(n)}\right] = \lim_{t \to \infty} \frac{1}{n} \sum_{m=1}^n P[X_m = i] = \pi_i$

• For ergodic MCs same is true without expected value \Rightarrow ergodicity

$$\lim_{n \to \infty} T_i^{(n)} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{ X_m = i \} = \pi_i, \quad \text{a.s.}$$

Recall transition probability matrix



Ergodic averages slowly converge to limit probabilities

<ロ> <部> < 部> < き> < き> < き</p>

• Use of ergodic averages is more general than $T_i^{(n)}$

Theorem

Consider an irreducible Markov chain with states $X_n = 0, 1, 2, ...$ and stationary probabilities π_j . Let $f(X_n)$ be a bounded function of the state X(n). Then, with probability 1

$$\lim_{n\to\infty}\frac{1}{n}\sum_{m=1}^n f(X_m) = \sum_{i=1}^\infty f(i)\pi_i$$

- $T_i^{(n)}$ is a particular case with $f(X_m) = \mathbb{I}\{X_m = i\}$
- Think of $f(X_m)$ as a reward associated with state X(m)
- $(1/n) \sum_{m=1}^{n} f(X_m)$ is the time average of rewards

・ロン ・四 と ・ ヨ と ・ ヨ と …

Proof.

• Because $\mathbb{I} \{X_m = i\} = 1$ if and only if $X_m = i$ we can write

$$\frac{1}{n}\sum_{m=1}^{n}f(X_m)=\frac{1}{n}\sum_{m=1}^{n}\left(\sum_{i=1}^{\infty}f(i)\mathbb{I}\left\{X_m=i\right\}\right)$$

• Change order of summations. Use definition of $T_i^{(n)}$

$$\frac{1}{n}\sum_{m=1}^{n}f(X_{m}) = \sum_{i=1}^{\infty}f(i)\left(\frac{1}{n}\sum_{m=1}^{n}\mathbb{I}\{X_{m}=i\}\right) = \sum_{i=1}^{\infty}f(i)T_{i}^{(n)}$$

• Let $n \to \infty$ in both sides

• Use ergodic average result for $\lim_{n\to\infty} T_i^{(n)} = \pi_i$ [cf. page 67]

・ロト ・同ト ・ヨト・

- > There's more depth to ergodic results than meets the eye
- Ensemble average: across different realizations of the MC

$$\mathbb{E}\left[f(X_n)\right] = \sum_{i=1}^{\infty} f(i) \mathsf{P}\left(X_n = i\right) \to \sum_{i=1}^{\infty} f(i) \pi_i$$

Ergodic average: across time for a single realization of the MC

$$\bar{f}(n) = \frac{1}{n} \sum_{m=1}^{n} f(X_n)$$

- These quantities are fundamentally different but their values coincide asymptotically in n
- Observing one realization of the MC provides as much information as observing all realizations
- Practical consequence: Observe/simulate only one path of the MC

・ロト ・回ト ・ヨト ・ヨト

- ► In some sense, still true if MC is periodic
- ► For irreducible positive recurrent MC (periodic or aperiodic) define

$$\pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \qquad \sum_{j=0}^{\infty} \pi_j = 1$$

- A unique solution exists (we say π_j are well defined)
- The fraction of time spent in state *i* converges to π_i

$$\lim_{n \to \infty} T_i^{(n)} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{ X_m = i \} \to \pi_i$$

 If MC is periodic, probabilities oscillate, but fraction of time spent in state *i* converges to π_i

Example: Periodic irreducible Markov chain

► Matrix **P** and state diagram of a periodic MC $\mathbf{P} := \begin{pmatrix} 0 & 1 & 0 \\ 0.3 & 0 & 0.7 \\ 0 & 1 & 0 \end{pmatrix}$

