Ranking of nodes in graphs

Alejandro Ribeiro & Cameron Finucane
Dept. of Electrical and Systems Engineering
University of Pennsylvania
aribeiro@seas.upenn.edu
http://www.seas.upenn.edu/users/~aribeiro/

October 13, 2010
Ranking of nodes in graphs: Random walk

Ranking of nodes in graphs: Markov chain
Graphs

- **Graph** ⇒ A set of J nodes $j = 1, \ldots, J$
 ⇒ Connected by a set of edges E defined as ordered pairs (i, j)

- **In figure** ⇒ nodes are $j = 1, 2, 3, 4, 5$,
 ⇒ edges $E = \{(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), \ldots, (3, 6), (4, 5), (4, 6), (5, 4)\}$

- **Websites and links** ⇒ “The” web.

- **People and friendship** ⇒ Social network
How well connected nodes are?

- Q: Which node is the most connected? A: Define most connected
- Can define “most connected” in different ways
- Node rankings to measure website quality, social influence
- There are two important connectivity indicators
 - How many nodes point to a link (outgoing links irrelevant)
 - How important are the links that point to a node
Connectivity ranking

- Insight ⇒ There is information in the structure of the network
- Knowledge is distributed through the network
 ⇒ The network (not the nodes) know the rankings
- Idea exploited by Google’s PageRank© to rank webpages
- ... by social scientists to study trust & reputation in social networks
- ... by ISI to rank scientific papers, transactions & magazines ...

- No one points to 1
- Only 1 points to 2
- Only 2 points to 3, but 2 more important than 1
- 4 as high as 5 with less links
- Links to 5 have lower rank
- Same for 6
Preliminary definitions

- Graph $\mathcal{G} = (V, E)$ ⇒ sets of vertices $V = \{1, 2, \ldots, J\}$ and edges E
- Edges (elements of E) are ordered pairs (i, j)
- We say there is a connection from i to j
- Outgoing neighborhood of i is the set of nodes j to which i points
 \[n(i) := \{ j : (i, j) \in E \} \]
- Incoming neighborhood, $n^{-1}(i)$ is the set of nodes that point to i:
 \[n^{-1}(i) := \{ j : (j, i) \in E \} \]
- Connected graph
 ⇒ There is a path from any node to any other node
Definition of rank

- Agent A chooses node i, e.g., web page, at random for initial visit
- Next visit randomly chosen between links in the neighborhood $n(i)$
 \Rightarrow All neighbors chosen with equal probability
- If reach a dead end because node i has no neighbors
 \Rightarrow Chose next visit at random equiprobably among all nodes
- Redefine graph $G = (V, E)$ adding edges from dead ends to all nodes
- Restrict attention to connected (modified) graphs

- Rank of node i is the average number of visits of A to i
Equiprobable random walk

- Formally, let A_n be the node visited at time n
- Define transition probability P_{ij} from node i into node j
 \[P_{ij} := P \left[A_{n+1} = j \mid A_n = i \right] \]
- Next visit equiprobable among neighbors
 \[P_{ij} = \frac{1}{\#[n(i)]} = \frac{1}{N_i}, \quad \text{for all } j \in n(i) \]
- Defined number of neighbors $N_i = \#[n(i)]$

Still have a graph
- But also a MC
- Red (not blue) circles
Consider variable $\mathbb{I}\{A_m = i\}$ to indicate visit to state i at time m.

Rank r_i of i-th node defined as time average of number of visits, i.e.,

$$r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\{A_m = i\}$$

Define vector of ranks $\mathbf{r} := [r_1, r_2, \ldots, r_J]^T$.

Rank r_i can be approximated by average r_{ni} at time n

$$r_{ni} := \frac{1}{n} \sum_{m=1}^{n} \mathbb{I}\{A_m = i\}$$

Since $\lim_{n \to \infty} r_{ni} = r_i$, it holds $r_{ni} \approx r_i$ for n sufficiently large.

Define vector of approximate ranks $\mathbf{r}_n := [r_{n1}, r_{n2}, \ldots, r_{nJ}]^T$.

