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1 Continuous Time Markov Chains

1.1 Memoryless property: continuous time
Markov chains are characterized by the Markov or memoryless property:

P(Xn = xn|Xn−1 = xn−1, . . . ,X0 = x0) = P(Xn = xn|Xn−1 = xn−1)

This is a discrete-time formulation, how do we extend it to a continuous time setting?

P(T > s+ t|T > s) = P(T > t)

Note that we can also write

P(T > s+ t|T > s) =
P(T > s+ t,T > s)

P(T > s)
=

P(T > s+ t)
P(T > s)

which implies that
P(T > s+ t) = P(T > t)P(T > s).

This way it is easier to see how the memoryless property is related to exponential random variables, that we discuss
next. Recall that memoryless random times need to have exponential distribution.

1.2 Exponential RVs and Poisson Processes
Exponential RV - time elapsed between occurrence of random events, continuous RV T ∼ exp(λ ) is exponential with
parameter 1

λ
. Its PDF is:

fT (t) = λe−λ t

Its expectation is 1
λ

, the average rate of events happening at intervals T. The variance is 1
λ 2

Its cumulative distribution function (CDF), on the other hand, is given by

FT (t) = P(T ≤ t) = 1− e−λ t

Note that the complement of the CDF measures the probability of the random variable T being greater than some value
t:

P(T > t) = e−λ t

Moreover we can see that exponential RVs are memoryless since

P(T > s+ t) = e−λ (s+t) = e−λ se−λ t = P(T > t)P(T > s)

If T = min(T1,T2), the time to the first event, where T1 ∼ exp(λ1) and T2 ∼ exp(λ2), then

P[T > t] = P[T1 > t]P[T2 > t] = e−(λ1+λ2)t
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A Poisson RV measures the number of occurrences of random events in a fixed time interval with rate (parameter)
λ . A poisson RV has PMF:

P[N = k] =
e−λ (λ )k

k!
and mean λ .
Poisson Process - number of occurrences of independent events in a time interval of length T with rate (parameter) λ

P[N(T ) = k] =
e−λT (λT )k

k!

The inter-arrival times of the Poisson Process with parameter λ are independent exponential RVs with parameter λ .
Recall that a Poisson Process has independent (that is the number of events in any pair of disjoint intervals are inde-
pendent) and stationary (probability distribution of the number of events depends on the length of the interval but not
on its absolute position) increments. It is an example of a simple CTMC.

1.3 CTMC
Continuous time: nonnegative random variable t ∈ R+, States X(t) take countable values 0,1, ...
Continuous time, countable state stochastic process X(t) is a CTMC if the memoryless property holds (the future is
independent of the past given the present)

P[X(t + s) = j|X(s) = i,X(u) = x(u),u < s] = P[X(t + s) = j|X(s) = i]

Applying the memoryless property to the transition times Ti, time until transition out of state i into any other state j

P[Ti > t + s|Ti > s] = P[Ti > t]

Transition times are exponentially distributed Ti ∼ exp(νi). νi is the rate of transitioning out of state i. When a transi-
tion happens, X(t) cannot return to state i (no self-loops)

Here we focus on homogeneous MCs, in which the transition probabilities do not depend on the starting point s
but only on the length of the time interval t

2 ways to specify CTMC:
1) Transition rates out of each state νi, Transitions probabilities out of state i into state j, Pi j:

∞

∑
j=1

Pi j = 1,Pii = 0

2) Transition rates out of state i to state j, qi j = νiPi j
To convert back to 1:

νi =
∞

∑
j=1, j 6=i

qi j,Pi j = qi j/νi

Note that so far we discussed a sort of algorithmic definition of CTMCs: transition times from state i are exponential,
and when they occur, they happen into state j with probability Pi j. Now we wanna find the transition probability
function Pi j(t), that can be found by using the Chapman-Kolmogorov equations.