• MC has period 2. If initialized with $X_0 = 1$, then

$$\begin{aligned} P_{11}^{2n+1} &= \mathsf{P}\left[X_{2n+1} = 1 \mid X_0 = 1\right] = 0, \\ P_{11}^{2n} &= \mathsf{P}\left[X_{2n} = 1 \mid X_0 = 1\right] = 1 \neq 0 \end{aligned}$$

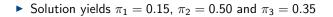
• Define $\boldsymbol{\pi} := [\pi_1, \pi_2, \pi_3]^T$ as solution of

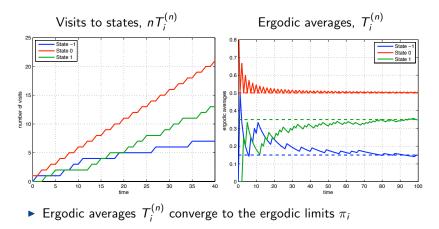
$$\begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0.3 & 0 \\ 1 & 0 & 1 \\ 0 & 0.7 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{pmatrix}$$

• Normalized eigenvector for eigenvalue 1 ($\pi = \mathbf{P}^T \pi$, $\pi^T \mathbf{1} = 1$)

・ロン ・回 と ・ ヨ と ・ ヨ と …

Example: Periodic irreducible MC (continued)





Powers of the transition probability matrix do not converge

$$\mathbf{P}^2 = \begin{pmatrix} 0.3 & 0 & 0.7 \\ 0 & 1 & 0 \\ 0.3 & 0 & 0.7 \end{pmatrix} \qquad \mathbf{P}^3 = \begin{pmatrix} 0 & 1 & 0 \\ 0.3 & 0 & 0.7 \\ 0 & 1 & 0 \end{pmatrix} = \mathbf{P}$$

▶ In general we have $\mathbf{P}^{2n} = \mathbf{P}^2$ and $\mathbf{P}^{2n+1} = \mathbf{P}$

At least one other eigenvalue of the transition probability matrix has modulus 1

$$\left|\operatorname{eig}_{2}\left(\mathbf{P}^{T}\right)\right|=1$$

• In this example, eigenvalues of \mathbf{P}^{T} are 1, -1 and 0

Image: Image:

- ► If MC is not irreducible it can be decomposed in transient (T_k), ergodic (E_k), periodic (P_k) and null recurrent (N_k) components
 - All of these are class properties
- ▶ Limit probabilities for transient states are null $P[X_n = i] \rightarrow 0$, for all $X_n \in T_k$
- For arbitrary ergodic component \mathcal{E}_k , define conditional limits

$$\pi_{i} = \lim_{n \to \infty} \mathsf{P}\left[X_{n} = i \, \big| \, X_{0} \in \mathcal{E}_{k}\right], \quad \text{for all } i \in \mathcal{E}_{k}$$

• Result in page 58 is true with this (re)defined π_i

• Likewise, for arbitrary periodic component \mathcal{P}_k (re)define π_j as

$$\pi_j = \sum_{i \in \mathcal{P}_k} \pi_i P_{ij}, \quad \sum_{j \in \mathcal{P}_k} \pi_j = 1, \quad \text{for all } j \in \mathcal{P}_k$$

A conditional version of the result in page 72 is true

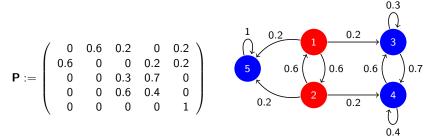
$$\lim_{n\to\infty}T_i^{(n)}:=\lim_{n\to\infty}\frac{1}{n}\sum_{m=1}^n\mathbb{I}\left\{X_m=i\,\big|\,X_0\in\mathcal{P}_k\right\}\to\pi_i$$

▶ For null recurrent components limit probabilities are null $P[X_n = i] \rightarrow 0$, for all $X_n \in \mathcal{N}_k$

Image: Image:

'문▶' ★ 문▶'

Transition matrix and state diagram of a reducible MC



- States 1 and 2 are transient $\mathcal{T} = \{1, 2\}$
- States 3 and 4 form an ergodic class $\mathcal{E}_1 = \{3, 4\}$
- State 5 is a separate ergodic class $\mathcal{E}_2 = \{5\}$

