Queues

Alejandro Ribeiro & Cameron Finucane
Dept. of Electrical and Systems Engineering
University of Pennsylvania
aribeiro@seas.upenn.edu
http://www.seas.upenn.edu/users/~aribeiro/

October 28, 2015
Queueing theory

M/M/1 queue

Multiserver queues

Networks of queues
Queues

- Queuing theory is concerned with the (boring) issue of waiting
- Waiting is boring, queuing theory not necessarily so
- “Customers” arrive to receive “service” by “servers”
- Between arrival and start of service wait in queue

- Quantities of interest (for example)
 - Number of customers in queue → L (for length)
 - Time spent in queue → W for (wait)

- Queues are a pervasive applications of CTMCs
Where do queues appear?

- Queues are fundamental to the analysis of (public) transportation
- Wait to enter a highway \Rightarrow Customers $=$ cars
- Subway travel times, Subway or buses? Infrequent big buses or frequent small buses?
- Packet traffic in communication networks
- Route determination, congestion management, real time requirements, resource management
- Logistics
 - Customers $=$ raw materials, components, final products
 - Customers in queue $=$ products in storage $=$ inactive capital
- Customer service
 - How many representatives in a call center? Call center pooling
Examples of queues

- Simplest manifestation \Rightarrow Single queue, single server, infinite spots
 - Simpler if arrivals and services are Poisson \Rightarrow M/M/1 queue
 - Limiting number of spots not difficult \Rightarrow losses appear

- Multi-server queues \Rightarrow Single queue, many servers
 - M/M/c queue \Rightarrow c Poisson servers
Networks of queues

- **Groups of interacting queues** ⇒ Applications become interesting
- E.g. a queue tandem

![Diagram of queues](image)

- Can have **arrivals at different points and random re-entries**

![Diagram of queues with arrivals and re-entries](image)

- Batch service and arrivals, loss systems (not considered)
M/M/1 queue

Queueing theory

M/M/1 queue

Multiserver queues

Networks of queues
M/M/1 queue

- Arrival and service processes are Poisson \implies Birth & death process
- Customers arrive at an average rate of λ per unit time
- Customers are serviced at an average rate of μ per unit time
- Interarrival and inter-service time are exponential and independent

- Hypothesis of Poisson arrivals is reasonable
- Hypothesis of Poisson service times not so reasonable

- Steady state behavior (systems operating for a long time) \implies Limit probabilities
Define CTMC by identifying states with queue lengths
Transition rates $q_{i,i+1} = \lambda$, for all i and $q_{i,i-1} = \mu$ for $i \neq 0$
Recall that first of two exponential times is exponentially distributed
\Rightarrow Mean transition times are $\nu_i = \lambda + \mu$ for $i \neq 0$ and $\nu_0 = \lambda$

Limit distribution equations (Rate into $j = \text{rate out of } j$)

$$\lambda P_0 = \mu P_1, \quad (\lambda + \mu) P_i = \lambda P_{i-1} + \mu P_{i+1}$$
Queue length as a function of time

- Simulation for $\lambda = 30$ customers/min, $\mu = 40$ services/min
- Probability distribution estimated by ensemble average with $M = 10^5$

$$P[N(t) = k] \approx \frac{1}{M} \sum_{i=1}^{M} \mathbb{I}\{N_i(T) = k\}$$

- Steady state (in a probabilistic sense) reached in around 10^3 mins.