1.4 Chapman-Kolmogorov Equations
Our goal is to find Pi j(t), the probability of being at state j at time t, if X(0) = i
The Forward (where the process is going to) and Backward (where the process is coming from) equations are derived
from theorem:

Pi j(t + s) =
∞

∑
k=0

Pik(t)Pk j(s)
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Note that here we are considering the probability of going from state i to k at time t, then going from state k to j in the
remaining time s and summing over all possible intermediate steps k.
Forward equations:

∂Pi j(t)
∂ t

=
∞

∑
k=0,k 6= j

qk jPik(t)− v jPi j(t)

Left-hand side = rate of change
qk jPik(t) = (transition into k in 0→ t) ×(rate of moving into j in next instant)
v jPi j(t) = (transition into j in 0→ t) × (rate of leaving j in next instant)
Change in Pi j(t) = ∑k(moving into j from k)− (leaving j)

Backward equations:
∂Pi j(t)

∂ t
=

∞

∑
k=0,k 6=i

qikPk j(t)− viPi j(t)

Change in Pi j(t) = ∑k((moving into k from i)− (rate from i to j)

Matrix formulation of the 2 equations:
Forward equation: P’(t) = P(t)R, Backward equation: P’(t) = R P(t)

where P(t) =

P11(t) . . . P1N(t)
...

. . .
...

PN1(t) . . . PNN(t)

 and the elements of R are given by Ri j = qi j and Rii =−νi

Solve for P(t) = eRt , the matrix exponential of Rt

Given P(t) and initial distribution p(0), we can find unconditional probabilities as

p(t) = PT (t)p(0). (1)

Now recall that we can define an embedded (discrete-time) MC w/ transition probabilities P with null diagonal:
CTMC irreducible if MC single class
transient and recurrent states in CTMC if transient/recurrent in MC

(Theorem) For a irreducible positive recurrent CTMC with transition rates νi and qi j,Pj = limt→∞ Pi j(t) exists for
all i, is independent of initial state i and satisfies

ν jPj =
∞

∑
k=0,k 6= j

qk jPk,
∞

∑
j=0

Pj = 1 (2)

If CTMC is irreducible, positive recurrent, then ergodicity holds; so ergodic limit coincides with limit probabilities
To find the limit probabilities Pi, the probability of X(t) being in state i in steady state, where ∂Pi j(t)

∂ t = 0, so we can
simplify the Kolmogorov equations — Balance equations:
For each state j at steady state, rate into j = rate out of state j, ∑i qi jPi = ∑k q jkPj

2 Queues

2.1 M/M/1 Queue
Markov Arrivals, Markov Departures, 1 Server. Customers arrive at rate λ and leave with rate µ (independent)
We transition from state with i customers whenever an arrival or departure happens (for i 6= 0): ν = λ +µ

Arrival happens before departure with probability Pi,i+1 =
λ

λ+µ

Departure happens before arrival with probability Pi,i−1 =
µ

λ+µ

For i = 0. Special case - customers can only arrive, can’t leave: ν0 = λ ,P01 = 1

3



2.2 Other Queues
Multiserver queues: M/M/c; Poisson servers with independent service rates
Networks of Queues: customers arrive at system to receive two services. Service 1 is performed with rate µ1 and
service 2 with rate µ2. Behaves as two independent M/M/1 queues.

3 Biochemical Reactions
The system’s sate is X(t), which tells the amount of each molecule. To specify the i-th reaction, quantity of reactants,
reaction rate, quantity of products

Ri : sl
i1X1 + . . .+ sl

imXm
ci−→ sr

i1X1 + . . .+ sr
imXm

To write n reaction equations as a system of equations, S(l)X
ci−→ S(r)X

Left stoichiometry matrix: S(l) =

sl
11 . . . sl

1m
...

. . .
...

sl
n1 . . . sl

nm

 Right stoichiometry matrix: S(r) =

sr
11 . . . sr

1m
...

. . .
...

sr
n1 . . . sr

nm


Hazards hi(X) determine the transition rates of the underlying CTMC.

