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Queuing theory is concerned with the (boring) issue of waiting

Waiting is boring, queuing theory not necessarily so
“Customers” arrive to receive “service” by “servers”

Between arrival and start of service wait in queue

» Quantities of interest (for example)
= Number of customers in queue = L (for length)
= Time spent in queue = W for (wait)

v

Queues are a pervasive applications of CTMCs
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Where do queues appear?

v

Queues are fundamental to the analysis of (public) transportation
» Wait to enter a highway =- Customers = cars

» Subway travel times, Subway or buses? Infrequent big buses or
frequent small buses?

» Packet traffic in communication networks

» Route determination, congestion management, real time
requirements, resource management

» Logistics
» Customers = raw materials, components, final products

» Customers in queue = products in storage = inactive capital

» Customer service

» How many representatives in a call center? Call center pooling
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Examples of queues

v

Simplest manifestation = Single queue, single server, infinite spots

v

Simpler if arrivals and services are Poisson = M/M/1 queue

v

Limiting number of spots not difficult = losses appear

= B
I

Multi-server queues =- Single queue, many servers

v

v

M/M/c queue =- ¢ Poisson servers

A .
RS
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Networks of queues

» Groups of interacting queues =- Applications become interesting

» E.g. a queue tandem

A

_ F——— F——

H1 M2

» Can have arrivals at different points and random re-entries

H13
)\1 >\3
I 10
A2 Exit

» Batch service and arrivals, loss systems (not considered)
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M/M/1 queue

Arrival and service processes are Poisson = Birth & death process

>

» Customers arrive at an average rate of A\ per unit time

» Customers are serviced at an average rate of y per unit time
S

Interarrival and inter-service time are exponential and independent

» Hypothesis of Poisson arrivals is reasonable

» Hypothesis of Poisson service times not so reasonable

= L
I

» Steady state behavior (systems operating for a long time)

= Limit probabilities
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> Define CTMC by identifying states with queue lengths

> Transition rates g i1 = A, forall i and g ;1 = p for i #0

» Recall that first of two exponential times is exponentially distributed
= Mean transition times are v; = A+ p for i # 0 and g = A

A A A A
- ~_
2 In T

» Limit distribution equations (Rate into j = rate out of j)

APy = uPl, ()\+M)Pl = AP +HPi+1
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Queue length as a function of time

» Simulation for A = 30 customers/min, u = 40 services/min

> Probability distribution estimated by ensemble average with M = 10°
1M
PIN(t) = k] ~ MZH{N,—(T) =k}

» Steady state (in a probabilistic sense) reached in around 103 mins.
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> Queue length vs. time. Prob. color coded. Mean queue length in white
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Close up on initial times

» Probabilities settle at their equilibrium values

>
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Ergodicity

1 T
t:
» They are approximately equal, as they should (equal as t — o0)

0.6
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A non stable queue

> All former observations valid for stable queues (A < p)
» Simulation for A = 60 customers/min and p = 40, customers/min
» Queue grow unbounbded

= probability of small number of customers in queue vanishes
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» Queue length vs. time. Prob. color coded. Mean queue length in white
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Solution of limit distribution equations

> Start expressing all prob. in terms of Py

> Repeat process done for birth and death process

» Equation for P = = APy =puP:
» Sum egs. for P; = APy = pPy

and Py (/\ —+ }L)Pl = AP, +;J,P2 = AP = ,LLP2
» Sum result and = AP = uP,

eq. for P2 A+ 1)P2 = APy + uPs = AP, =puPs
> Sum result and = APi_1 = uP;

eq. for P;

A+ )P = APioi+pPiy1i = AP = pPia

> From where it follows = P11 = (A\/p)P; and Pi = (\/1)'Po
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Solution of limit distribution equations (continued

» The sum of all probabilities is (geometric sum)

oo oo

; P,

> R= Y 0vmR =

» Now use that the sum of probabilities is 1 and solve for P to obtain
Po=1-Xp,  Pi=(1-Xp)\p)

» Result valid for A/p < 1, if not CTMC is transient

» Expression coincides with non concurrent queue in discrete time
» Not surprising = continuous time = discrete time with small At
» For small At non concurrent hypothesis is accurate

> Present derivation “much cleaner,” though
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Steady state expected queue length

» Expected queue length is L = i. To compute E[L] use limit probs.
[ee] [ee] .
B[ = iP=>i(1=Xu)(\p)
k=0 k=0

v

Latter is derivative of geometric sum (3o ix’ = x/(1 — x)?). Then

E[L] = (1 _)‘/:u)(l _AQI;N)Q - Mi/\

v

Recall A < p.

v

If A & u queue is stable but average queue length becomes very large
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Expected wait

v

Packet arrives when there are L customers in queue

v

Time spent in queue is time required to service these L customers

v

Plus time until arriving customer is served
L+1
Let T1, To,..., Ty 41 be these times. Queue wait = W = Z T;
i=1
Expected value (first conditioned on L =/, then with respect to L )
L+1

L+1
DT ZT,-|L_/H
i=1 i=1

L =1 “not random” in inner expectation = interchange with sum

v

v

E[W]=E =E |E

v

E[W]=E [i]E[T/]] =E[(L+DE[T] =E[L+1]E[T]
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Expected wait (continued)

> Use expression for E[L] to evaluate E[L + 1] as

A I
E[L+1]=E[L]+1= +1=
[ ] [£] w—A w—A

> Substitute expressions for E[L+ 1] and E[T;] =1/

BW) = /)t = —

» Recall A=arrival rate. Former may be written as

B[W] = (1/0) = = (1/VELL

Stoch. Systems Analysis Queues 19



Little's law

v

For M/M/1 queue have just seen = E[L] = AE[W/]
Expression referred to as Little's law

v

v

True even if arrivals and departures are not Poisson (not proved)

v

Expected nr.customers in queue = arrival rate x expected wait
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M/M/2 queue

» Arrivals are Poisson with rate A
» Service offered by two Poisson servers with service rates p; and po

» When a server finishes serving a customer, it starts serving next
customer in queue.

