
Week 2: Probability review

Bernoulli, binomial, Poisson, and normal distributions

In this exercise, we study Bernoulli, binomial, Poisson, and normal random variables (RVs)
as well as the relations between these probability distributions. Let us start by reviewing each of
them.

A Bernoulli RV L models experiments where success happens with probability p and failure
with probability 1−p, for instance, a coin toss. Success is indicated by L = 1 and failure by L = 0.
These “experiments” are sometimes referred to as “Bernoulli experiments” or “Bernoulli trials”.
Therefore, the probability mass function (pmf) of L is

P [L = 0] = 1− p, P [L = 1] = p, (1)

and P [L = k] = 0 for all other integers k.
A binomial RV with parameters (n, p) counts the number of successes in n independent Bernoulli

trials that succeed with probability p. Hence, we can write a binomial RV B as

B =

n∑
i=1

Li, (2)

where the {Li} are independent Bernoulli RVs with pmfs as in (1). Clearly, B can only takes integer
values between 0 and n. The pmf of a binomial RV is easily derived by noting that for B to be equal
an integer k ∈ [0, n], we must have exactly k successful Bernoulli trials—something that happens
with probability pk—and exactly n − k failed trials—which happens with probability (1 − p)n−k.
Moreover, we need to consider that there are

(
n
k

)
different ways in which this could happen. Thus,

the binomial pmf is

P [B = k] =

(
n

k

)
pk(1− p)n−k =

n!

k! (n− k)!
pk(1− p)n−k, for k = 0, 1, . . . , n, (3)

and P [B = k] = 0 otherwise.
A Poisson RV P takes values in the nonnegative integers. As we will see in part C, Poisson RV

are used to describe/model “counting processes”, similar to how the binomial counts the number
of successes in Bernoulli trials. We say that P is Poisson with parameter λ if its pmf is

P [P = k] = e−λ
λk

k!
, for k = 0, 1, . . . , (4)

and P [P = k] = 0 otherwise.
In contrast to the previous RVs, a normal or Gaussian RV X can take on any real value (instead

of just 0 or 1 for the Bernoulli, integers between 0 and n for the binomial, or nonnegative integers for
the Poisson). We therefore say X is a continuous RV. Since we can no longer specify probabilities
for each single point (as we have done until now), probabilities are now described using a probability
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density function (pdf). The pdf of a normal RV with mean µ and variance σ2 is

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , for x ∈ R. (5)

Another important concept, especially for continuous RVs, is that of the cumulative distribution
function (cdf), defined as the probability of an RV Y not exceeding y, i.e., FY (y) = P [Y ≤ y]. For
non-negative discrete pdfs such as the Bernoulli, binomial and Poisson, we can write

FY (y) =

y∑
u=0

P [Y = u] . (6)

When the RV is continuous, as is the case of the normal/Gaussian RV, the sum in (6) is replaced
by an integral as in

FY (y) =

∫ y

−∞
fY (u) du. (7)

Unlikely as it may seem, all these RV are closely related. We already saw the relation between
the Bernoulli and the binomial and you will explore the other connections below.

A The Binomial RV. Prove that the expected value of a binomial RV Bn with parame-
ters (n, p) is E [Bn] = np and that its variance is E

[
(Bn − EBn)2

]
= np(1 − p). Fix the expected

value E [Bn] = np = 5 and plot the pmf and cdf for n = 6, 10, 20, 50. Modify the value of p
appropriately.

B Binomial and Poisson distributions. Prove that the expected value of a Poisson RV P
with parameter λ is E [P ] = λ. Plot the pmf of a Poisson distribution with parameter λ = 5. Notice
that this pmf is quite similar to the binomial pmf of Part A for large n. In fact, we can quantify
this proximity by evaluating the following mean squared error (MSE):

∆(Bn, P ) =
∞∑
k=0

(P [Bn = k]− P [P = k])2 P [P = k] . (8)

Compute ∆(Bn, P ) for n = 6, 10, 20, 50. Evaluating the MSE in (8) numerically requires truncating
the infinite sum. You can neglect values k for which P [P = k] ≤ 5× 10−2.

C Binomial and Poisson distributions again. Having noticed this interesting connection
between the binomial and the Poisson distribution, consider binomial RVs Bn with parameters n
and p = λ/n. Prove that as n→∞, the pmf of Bn converges to the pmf of P .

D Binomial and normal distributions. An important result in probability theory is the
central limit theorem (CLT). The CLT concerns sums of independent identically distributed (i.i.d.)
RVs Yi with mean E [Yi] = µ and variance var [Yi] = σ2. Specifically, define

Zn =

∑n
i=1 Yi − nµ
σ
√
n

. (9)
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The CLT states that the pdf of Zn is approximately normal (with zero mean and unit variance) for
sufficiently large n. Formally,

lim
n→∞

P [Zn ≤ z] =
1√
2π

∫ z

−∞
e−u

2/2 du. (10)

Recall that the binomial RV is a sum of i.i.d. Bernoulli RVs. Hence, it is possible to approximate
the binomial cdf with a normal cdf. Do so for p = 0.5 and n = 10, 20, 50. Show the equations you
used for the approximations and corresponding plots.

E Normal and Poisson approximations. In parts B and C, you showed that it is possible
to approximate a binomial RV with a Poisson RV when n is large. But in part D, you showed that
it is also possible to approximate a binomial RV with a normal RV. Clearly, Poisson and normal
RVs are very different, but these results cannot contradict each other since you saw both are true.
Explain why these two approximations are consistent with each other. The answer is not that the
Poisson and normal are similar (they are not! E.g., the Poisson is a discrete distribution and the
normal is a continuous distribution).
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