Gillespie’s algorithm: simulation of CTMC / biochemical reactions. Calculates hazards. Calculate transition rate.
Random (exponential) time of next reaction. Advances time by δt . Draw reaction ( hi(X)

ν(X) ). Update state vector.

4 Gaussian processes
Stochastic processes: Markov (memoryless) vs Gaussian (normal distribution) vs Stationary (probabilities are invari-
ant to time shifts) X(t) is a Gaussian process when all prob. distributions are Gaussian

for any t1, . . . , tn → X(t1),X(t2), . . . ,X(tn) are jointly Gaussian
RVs X1, . . . ,Xn are jointly Gaussian if any linear combination of them is Gaussian
More general, any linear functional of X(t) is normally distributed

Recall that linear transformation of independent Gaussians is Gaussian.

To specify a Gaussian process:
mean value function : µ(t) = E[X(t)]
autocorrelation function: R(t1, t2) = E[X(t1)X(t2)]; symmetric: R(t1, t2) = R(t2, t1)
if needed, autocovariance: C(t1, t2) = R(t1, t2)−µ(t1)µ(t2)

4.1 Brownian Motion
1. X(t)∼N (0,σ2t)

2. Independent increments: X(t2)−X(t1) ind. of X(s2)−X(s1) for disjoint (t1, t2) and (s1,s2)

3. stationary increments: X(t + s)−X(s) and X(t) have same distribution

4. autocorrelation: RX (t1, t2) = σ2min(t1, t2)
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4.2 White Gaussian noise (WGN) process W (t)

1. example of a gaussian process

2. zero mean, E[W (t)] = 0, ∀t

3. autocorrelation depends on the delta function: RW (t1, t2) = σ2δ (t1− t2)

4. ( delta function δ (t) =

{
∞, t = 0
0, else

5.
∫ b

a f (t)δ (t)dt =

{
f (0), if a < 0 < b
0 o.w.

)

6. here RW (t1, t2) = E[W (t1)W (t2)] = 0 if t1 6= t2

7. Values of W (t) at different times are independent! Since W (t) is Gaussian, uncorrelation implies independence:

(a) Independent⇒ uncorrelated

(b) In general, Uncorrelated 6⇒ independent

(c) for Gaussian Processes, uncorrelated⇔ independent

4.3 Integral of WGN
Consider a GP

X(t) =
∫ t

0
W (u)du

Integration is a linear functional =⇒ X(t) is also a GP!
Mean function µ(t):

µ(t) = E[X(t)] = E[
∫ t

0
W (u)du] =

∫ t

0
E[W (u)]du = 0

Compute the autocorrelation function R(t1, t2) of the same GP

RX (t1, t2) = E
[(∫ t1

0
W (u1)du1

)(∫ t2

0
W (u2)du2

)]
= E

[∫ t1

0

∫ t2

0
W (u1)W (u2)du1du2

]
=
∫ t1

0

∫ t2

0
E[W (u1)W (u2)]du1du2

=
∫ t1

0

∫ t2

0
σ

2
δ (u1−u2)du1du2 (assume u1 < u2)

=
∫ t1

0
σ

2du1 = σ
2t1 (similar when u2 < u1).

=⇒ same mean and autocorrelation as BM!

5 Pricing of options and stocks
Arbitrage = “ It is possible to devise a betting strategy that guarantees a positive return no matter the combined outcome
of the events”
Parameters / variables:

1. k = 1, . . . ,K: events

2. j = 1,2, . . . ,J: joint outcomes (“world realization”)
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3. r jk: return ( per unit )

4. xk: bet in outcome k

5. Total return = xT r j

Arbitrage theorem:

5.1 Returns
Expected non-discounted return r of an investment in a stock

1. X(t) be the price of a stock, where we assume follow a geometric Brownian motion with drift µ and volatility
σ2

2. Can define a Y (t) Brownian motion with drift µ and variance σ2 such that X(t) = X(0)eY (t)

3. Expected non-discounted return r of an investment in a stock is E[eY (t)]−1

4. E[eY ] = eµY+σ2
Y /2

Continuously compounded return α by investing in the money market (risk free)

1. Invest one dollar, gives you eαt at time t

Discounted return of an investment in a stock

1. Return discounted compared to the money market rates, continuously compounded return α by investing in the
money market

2. If non-discounted return E[X(t)]
X(0) −1, discounted return is e−αt E[X(t)]

X(0) −1

5.2 Risk neutral measure q
q is a joint probability distribution. The expected value of earnings w.r.t q is zero if no arbitrage!