10-step and 20 step transition probabilities

$\mathbf{P}^5 =$	/ 0	0.08	0.24	0.22	0.46 \	$\mathbf{P}^{10} =$	/0.00	0	0.23	0.27	0.50 \
	0.08	0	0.19	0.27	0.46		0	0.00	0.23	0.27	0.50
	0	0	0.46	0.54	0		0	0	0.46	0.54	0
	0	0	0.46	0.54	0		0	0	0.46	0.54	0
	\ 0	0	0	0	1/		\ 0	0	0	0	1/

- Transition into transient states is vanishing (columns 1 and 2)
- Transition from 3 and 4 into 3 and 4 only
 - If initialized in ergodic class $\mathcal{E}_1 = \{3,4\}$ stays in \mathcal{E}_1
- Transition from 5 only into 5
- ▶ From transient states T = {1,2} can go into either ergodic component E₁ = {3,4} or E₂ = {5}

(日)

Matrix P can be separated in blocks

$$\mathbf{P} = \begin{pmatrix} \mathbf{0} & \mathbf{0.6} & \mathbf{0.2} & \mathbf{0} & \mathbf{0.2} \\ \mathbf{0.6} & \mathbf{0} & \mathbf{0} & \mathbf{0.2} & \mathbf{0.2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0.3} & \mathbf{0.7} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0.6} & \mathbf{0.4} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{P}_{\mathcal{T}} & \mathbf{P}_{\mathcal{T}\mathcal{E}_1} & \mathbf{P}_{\mathcal{T}\mathcal{E}_2} \\ \mathbf{0} & \mathbf{P}_{\mathcal{E}_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{P}_{\mathcal{E}_2} \end{pmatrix}$$

• Block P_T describes transition between transient states

- ▶ Blocks $P_{\mathcal{E}_1}$ and $P_{\mathcal{E}_2}$ describe transitions in ergodic components
- ▶ Blocks $\mathbf{P}_{\mathcal{T}\mathcal{E}_1}$ and $\mathbf{P}_{\mathcal{T}\mathcal{E}_2}$ describe transitions from \mathcal{T} to \mathcal{E}_1 and \mathcal{E}_2

Powers of n can be written as

$$\mathbf{P}^{n} = \begin{pmatrix} \mathbf{P}_{\mathcal{T}}^{n} & \mathbf{Q}_{\mathcal{T}\mathcal{E}_{1}} & \mathbf{Q}_{\mathcal{T}\mathcal{E}_{2}} \\ 0 & \mathbf{P}_{\mathcal{E}_{1}}^{n} & 0 \\ 0 & 0 & \mathbf{P}_{\mathcal{E}_{2}}^{n} \end{pmatrix}$$

▶ The transient transition block converges to 0, $\lim_{n\to\infty} \mathbf{P}_{\mathcal{T}}^n = \mathbf{0}$

イロン 不同 とくほう イロン

- ▶ As *n* grows the MC hits an ergodic state with probability 1
- Henceforth, MC stays within ergodic component

$$\mathsf{P}\left[X_{n+m} \in \mathcal{E}_i \mid X_n \in \mathcal{E}_i\right] = 1, \text{ for all } m$$

For large *n* suffices to study ergodic components
 ⇒ MC behaves like a MC with transition probabilities P_{E1}
 ⇒ Or like one with transition probabilities P_{E2}

- We can think that all MCs as ergodic
- Ergodic behavior cannot be inferred a priori (before observing)
- Becomes known a posteriori (after observing sufficiently large time)

Culture micro: Something is known a priori if its knowledge is independent of experience (MCs exhibit ergodic behavior). A posteriori knowledge depends on experience (values of the ergodic limits). They are inherently different forms of knowledge (search for Immanuel Kant)

