
Week 13: Gaussian processes

Option pricing

Solutions

A Deriving (3) and (4). Recall from (1) that Yt(s) was normally distributed with mean µs
and variance σ2s, i.e., it is a Gaussian process. Immediately, since Yn = Y(n−1)h(h) from (2), we
have that it is normally distributed with mean µh and variance σ2h.

Moreover, observe that the relative price increments Yt(s) are independent for disjoint intervals,
i.e., (Yt(s), Yu(r)) are independent for (t, t+s) disjoint of (u, u+r). Since Yn1 and Yn2 , n1 6= n2, refer
to the disjoint intervals (n1, n1 + h) and (n2, n2 + h) respectively, they are therefore independent.

B Determine drift and volatility for CSCO. Using the data provided, the following MAT-
LAB script estimates the drift and volatility of the CSCO stock:

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Load CSCO price history
6 cisco stock price;
7

8 Z = log(close price);
9 Y = Z(2:end)-Z(1:end-1);

10

11 % Time steps = 1 day
12 h = 1;
13

14 % Number of data points in the year
15 N = length(Y);
16

17 % Drift estimate
18 mu hat = sum(Y)/(N*h);
19

20 % Volatility estimate
21 var hat = sum((Y-mu hat*h).ˆ2)/((N-1)*h);

We obtain µ̂ = 1.72× 10−3 and σ̂2 = 5.96× 10−4.

C Is geometric Brownian motion a good model? The following MATLAB script compares
the pdf and CDF of Yn to the postulated normal model:

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Estimate Y, mu hat, var hat
6 HW13 B;
7

8 % Define bins
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9 x = -0.1:0.01:0.1;
10

11 % Compute hitogram
12 n elements = histc(Y, x);
13

14 % Compare with Gaussian pdf
15 h1 = figure();
16 pdf = n elements/N/0.01;
17 bar(x, pdf);
18 hold on;
19 plot(x, normpdf(x, mu hat*h, sqrt(var hat*h)), 'r', 'Linewidth', 2);
20 xlabel('x');
21 ylabel('pdf');
22 grid;
23 legend('Estimated', 'Gaussian pdf', 'Location', 'Best');
24

25 % Compare with Gaussian cdf
26 h2 = figure();
27 cdf = cumsum(n elements)/N;
28 stairs(x, cdf);
29 hold on;
30 plot(x, normcdf(x, mu hat*h, sqrt(var hat*h)), 'r', 'Linewidth', 2);
31 xlabel('x');
32 ylabel('cdf');
33 grid;
34 legend('Estimated', 'Gaussian pdf', 'Location', 'Best');
35

36

37 %%% Export figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 set(h1,'Color','w');
39 export fig(h1, '-q101', '-pdf', 'HW13 C1.pdf');
40

41 set(h2,'Color','w');
42 export fig(h2, '-q101', '-pdf', 'HW13 C2.pdf');
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fig. 1 displays the results of this code. The comparison shows that the geometric Brownian
motion model is just barely acceptable.

D Expected return. Using the expected return expression that was introduced in the slide 27
of arbitrage stock and option pricing, the discounted expected return of the stock is given by

Er = e−αt
E [X(t) | X(0)]

X(0)
= e(µ̂+σ̂

2/2−α)t.

For the parameters estimated in Part B, we obtain Er = 1.2921, i.e., a net profit of almost 30%.

To evaluate the probability, recall that log
[
X(t)
X(0)

]
∼ N (µt, σ2t). Hence,

P
[
e−αtX(t)

X(0)
≥ 1.05

]
= P

[
log

(
e−αtX(t)

X(0)

)
≥ log(1.05)

]
= P

[
log

(
X(t)

X(0)

)
≥ log(1.05) + αt

]
= 1− Φ

(
log(1.05) + αt− µt√

σ2t

)
,

where Φ is the cdf of the standard normal distribution. Using the parameters from Part B,
this expression evaluates to 0.63 [you can compute this by typing 1-normcdf(0.3, mu hat*252,
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sqrt(var hat*252)) into MATLAB].

E Risk neutral measure. From slide 26 of arbitrage stock and option pricing, the risk
neutral measure refers to a rescaled geometric Brownian motion whose drift parameter is α− σ2/2
and whose variance parameter is σ2. Thus, the risk neutral measure for the CSCO stock is a
geometric Brownian motion with mean 7.02× 10−4 · t and variance 5.96× 10−4 · t.

F Expected return for the risk neutral measure. From the definition of risk neural mea-
sure, it is ready that the expected discounted rate of return in the alternative reality is one (its
logarithm is 0). Thus, the non-discounted rate of return is α, i.e., the rate of return of the risk-free
investment.

G Deriving the Black-Scholes formula. Notice that Eq
[
e−αt [X(t)−K]+

]
is the discounted

expected return with respect to the risk neutral measure. Since c is a deterministic quantities, (7)
guarantees that the net gain with respect to the risk neutral measure is zero.