If modified graph is connected, rank independent of initial visit.
Algorithm

Output: Vector $r(i)$ with ranking of node i
Input: Vector $N(i)$ containing number of neighbors of i
Input: Matrix $N(i, k)$ containing indices j of neighbors of i

$m = 1; \ r=\text{zeros}(J,1); \ \% \ \text{Initialize time and ranks}$
$A_0 = \text{random('unid',}J); \ \% \ \text{Draw first visit uniformly at random}$

while $m < n$ do
 jump = random('unid', $N_{A_{m-1}}$); \ \% \ Neighbor uniformly at random
 $A_m = N(A_{m-1}, \text{jump}); \ \% \ \text{Jump to selected neighbor}$
 $r(A_m) = r(A_m) + 1; \ \% \ \text{Update ranking for } A_m$
 $m = m + 1;$
end

$r = r/n; \ \% \ \text{Normalize by number of iterations } n$
Example: Social graph

- Asked students taking ESE303 about homework collaboration
- Created (crude) graph of the social network of students in this class
- Used ranking algorithm to understand connectedness

- E.g., If I want to know how well students are coping with the class it is best to ask people with higher connectivity ranking

- 2009 data
- Students in 2010 don’t show up in class in enough numbers
Ranked class graph

Stoch. Systems Analysis

Ranking of nodes in graphs
Convergence metrics

- Recall \mathbf{r} is vector of ranks and \mathbf{r}_n of rank iterates
- By definition $\lim_{n \to \infty} \mathbf{r}_n = \mathbf{r}$. How fast \mathbf{r}_n converges to \mathbf{r} (\mathbf{r} given)?
- Can measure by distance between \mathbf{r} and \mathbf{r}_n \Rightarrow

$$\zeta_n := \| \mathbf{r} - \mathbf{r}_n \|_2 = \left(\sum_{i=1}^J (r_{ni} - r_i)^2 \right)^{1/2}$$

- If interest is only on largest ranked nodes, e.g., a web search
- Denote $r^{(i)}$ as the index of the i-th highest ranked node
- Similarly, $r_n^{(i)}$ is the index of the i-th highest ranked node at time n
- First element wrongly ranked at time n

$$\xi_n := \min_i r^{(i)} \neq r_n^{(i)}$$
Evaluation of convergence metrics

Distance gets close to 10^{-2} in approx. 5×10^3 iterations

- **Bad**: Two largest ranks in 3×10^3 iterations
- **Awful**: Six best ranks in 8×10^3 iterations

- Convergence appears (very) slow
When does this algorithm converge?

- Can confidently claim convergence not until 10^5 iterations
- True for particular case. Slow convergence inherent to algorithm
- Example has 40 nodes, want to use in network with 10^9 nodes

Use fact that this process is a MC to obtain faster algorithm
Ranking of nodes in graphs: Random walk

Ranking of nodes in graphs: Markov chain
Recall definition of rank \(r_i := \lim_{t \to \infty} \frac{1}{t} \sum_{u=1}^{t} \mathbb{I}\{A(u) = i\} \)

Rank is time average of number of state visits in a MC

- Can be equally obtained from limiting probabilities

Recall transition probabilities \(P_{ij} = \frac{1}{N_i} \), for all \(j \in n(i) \)

Stationary distribution \(\pi = [\pi_1, \pi_1, \ldots, \pi_J]^T \) solution of

\[
\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j \in n^{-1}(i)} \frac{\pi_j}{N_j} \quad \text{for all } i
\]

- Plus normalization equation \(\sum_{i=1}^{J} \pi_i = 1 \)

- As per ergodicity \(\Rightarrow r = \pi \)
As always, can define matrix P with elements P_{ij}

$$
\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j=1}^{J} P_{ji} \pi_j \quad \text{for all } i
$$

Right hand side is just definition of a matrix product leading to

$$
\pi = P^T \pi, \quad \pi^T 1 = 1
$$

Also added normalization equation

Can solve as system of linear equations or eigenvalue problem on P^T

Non-iterative method \Rightarrow Convergence not an issue

But requires matrix P available at a central location

Computationally costly (matrix P with 10^9 rows and columns)

All methods are costly to compute exact solution

This one is costly to find even approximate solution
What are limit probabilities?

- Let $p_i(n)$ denote probability of agent A visiting node i at time t

 \[p_i(n) := P[A_n = i] \]

- Probabilities at time $n + 1$ and n can be related

 \[P[A_{n+1} = i] = \sum_{j \in n^{-1}(i)} P[A_n = i \mid A_n = i] P[A_n = j] \]

- Which is, of course, probability propagation in a MC

 \[p_i(n + 1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n) \]

- By definition limit probabilities are (let $p(n) = [p_1(n), \ldots, p_J(n)]^T$)

 \[\lim_{n \to \infty} p(n) = \pi = r \]

- Compute ranks from limit of probability propagation
Can also write probability propagation in matrix form

\[p_i(n + 1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n) = \sum_{j=1}^{J} P_{ji} p_j(n) \quad \text{for all } i \]