Markov chains. Definition and examples

- Chapman Kolmogorov equations
- Gambler's ruin problem
- Queues in communication networks: Transition probabilities
- Classes of States
- Limiting distributions
- Ergodicity

Queues in communication networks: Limit probabilities

- Communication system: Move packets from source to destination
- Between arrival and transmission hold packets in a memory buffer
- ► Example problem, buffer design: Packets arrive at a rate of 0.45 packets per unit of time and depart at a rate of 0.55. How many packets the buffer needs to hold to have a drop rate smaller than 10⁻⁶ (one packet dropped for every million packets handled)
- Time slotted in intervals of duration Δt
- During each time slot n
 - \Rightarrow A packet arrives with prob. λ , arrival rate is $\lambda/\Delta t$
 - \Rightarrow A packet is transmitted with prob. μ , departure rate is $\mu/\Delta t$
- No concurrence: No simultaneous arrival and departure (small Δt)

- Future queue lengths depend on current length only
- Probability of queue length increasing

$$\mathsf{P}\left[q_{n+1}=i+1 \mid q_n=i\right] = \lambda, \qquad \text{for all } i$$

• Queue length might decrease only if $q_n > 0$. Probability is

$$\mathsf{P}\left[q_{n+1}=i-1 \mid q_n=i\right]=\mu, \qquad \text{for all } i>0$$

Queue length stays the same if it neither increases nor decreases

$$\mathsf{P}\left[q_{n+1}=i \mid q_n=i\right] = 1 - \lambda - \mu, \quad \text{for all } i > 0$$
$$\mathsf{P}\left[q_{n+1}=0 \mid q_n=0\right] = 1 - \lambda$$

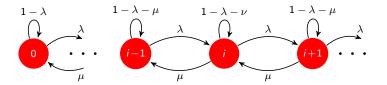
• No departures when $q_n = 0$ explain second equation

Queue as a Markov chain (reminder)

- MC with states $0, 1, 2, \ldots$ Identify states with queue lengths
- Transition probabilities for $i \neq 0$ are

$$P_{i,i-1} = \lambda, \qquad P_{i,i} = 1 - \lambda - \mu, \qquad P_{i,i+1} = \mu$$

• For
$$i = 0$$
 $P_{0,0} = 1 - \lambda$ and $P_{01} = \lambda$



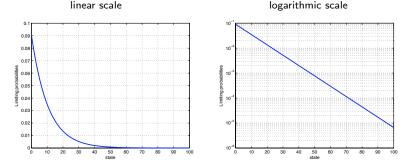
< □ > < 同 >

'문⊁ ★ 문⊁

Numerical example: Limit probabilities

Penn

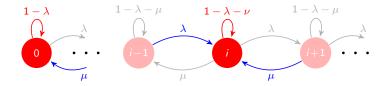
- Build matrix **P** truncating at maximum queue length L = 100
- Arrival rate $\lambda = 0.3$. Departure rate $\mu = 0.33$
- Find eigenvector of \mathbf{P}^{T} associated with largest eigenvalue (i.e., 1)
- Yields limit probabilities $\pi = \lim_{n \to \infty} \mathbf{p}(n)$



Limit probabilities appear linear in logarithmic scale

 \Rightarrow Seemingly implying an exponential expression $\pi_i \propto lpha$

Limit distribution equations



Limit distribution equations for state 0 (empty queue)

$$\pi_0 = (1-\lambda)\pi_0 + \mu\pi_1$$

► For the remaining states

$$\pi_i = \lambda \pi_{i-1} + (1 - \lambda - \mu)\pi_i + \mu \pi_{i+1}$$

• Propose candidate solution $\pi_i = c\alpha^i$

< ∃ →

• Substitute candidate solution $\pi_i = c\alpha^i$ in equation for π_0

$$c\alpha^{0} = (1 - \lambda)c\alpha^{0} + \mu c\alpha^{1} \quad \Rightarrow \quad 1 = (1 - \lambda) + \mu \alpha$$