- Queue length vs. time. Prob. color coded. Mean queue length in white
Close up on initial times

- Probabilities settle at their equilibrium values
Another view of queue length evolution

- Cross-sections of queue length probabilities at different times
Ergodicity

- Compare ensemble averages for large t with ergodic averages

$$T_i(t) = \frac{1}{T} \int_{t=0}^{T} \mathbb{1} \{ N_1(t) = k \}$$

- They are approximately equal, as they should (equal as $t \to \infty$)
A non stable queue

- All former observations valid for stable queues \((\lambda < \mu)\)
- Simulation for \(\lambda = 60\) customers/min and \(\mu = 40\), customers/min
- Queue grow unbounded
 \(\Rightarrow\) probability of small number of customers in queue vanishes

- Queue length vs. time. Prob. color coded. Mean queue length in white
Solution of limit distribution equations

- Start expressing all prob. in terms of P_0
- Repeat process done for birth and death process

- Equation for P_0
 $\leftarrow \Rightarrow \lambda P_0 = \mu P_1 \Rightarrow \lambda P_0 = \mu P_1$

- Sum eqs. for P_1 and P_0
 $\rightarrow \lambda (1 + \mu) P_1 = \lambda P_0 + \mu P_2 \Rightarrow \lambda P_1 = \mu P_2$

- Sum result and eq. for P_2
 $\Rightarrow \lambda P_1 = \mu P_2 \Rightarrow \lambda P_1 = \mu P_2$

- Sum result and eq. for P_i
 $\Rightarrow \lambda P_{i-1} = \mu P_i \Rightarrow \lambda P_{i-1} = \mu P_i$

- From where it follows
 $\Rightarrow P_{i+1} = (\lambda/\mu) P_i$ and $P_i = (\lambda/\mu)^i P_0$
The sum of all probabilities is (geometric sum)

\[\sum_{i=1}^{\infty} P_i = \sum_{i=1}^{\infty} \left(\frac{\lambda}{\mu} \right)^i P_0 = \frac{P_0}{1 - \frac{\lambda}{\mu}} \]

Now use that the sum of probabilities is 1 and solve for \(P_0 \) to obtain

\[P_0 = 1 - \frac{\lambda}{\mu}, \quad P_i = (1 - \frac{\lambda}{\mu}) \left(\frac{\lambda}{\mu} \right)^i \]

Result valid for \(\frac{\lambda}{\mu} < 1 \), if not CTMC is transient

Expression coincides with non concurrent queue in discrete time

Not surprising \(\Rightarrow \) continuous time \(\approx \) discrete time with small \(\Delta t \)

For small \(\Delta t \) non concurrent hypothesis is accurate

Present derivation “much cleaner,” though
Expected queue length is \(L = i \). To compute \(\mathbb{E}[L] \) use limit probs.

\[
\mathbb{E}[L] = \sum_{k=0}^{\infty} iP_i = \sum_{k=0}^{\infty} i(1 - \lambda/\mu)(\lambda/\mu)^i
\]

Latter is derivative of geometric sum (\(\sum_{i=0}^{\infty} ix^i = x/(1 - x)^2 \)). Then

\[
\mathbb{E}[L] = (1 - \lambda/\mu) \frac{\lambda/\mu}{(1 - \lambda/\mu)^2} = \frac{\lambda}{\mu - \lambda}
\]

Recall \(\lambda < \mu \).

If \(\lambda \approx \mu \) queue is stable but average queue length becomes very large.
Expected wait

- Packet arrives when there are L customers in queue
- Time spent in queue is time required to service these L customers
- Plus time until arriving customer is served

- Let $T_1, T_2, \ldots, T_{L+1}$ be these times. Queue wait $\Rightarrow W = \sum_{i=1}^{L+1} T_i$
- Expected value (first conditioned on $L = l$, then with respect to L)

$$E[W] = E \left[\sum_{i=1}^{L+1} T_i \right] = E \left[E \left[\sum_{i=1}^{L+1} T_i \mid L = l \right] \right]$$

- $L = l$ “not random” in inner expectation \Rightarrow interchange with sum

$$E[W] = E \left[\sum_{i=1}^{L+1} E[T_i] \right] = E \left[(L + 1) E[T_i] \right] = E[L + 1] E[T_i]$$
Use expression for $\mathbb{E}[L]$ to evaluate $\mathbb{E}[L+1]$ as

$$\mathbb{E}[L+1] = \mathbb{E}[L] + 1 = \frac{\lambda}{\mu - \lambda} + 1 = \frac{\mu}{\mu - \lambda}$$