Right hand side is just definition of a matrix product leading to

\[p(n + 1) = P^T p(n) \]

Can approximate rank by probability distribution

\[r = \lim_{n \to \infty} p(n) \approx p(n) \quad \text{for } n \text{ sufficiently large} \]
Algorithm

- Algorithm is just a recursive matrix product

Output : Vector \(r(i) \) with ranking of node \(i \)
Input : Matrix \(P \) containing transition probabilities

\[
m = 1; \quad \text{% Initialize time}
\]
\[
r = (1/J)\text{ones}(J,1); \quad \text{% Initial distribution uniform across all nodes}
\]

\[
\text{while } m < n \text{ do}
\]
\[
\begin{align*}
r &= P^T r; & \text{% Probability propagation} \\
m &= m + 1;
\end{align*}
\]
\[
\text{end}
\]
Interpretation of probability propagation

- Why does the random walk converge so slow?
- What does it take to obtain a time average r_{ni} close to r_i?
- Need to register a large number of agent visits to every state
- Back of hand: 40 nodes, some 100 visits to each $\Rightarrow 4 \times 10^3$ iters.

- Idea: Unleash a large number of agents K

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}\{A_{km} = i\}$$

- Visits are now spread over time and space
 \Rightarrow Converges “K times faster” (depends agents’ initial distribution)
 \Rightarrow But haven’t changed computational cost

Stoch. Systems Analysis
Ranking of nodes in graphs
What happens if we unleash infinite number of agents K?

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I} \{A_{km} = i\}$$

Using law of large numbers and expected value of indicator function

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{E} \left[\mathbb{I} \{A_m = i\} \right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{P} \left[A_m = i \right]$$

Graph walk is a MC, then

$$\lim_{m \to \infty} \mathbb{P} \left[A_m = i \right] = \lim_{m \to \infty} p_i(m) \text{ exists, and}$$

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} p_i(m) = \lim_{n \to \infty} p_i(n)$$

Probability propagation \approx Unleashing infinite number of agents

Interpretation true for any MC
Distance to rank

- Initialize with uniform probability distribution \(p(0) = \frac{1}{J}1 \)
- Distance between \(p(n) \) and \(r \)

Distance is \(10^{-2} \) in approximately 30 iterations, \(10^{4} \) in 140 iterations

Convergence is two orders of magnitude faster than random walk
Number of nodes correctly ranked

- Rank of highest ranked node that is wrongly ranked by time n

- **Not bad**: All nodes correctly ranked in 120 iterations
- **Good**: Ten best ranks in 80 iterations
- **Great**: Four best ranks in 20 iterations
Distributed algorithm to compute ranks

- Nodes want to compute their rank r_i
 - Can communicate with neighbors only (incoming + outgoing)
 - Access to neighborhood information only

- Recall probability update

$$p_i(n + 1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n) = \sum_{j \in n^{-1}(i)} \frac{1}{N_j} p_j(n)$$

- Uses local information only

- Algorithm. Nodes keep local rank estimates $p_i(n)$
 - Receive rank (probability) estimates $p_j(n)$ from neighbors $j \in n^{-1}(i)$
 - Update local rank estimate $p_i(n + 1) = \sum_{j \in n^{-1}(i)} p_j(n) / N_j$
 - Communicate rank estimate $p_i(n + 1)$ to outgoing neighbors $j \in n(i)$
 - Need only know number of neighbors of my neighbors
Distributed implementation of random walk

- Can communicate with neighbors only (incoming + outgoing)
- But cannot access neighborhood information
- Pass agent around

- Local rank estimates $r_i(n)$ and counter with number of visits V_i
- Algorithm run by node i at time n

```plaintext
if Agent received from neighbor then
    $V_i = V_i + 1$
    Choose random neighbor
    Send agent to chosen neighbor
end

$n = n + 1; \ r_i(n) = V_i / n$;
```

- Speed up convergence by generating many agents to pass around
Comparison of different algorithms

- Random walk implementation
 - Most secure & robust. No information shared with other nodes
 - Implementation can be distributed
 - Convergence exceedingly slow

- System of linear equations
 - Least security and robustness. Graph in central server
 - Distributed implementation not clear
 - Non-iterative method, convergence not a problem
 - But computationally costly to obtain approximate solutions

- Probability propagation, matrix powers
 - Somewhat secure/robust. Info. shared with neighbors only
 - Implementation can be distributed
 - Convergence rate acceptable (orders of magnitude faster than RW)