• The above equation is true if we make $\alpha = \lambda/\mu$

- Does $\alpha = \lambda/\mu$ verify the remaining equations ?
- From the equation for generic π_i (divide by $c\alpha^{i-1}$)

$$c\alpha^{i} = \lambda c\alpha^{i-1} + (1 - \lambda - \mu)c\alpha^{i} + \mu c\alpha^{i+1}$$
$$\mu\alpha^{2} - (\lambda + \mu)\alpha + \lambda = 0$$

 \blacktriangleright The above quadratic equation is satisfied by $\alpha=\lambda/\mu$

• And $\alpha = 1$, which is irrelevant

• Determine *c* so that probabilities sum 1 $(\sum_{i=0}^{\infty} \pi_i = 1)$

$$\sum_{i=0}^{\infty} \pi_i = \sum_{i=0}^J c (\lambda/\mu)^i = \frac{c}{1-\lambda/\mu} = 1$$

- Used geometric sum
- Solving for c and substituting in $\pi_i = c\alpha^i$ yields

$$\pi_i = (1 - \lambda/\mu) \left(\frac{\lambda}{\mu}\right)^i$$

- \blacktriangleright The ratio μ/λ is the queues' stability margin
- Larger $\mu/\lambda \Rightarrow$ larger probability of having few queued packets

(a)

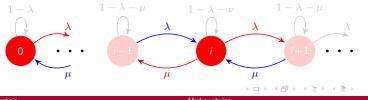
Queue balance equations

▶ Rearrange terms in equation for limit probabilities [cf. page 87]

 $\lambda \pi_0 = \mu \pi_1$ $(\lambda + \mu)\pi_i = \lambda \pi_{i-1} + \mu \pi_{i+1}$

- $\lambda \pi_0$ is average rate at which the queue leaves state 0
- Likewise $(\lambda + \mu)\pi_i$ is the rate at which queue leaves state *i*
- $\mu\pi_0$ is average rate at which the queue enters state 0
- $\lambda \pi_{i-1} + \mu \pi_{i+1}$ is rate at which queue enters state *i*
- Limit equations prove validity of queue balance equations

Rate at which leaves = Rate at which enters



- Packets may arrive and depart in same time slot (concurrence)
- ▶ Queue evolution equations remain the same, [cf. 35]
- But queue probabilities change [cf. 84]
- Probability of queue length increasing (for all i)

$$P[q_{n+1} = i + 1 | q_n = i] = P[A_n = 1] P[D_n = 0] = \lambda(1 - \mu)$$

• Queue length might decrease only if $q_n > 0$ (for all i > 0)

$$P[q_{n+1} = i - 1 | q_n = i] = P[D_n = 1] P[D_n = 0] = \mu(1 - \lambda)$$

Queue length stays the same if it neither increases nor decreases

$$\mathsf{P} [q_{n+1} = i \mid q_n = i] = \lambda \mu + (1 - \lambda)(1 - \mu) = \nu, \quad \text{for all } i > 0$$

$$\mathsf{P} [q_{n+1} = 0 \mid q_n = 0] = (1 - \lambda) + \lambda \mu$$

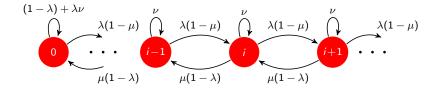
(日) (同) (三) (三)

Limit distribution / queue balance equations

- Write limit distribution equations \Rightarrow queue balance equations
- Rate at which leaves = rate at which enters

$$\lambda(1-\mu)\pi_0 = \mu(1-\lambda)\pi_1$$
$$(\lambda(1-\mu)+\mu(1-\lambda))\pi_i = \lambda(1-\mu)\pi_{i-1}+\mu(1-\lambda)\pi_{i+1}$$

• Propose exponential solution $\pi = c\alpha^i$



• Substitute candidate solution in equation for π_0

$$\lambda(1-\mu)c = \mu(1-\lambda)clpha \quad \Rightarrow \quad lpha = rac{\lambda(1-\mu)}{\mu(1-\lambda)}$$