1. We consider the change over 1 period of h:

2. X((n+1)h) = X(nh)eσ
√

hYn

3. Each element Yn is a binary random variable with probabilities

P(Yn = 1) = q, P[Yn =−1] = 1−q

4. Examine the change during the first interval h:

P[X(h) = X(0)eσ
√

h] = q, P[X(h) = X(0)e−σ
√

h] = 1−q
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5. Consider an investment X(0) = $1,

r1 = eσ
√

h−1, r2 = e−σ
√

h−1

6. The only situation where there is no arbitrage is when

qr1 +(1−q)r2 = 0

7. Solving for q yields

q =
eαh− e−σ

√
h

eσh− e−σ
√

h

8. For small h, eαh ≈ 1+αh and e±σ
√

h ≈ 1±σ
√

h+σ2h/2, hence

q≈ 1
2

(
1+

α−σ2/2
σ

√
h
)

9. Thus, measure q := limh→0 q(h) is geometric Brownian motion with variance σ2 (same as stock price) and drift
α−σ2/2

10. Expected growth:

5.3 Arbitrage
The no-arbitrage price c of the option on the stock X(t) with strike time t and strike price K as an expected value w.r.t
to the risk neutral measure

1. Option is a contract to buy shares of a stock are a future time

2. May become active or not, depending if (X(t)−K)> 0

3. Option values at time t, (X(t)−K)+

4. Return value at time 0, e−αt(X(t)−K)+− c

5. To have no arbitrage, the option’s price should be

Eq
[
e−αt(X(t)−K)+− c

]
= 0

6. In terms of c,
c = e−αtEq

[
(X(t)−K)+

]
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6 Linear filtering

6.1 Stationary processes
≈ study of limit distributions

1. All probabilities are invariant to time shifts: strictly stationary

P[X(t1 + s)≥ x1, . . . ,X(tn + s)≥ xn] = P[X(t1)≥ x1, . . . ,X(tn)≥ xn]

2. A much weaker condition first order stationary =⇒ probabilities of single variables are shift invariant

P[X(t + s)≥ x] = P[X(t)≥ x]

3. For SS processes, pdfs and joint cdfs are shift invariant

=⇒ mean, variance, power of a SS process is constant

=⇒ autocorrelation depends on t2− t1 only: RX (t1, t2) = RX (0, t2− t1) = RX (s)

4. For GP, implying µ(t + s) = µ(t) and RX (t, t) = RX (t + s, t + s)

6.2 Wide sense stationary (WSS)
1. WSS: not SS, mean is constant, autocorrelation shift invariant RX (t1, t2) = RX (t1− s, t2− s)

2. Power E[X2(t)] of a process

E[X2(t)] = RX (0) = RX (t, t) = E[X(t)X(t)], for WSS process

3. For Gaussian Processes, WSS and SS are equivalent

6.3 Power spectral density
The power spectral density (PSD) of a stochastic process is the Fourier transform of the autocorrelation function

1. SX ( f ) = F (RX (s))

2. e.g. F (cos(2π f0x)) = 1
2 δ ( f − f0)+

1
2 δ ( f + f0)

Input signal X(t) passes through a linear filter H

PSD relation:

For
RX (t1, t2) = cos(2π f0(t2− t1))+ cos(8π f0(t2− t1))
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with cut out frequency of H at 3 f0, we know that

RY (t1, t2) = cos(2π f0(t2− t1))

since the high frequency is cut out.
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