Substitute expressions for $\mathbb{E}[L+1]$ and $\mathbb{E}[T_i] = 1/\mu$

$$\mathbb{E}[W] = (1/\mu) \frac{\mu}{\mu - \lambda} = \frac{1}{\mu - \lambda}$$

Recall λ=arrival rate. Former may be written as

$$\mathbb{E}[W] = (1/\lambda) \frac{\lambda}{\mu - \lambda} = (1/\lambda)\mathbb{E}[L]$$
Little's law

- For M/M/1 queue have just seen $\Rightarrow E[L] = \lambda E[W]$
- Expression referred to as Little’s law
- True even if arrivals and departures are not Poisson (not proved)
- Expected nr. customers in queue = arrival rate \times expected wait
Multiserver queues

Queuing theory

M/M/1 queue

Multiserver queues

Networks of queues
Arrivals are Poisson with rate λ
Service offered by two Poisson servers with service rates μ_1 and μ_2
When a server finishes serving a customer, it starts serving next customer in queue.
If queue is empty the server waits for the next customer
If both servers are waiting when customer arrives, service is performed by server 1
CTMC model: States

- When no customers are queued, need to distinguish servers’ states
 - State 0,00 = no customers in queue, no customers being served
 - State 0,10 = no customers in queue, 1 customer served by server 1
 - State 0,01 = no customers in queue, 1 customer served by server 2
 - State 0,11 = no customers in queue, 2 customers in service
- When there are packets in queue, packets are already being served
 - State i,11 = i customers in queue and 2 customers in service
 - States i,01, i,10 and i,00 are not possible
CTMC model: Transition rates

- Transition from \(i, 11 \) to \((i + 1, 11) \) when arrival \(\Rightarrow q_{i,11;(i+1),11} = \lambda \)
- Transition from \(i, 11 \) to \((i - 1, 11) \) when either server 1 or 2 finishes
- First service completion by either server 1 or 2
- Min. of two exponentials is exponential \(\Rightarrow q_{i,11;(i+1),11} = \mu_1 + \mu_2 \)
CTMC model: Transition rates (continued)

- From 0,00 move to 0,10 on arrival \(\Rightarrow q_{0,00;0,10} = \lambda \)
- From 0,10 move to 0,11 on arrival \(\Rightarrow q_{0,10;0,11} = \lambda \)
- From 0,01 move to 0,11 on arrival \(\Rightarrow q_{0,01;0,11} = \lambda \)
- From 0,10 to 0,00 when server 1 finishes \(\Rightarrow q_{0,01;0,00} = \mu_1 \)
- From 0,11 to 0,01 when server 1 finishes \(\Rightarrow q_{0,11;0,01} = \mu_1 \)
- From 0,01 to 0,00 when server 2 finishes \(\Rightarrow q_{0,01;0,00} = \mu_2 \)
- From 0,11 to 0,10 when server 2 finishes \(\Rightarrow q_{0,11;0,10} = \mu_2 \)
Limit distribution equations

For states $i, 11$ with $i \geq 1$ eqs. are analogous to M/M/1 queue

$$(\lambda + \mu_1 + \mu_2)P_{i,11} = \lambda P_{(i-1),11} + (\mu_1 + \mu_2)P_{(i+1),11}$$

For states $0, 11$, $0, 10$, $0, 01$ and $0, 00$ we have

$$(\lambda + \mu_1 + \mu_2)P_{0,11} = \lambda P_{0,10} + \lambda P_{0,01} + (\mu_1 + \mu_2)P_{1,11}$$

$$(\lambda + \mu_1)P_{0,10} = \lambda P_{0,00} + \mu_2 P_{0,11}$$

$$(\lambda + \mu_2)P_{0,01} = \mu_1 P_{0,11}$$

$$\lambda P_{0,00} = \mu_1 P_{0,10} + \mu_2 P_{0,01}$$

System of linear equations \Rightarrow solve numerically to find probabilities
Closing comments