• Same substitution in equation for generic π_i

$$\mu(1-\lambda)c\alpha^2 + (\lambda(1-\mu) + \mu(1-\lambda))c\alpha + \lambda(1-\mu)c = 0$$

• which as before is solved for $\alpha = \lambda(1-\mu)/\mu(1-\lambda)$

• Find constant c to ensure $\sum_{i=0}^{\infty} c \alpha^i = 1$ (geometric series). Yields

$$\pi_i = (1 - lpha) lpha^i = \left(1 - rac{\lambda(1 - \mu)}{\mu(1 - \lambda)}
ight) \left(rac{\lambda(1 - \mu)}{\mu(1 - \lambda)}
ight)$$

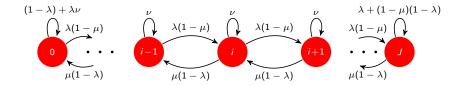
・ロト ・回ト ・ヨト ・ヨト

Limited queue size

- Packets dropped if there are too many packets in queue
- Too many packets in queue, then delays too large, packets useless when they arrive. Also preserve memory
- Equation for state J requires modification (rate leaves = rate enters)

$$\mu(1-\lambda)\pi_J = \lambda(1-\mu)\pi_{J-1}$$

• $\pi_i = c \alpha^i$ with $\alpha = \lambda (1 - \mu) / \mu (1 - \lambda)$ also solve this equation (Yes!)



- Limit probabilities are not the same because constant c is different
- ► To compute *c*, sum a finite geometric series

$$1 = \sum_{i=0}^{J} c \alpha^{i} = c \frac{1 - \alpha^{J+1}}{1 - \alpha} \quad \Rightarrow \quad c = \frac{1 - \alpha}{1 - \alpha^{J+1}}$$

Limit distributions for the finite queue are then

$$\pi_i = \frac{1-\alpha}{1-\alpha^{J+1}} \alpha^i \approx (1-\alpha) \alpha^i$$

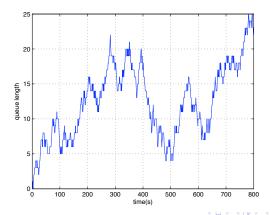
• with $\alpha = \lambda(1-\mu)/\mu(1-\lambda)$, and approximation valid for large J

- ► Approximation for large J yields same result as infinite length queue
 - As it should

・ロト ・回ト ・ヨト ・ヨト

Simulations

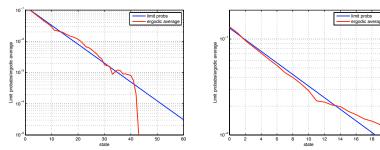
- Arrival rate $\lambda = 0.3$. Departure rate $\mu = 0.33$. Resulting $\alpha \approx 0.87$
- Maximum queue length J = 100. Initial state $q_0 = 0$ (queue empty)
 - Not the same as initial probability distribution



Queue lenght as function of time

Simulations: Average occupancy and limit distributionPenn

- Average time spent at each queue state is predicted by limit distribution
- For i = 60 occupancy probability is $\pi \approx 10^{-5}$.
 - Explains inaccurate prediction for large i



60 states

- If $\lambda = 0.45$ and $\mu = 0.55$ how many packets the buffer needs to hold to have a drop rate smaller than 10^{-6} (one packet dropped for every million packets handled)
- What is the probability of buffer overflow?
- ▶ Packet discarded if queue is in state J and a new packet arrives

$$\mathsf{P}\left[\text{overflow}\right] = \lambda \pi_J = \frac{1-\alpha}{1-\alpha^{J+1}} \lambda \alpha^J \approx (1-\alpha) \lambda \alpha^J$$

- With $\lambda = 0.45$ and $\mu = 0.55$, $\alpha \approx 0.82 \Rightarrow J \approx 57$
- A final caveat
 - Still assuming only 1 packet arrives per time slot
 - Lifting this assumption requires introduction of continuous time Markov chains