» If queue is empty the server waits for the next customer

» If both servers are waiting when customer arrives, service is
performed by server 1

Stoch. Systems Analysis Queues 22



CTMC model: States

» When no customers are queued, need to distinguish servers' states

» State 0,00 = no customers in queue, no customers being served

» State 0,10 = no customers in queue, 1 customer served by server 1
» State 0,01 = no customers in queue, 1 customer served by server 2
» State 0,11 = no customers in queue, 2 customers in service

» When there are packets in queue, packets are already being served

» State i,11 = i customers in queue and 2 customers in service
» States /,01, /,10 and /,00 are not possible

@ @ @ @ e
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C model: Transition rates

» Transition from 7,11 to (i 4 1,11) when arrival = gj 11;(i41),11 = A
» Transition from i,11 to (i — 1,11) when either server 1 or 2 finishes
» First service completion by either server 1 or 2
» Min. of two exponentials is exponential = g; 11;(i+1),11 = p1 + 2
A A A
< ® ® @
\/ w__
1+ p2 p1+ p2 H1+ p2
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CTMC model: Transition rates (continued)

From 0,00 move to 0, 10 on arrival = go,00:0,10 = A
From 0,10 move to 0,11 on arrival = ¢o,10.0,11 = A
From 0,01 move to 0,11 on arrival = qo01.0,11 = A
From 0,10 to 0,00 when server 1 finishes = qg,01.0,00 = f1
From 0,11 to 0,01 when server 1 finishes = qo,11.0,01 = fi1
From 0,01 to 0,00 when server 2 finishes = qo.01.0,00 = 12
From 0,11 to 0,10 when server 2 finishes = qo 11.0,10 = /{2

vVvyVvVvyVvyYyy

p1 + p2 p1 + p2

Stoch. Systems Analysis Queues 25



Limit distribution equations

A A
\ A A A
A/’ *~ *~ *____

p1+ p2 1+ p2 p1+ p2

NP 4

> For states 7,11 with / > 1 eqs. are analogous to M/M/1 queue
(A + 1+ p2)Pinn = P11 + (1 + p2) Py,
» For states 0,11, 0,10, 0,01 and 0,00 we have
(A + p1 + p2) Poar = APoio + APoor + (p1 + p2) P
(A + 1) Po,jo = APogo + p2Po,11
(A + p2) Poo1 = p1Po,11
A Pooo = p1Po,10 + 12Po,01
» System of linear equations = solve numerically to find probabilities
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Closing comments

v

For large i behaves like M/M/1 queue with service rate (u; + o)

v

Not identical, though, states with no queued packets are important

v

M/M/c queue = c servers with rates 1, ..., fic

v

More cumbersome to analyze but no fundamental differences
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Networks of queues
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A queue tandem

Customers arrive at system to receive two services

They arrive at a rate A and wait in queue 1 for service 1
Service 1 is performed at a rate p;

After completions of service 1 customers move to queue 2

vV v.v v .Yy

Service 2 is performed at a rate y»

A
H1 H2
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CTMC model

» States (/, ) represents i customers in queue 1 and j in queue 2

> If both queues are empty i = 0 j = 0 only possible event is an arrival

_ A
o @

> If queue 2 is empty might have arrival or completion of service 1

gio,(i+1)0 = A Q
gio,(i—-1)1 = M1 K1
- — D
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C model (continued)

> If queue 1 is empty might have arrival or completion of service 2

o S 1./ ]
qoj,ij = A

2

» If no queue is empty arrival, service 1 and service 2 possible

Gij(i+1)j = A N R
qij,(i-1)(+1) = H1 @

qij,i(j—1) = M2

qoj,0(j—1) = M2

lllz

Stoch. Systems Analysis Queues 31



Balance equations

» Rate at which CTMC enters state (/,) = rate at which CTMC leaves (7, )
» State (0,0)

» From (0,0) can go to (1,0) o
» Can enter (0,0) from (0,1)

Ao = el @ - @
A,
> State (i, 0)

» From (/,0) go to (i +1,0) or (i — 1,0

) G @
» Into (i,0) from (i —1,0) or (i,1) l; \
1
M1 H1
— > — >
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Balance equations (continued)

» State (0,j)

» From (0,) go to (1,/) or (0,j — 1) w2
Y
» Into (0,/) from (1,5 — 1) or (0, + 1) o A
—
(A + p2)Poj = p1Pr(j—1y + p2Pojs1) "
M1

Stoch. Systems Analysis Queues 33



Balance equations (continued)

» State (i,])

» From (i,j) cangoto (i+1,j), (i—1,j+1)or (i,j—1)
» Can enter (i,j) from (i —1,j), (i+1,j—1) or (i,j+ 1)

(A + pa + p2) Py = AP 1) + i Pisnyg-1) + 12Pigi1)
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Solution of balance equations

v

Direct substitution shows that balance equations are solved by

= (o) () (2 ()

» Compare with expression for M/M/1 queue
= It behaves as two two independent M/M/1 queues
= First queue has rates A and
= Second queue has rates A and pp

v

Result can be generalized to networks of queues

v

Result important in transportation networks

v

Also useful to analyze Internet traffic
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