- For large i behaves like M/M/1 queue with service rate $(\mu_1 + \mu_2)$
- Not identical, though, states with no queued packets are important
- M/M/c queue \Rightarrow c servers with rates μ_1, \ldots, μ_c
- More cumbersome to analyze but no fundamental differences
Networks of queues

Queuing theory

M/M/1 queue

Multiserver queues

Networks of queues
A queue tandem

- Customers arrive at system to receive two services
- They arrive at a rate λ and wait in queue 1 for service 1
- Service 1 is performed at a rate μ_1
- After completions of service 1 customers move to queue 2
- Service 2 is performed at a rate μ_2
CTMC model

- States (i, j) represents i customers in queue 1 and j in queue 2
- If both queues are empty $i = 0$ $j = 0$ only possible event is an arrival
 $$q_{00,10} = \lambda$$
- If queue 2 is empty might have arrival or completion of service 1
 $$q_{i0,(i+1)0} = \lambda$$
 $$q_{i0,(i-1)1} = \mu_1$$
If queue 1 is empty might have arrival or completion of service 2

\[q_{0,j,1,j} = \lambda \]
\[q_{0,j,0,(j-1)} = \mu_2 \]

If no queue is empty arrival, service 1 and service 2 possible

\[q_{ij,(i+1),j} = \lambda \]
\[q_{ij,(i-1)(j+1)} = \mu_1 \]
\[q_{ij,i,j-1} = \mu_2 \]
Balance equations

- Rate at which CTMC enters state \((i, j)\) = rate at which CTMC leaves \((i, j)\)

- **State \((0, 0)\)**
 - From \((0, 0)\) can go to \((1, 0)\)
 - Can enter \((0, 0)\) from \((0, 1)\)

 \[
 \lambda P_{00} = \mu_2 P_{01}
 \]

- **State \((i, 0)\)**
 - From \((i, 0)\) go to \((i + 1, 0)\) or \((i - 1, 0)\)
 - Into \((i, 0)\) from \((i - 1, 0)\) or \((i, 1)\)

 \[
 (\lambda + \mu_1)P_{i0} = \lambda P_{(i-1)0} + \mu_2 P_{i1}
 \]
State \((0, j)\)

- From \((0, j)\) go to \((1, j)\) or \((0, j - 1)\)
- Into \((0, j)\) from \((1, j - 1)\) or \((0, j + 1)\)

\[(\lambda + \mu_2)P_{0j} = \mu_1 P_{1(j-1)} + \mu_2 P_{0(j+1)}\]
Balance equations (continued)

- **State** \((i, j)\)
- From \((i, j)\) can go to \((i + 1, j)\), \((i - 1, j + 1)\) or \((i, j - 1)\)
- Can enter \((i, j)\) from \((i - 1, j)\), \((i + 1, j - 1)\) or \((i, j + 1)\)

\[
(\lambda + \mu_1 + \mu_2)P_{ij} = \lambda P_{(i-1)j} + \mu_1 P_{(i+1)(j-1)} + \mu_2 P_{i(j+1)}
\]
Solution of balance equations

Direct substitution shows that balance equations are solved by

\[P_{ij} = \left(1 - \frac{\lambda}{\mu_1}\right) \left(\frac{\lambda}{\mu_1}\right)^i \left(1 - \frac{\lambda}{\mu_2}\right) \left(\frac{\lambda}{\mu_2}\right)^j \]

Compare with expression for M/M/1 queue

⇒ It behaves as two two independent M/M/1 queues
⇒ First queue has rates \(\lambda\) and \(\mu_1\)
⇒ Second queue has rates \(\lambda\) and \(\mu_2\)

Result can be generalized to networks of queues
Result important in transportation networks
Also useful to analyze Internet traffic