To obtain a closed-form expression for the price c, note that (7) implies that

c(t) = e−αt Eq
[[
X(0)eY (t) −K

]
+

]
, (1)

where we used the factX(t) = X(0)eY (t) is a geometric Brownian motion. Hence, Y (t) ∼ N (µt, σ2t)
and (1) can be written as

c(t) = e−αt
∫ ∞
log[K/X(0)]

(X(0)ey −K) exp

[
−(y − µt)2

2σ2t

]
dy,

where we used the fact that [X(0)ey −K]+ = 0 for y ≤ log [K/X(0)] to constraint the lim-
its of the integral. By performing the change of variables and manipulations in slides 36–39 of
arbitrage stock and option pricing yields

c = X(0)Q(b)− e−αtKQ(a), (2)

for a = log(K)−log[X(0)]−(α−σ2/2)t√
σ2t

and b = a−
√
σ2t.

H Determine option price. Using (2), the parameters estimated in Part B, and the expression
for the (undiscounted) expected return from Part D, we can use the following MATLAB script to
obtain the option prices c(t) as a function of time:

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 % Estimate Y, mu hat, var hat
6 HW13 B;
7

8 alpha = 0.1/100; % Risk-free rate of return
9 X0 = close price(1,1); % Initial price

10 t = 1:251; % Strike times (days)
11

12 % Expected return for each strike time
13 EX = X0 * exp((mu hat + var hat/2)*t);
14
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15 % Variance of return for each strike time
16 varX = X0ˆ2 * exp((2*mu hat + var hat)*t) .* (exp(var hat*t) - 1);
17

18 % One standard deviation band
19 EX upper = EX + sqrt(varX);
20 EX lower = EX - sqrt(varX);
21

22 % Strike prices
23 K = [0.8 ; 1 ; 1.2]*EX;
24

25 % Compute option prices for each strike price
26 c = zeros(size(K,1), length(t));
27 for ii = 1:size(K,1)
28 a = (log(K(ii,:)/X0) - (alpha - var hat/2)*t) ./ sqrt(var hat*t);
29 b = a - sqrt(var hat*t);
30

31 Qa = 1 - normcdf(a, 0, 1);
32 Qb = 1 - normcdf(b, 0, 1);
33 c(ii,:) = X0 * Qb - exp(-alpha*t) .* K(ii,:) .* Qa;
34 end
35

36

37 % Plot results
38 h1 = figure();
39 plot(t, c, 'LineWidth', 2);
40 xlabel('Strike time (days)');
41 ylabel('Option price');
42 grid;
43 legend('K = 0.8 EX', 'K = EX', 'K = 1.2 EX', 'Location', 'Best');
44 xlim([1 250]);
45

46 h2 = figure();
47 fill([t fliplr(t)], [EX upper fliplr(EX lower)], 'r', 'Linestyle', 'None', 'FaceAlpha', 0.2);
48 hold on
49 plot(t, EX, 'k', 'LineWidth', 2);
50 xlabel('Strike time (days)');
51 ylabel('Expected stock price');
52 grid;
53 xlim([1 250]);
54

55

56 %%% Export figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 set(h1,'Color','w');
58 export fig(h1, '-q101', '-pdf', 'HW13 H1.pdf');
59

60 set(h2,'Color','w');
61 export fig(h2, '-q101', '-pdf', 'HW13 H2.pdf');
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The results are shown in Fig. 2. Due to the law of large numbers, we expect the value of X(t)
to concentrate around its expected value. Hence, by buying an option with strike price lower than
the expected value of the stock at time t, i.e., K = 0.8E [X(t)], we have a good chance of the strike
price being lower than the value of the stock when the option’s strike time comes. By exercising
the option (buying the stock at price K) and reselling the stock at the current price, we therefore
make a profit.

On the other hand, taking K = 1.2E [X(t)] means that exercising a buying option would make
us lose money: we would be better off buying directly at the market price. But there is still volatility
enough that, for a cheap enough option, it would be worth trying (see Fig. 2b). For instance, take a
strike time of 250 days. The expected stock price at that date is approximately US$ 25.00, so that
our strike price is K ≈ US$ 30.00. In other words, if the world were deterministic we would lose
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US$ 5.00 every time. Notice, however, that the one standard deviation band goes up to US$ 35.00.
Hence, there is a significant probability that we may still be able to make a profit in this condition.
You can compute this probability as in Part D by doing

P [X(t) ≥ 1.2E[X(t)]] = P
[
X(t)

X(0)
≥ 1.2E[X(t)]

X(0)

]
= 1− Φ

(
log(1.2) + (µ+ σ2/2)t√

σ2t

)
,

where Φ is again the cdf of the standard normal distribution. This gives a probability of 0.25 of
making a profit. If the cost of the option was 50 cents, we might consider buying some. Moreover,
if we were to also considering selling options, i.e., options in which we agree to sell the stock for K
at time t, we could then make a profit by buying the stock at market price and then selling it at a
premium if K > X(t).
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Figure 1: Comparison between distribution of Yn and normal distribution (part C): (a) pdf and
(b) cdf.
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Figure 2: Pricing option using the Black-Scholes equation for different strike price and time (part H):
(a) option price and (b) expected stock price with one standard deviation band.

6


