
Week 4: Markov chains

Branching processes and mitochondrial DNA

Solutions

A Is the total number of women a Markov chain? Yes, the process {Xn}n∈N is an MC
because it has the Markov property, i.e., it is “memoryless.” Indeed, the number of women in a
generation depends only on the number of women in the previous generation, since only they give
birth to the girls that form the new generation.

The transition probability P0j , P1j , Pi0, and Pii are given by

P0j = P [Xn+1 = j | Xn = 0] =

{
0, j 6= 0

1, j = 0
[no mother, no descendent]

P1j = P [Xn+1 = j | Xn = 1] = P [D1 = j] = pj , ∀j
[the number of women in next genera-
tion is the number of daughters of the
only mother in the current generation]

Pi0 = P [Xn+1 = 0 | Xn = i] =

i∏
k=1

P [Dk = 0] =

i∏
k=1

p0 = p0
i

[none of the mothers should bear
daughters and these events are as-
sumed to be independent]

The probability Pii of staying in the same state can be bounded by finding a specific event for
which the MC would not change state. For instance, if each of the mothers in a generation has
exactly one daughter, then the MC would remain in the same state. This is not the only condition
for which this happens, but it allows us to derive a lower bound as in

Pii = P [Xn+1 = i | Xn = i] >
i∏

k=1

P [Dk = 1] = pi1 > 0.

Finally, note that this MC is not recurrent. The reason is that 0 is an absorbing state, i.e.,
once there is no mother, there will never again be children. Formally, it holds for all i > 0
that Pi0 = pi0 > 0, i.e., there is a positive probability of jumping to state 0 from every state.
However, P0j = 0 for any j 6= 0. In other words, we can go into state 0 but we can never come out
of it. More systematically, the state 0 forms a recurrent class. However, all other states i > 0 form
a transient class. Hence, the MC cannot be recurrent.

B Is the number of women of a certain DNA type a Markov chain? The obstacle to
the process {Xnr}n∈N being Markovian is the state zero. The issue is that Xnr = 0 can mean one of
two things: (i) either type r has become extinct or (ii) type r has not occurred yet. Moreover, P0j

is affected by this information that is not captured only by the state being 0. Indeed, if type r has
become extinct, then P0j = 0 for all j > 0. On the other hand, if type r has not yet existed, i.e.,
the number of types is less than r, then P0j may be positive for all j. Therefore, the memoryless
property does not hold and {Xnr}n∈N is not a MC.
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In contrast, the process {X̂ir}i∈N is an MC since it has the memoryless property, now that state
zero can only occur if type r has become extinct.

The transition probabilities P0j and P1j are given by

P0j = P
[
X̂(n+1)r = j | X̂nr = 0

]
=

{
0, j 6= 0

1, j = 0

P1j = P
[
X̂(n+1)r = j | X̂nr = 1

]
=

{
(1− q)pj , j 6= 0

p0 + (1− p0)q, j = 0

We next show how to calculate this last probability by finding Pi0. The probability that a
generation has no women of type r given that the previous generation has i women is the same
as the probability of each of the i women either (i) having no daughters or (ii) have daughters of
another type (mutation). We can evaluate this using total probability and considering each of these
event separately:

Pi0 = P
[
X̂(n+1)r = 0 | X̂nr = i

]
= P

[
X̂(n+1)r = 0

∣∣ X̂nr = i,mutation
]
P [mutation]

+ P
[
X̂(n+1)r = 0

∣∣ X̂nr = i,no mutation
]
P [no mutation]

= 1× q + p0 × (1− q)

Finally, we can use the same approach as in part A to obtain that Pii > pi1(1−q) > 0. Moreover,
for the same reason as part A, this MC is not recurrent.

C System simulation. Refer to parts D and E.

D Simulation tests one. The MATLAB code for the simulation experiment is given below.

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 X0 = 100; % Number of individuals in the first generation
6 max t = 50; % Time limit of the simulation
7 max types = 1000; % Maximum number of types (a safely large number,
8 % MATLAB will reallocate the vector if this is not enough)
9

10 mu = 1.05; % Poisson process rate
11 q = 10ˆ-2; % Rate of mutation
12

13 % Preallocate output vectors
14 X = zeros(max types,max t); % Women per type at each instant
15 number of types = zeros(max t,1); % Number of types per instant
16 number of extinct types = zeros(max t,1); % Number of extinct types per instant
17

18 % Initialization
19 X(1:X0,1) = 1; % Start with X0 women, one of each type
20 number of types(1) = X0;
21

22 % Simulation
23 for n = 2:max t
24 number of types(n) = number of types(n-1);
25
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26 for type = 1:number of types(n-1)
27 for i = 1:X(type,n-1)
28 daughters = poissrnd(mu,1,1); % Draw number of daughters
29 mutation = binornd(1,q,1,1); % Draw mutation indicator
30

31 % Check if a mutation occured
32 if mutation == 1
33 % Daughters are of a new type
34 number of types(n) = number of types(n) + 1;
35 X(number of types(n),n) = daughters;
36 else
37 % Daughters are of same type as mother
38 X(type,n) = X(type,n) + daughters;
39 end
40 end
41

42 % Check if type has gone extinct
43 if X(type,n) == 0
44 number of extinct types(n) = number of extinct types(n) + 1;
45 end
46 end
47 end
48

49

50 % Number of women per type
51 h1 = figure();
52 stairs(1:max t, X', 'LineWidth', 2);
53 xlabel('Generation');
54 ylabel('Number of women per type');
55 grid;
56

57 % Number existing and extinct types
58 h2 = figure();
59 plot(1:max t, [number of types - number of extinct types, number of extinct types], 'LineWidth', 2);
60 xlabel('Generation');
61 ylabel('Number of types');
62 grid;
63 legend('Number of types in the population', 'Number of extinct types');
64

65 % Final number of women per type
66 h3 = figure();
67 bar(1:number of types(end), X(1:number of types(end), max t));
68 xlabel('Types');
69 ylabel('Number of women');
70 grid;
71

72

73 %%% Export figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74 set(h1,'Color','w');
75 export fig(h1, '-q101', '-pdf', 'HW4 D1.pdf');
76

77 set(h2,'Color','w');
78 export fig(h2, '-q101', '-pdf', 'HW4 D2.pdf');
79

80 set(h3,'Color','w');
81 export fig(h3, '-q101', '-pdf', 'HW4 D3.pdf');
82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The results are show in Figures ??–??.

E Simulation tests two. Using the same code as above, modifying only the parameters q
and X0, we obtain Fig. ??–??.
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F Expected value of the number of direct line female descendants. The exercise states
that

Xn+1 =

Xn∑
i=1

Di. (1)

Using (1), we obtain that the expected number of individuals in generation n+ 1 is

E [Xn+1] = E

[
Xn∑
i=1

Di

]
= EXn

[
E

[
Xn∑
i=1

Di | Xn

]]

= EXn

[
Xn∑
i=1

E [Di | Xn]

]

= EXn

[
Xn∑
i=1

E [Di]

]

= EXn

[
Xn∑
i=1

ν

]

= ν EXn

[
Xn∑
i=1

1

]
= ν E [Xn]

Thus, we have the recursion E [Xn+1] = ν E [Xn] with initial state E [X0] = X0, give that X0 is a
deterministic quantity. The desired result follows readily. Note that we could have used Wald’s
equation from the beginning to get the recursion.

For parts D and E, we have that ν = 1.05, so that µn = X0×1.05n. In other words, the expected
size of the population should grow exponentially with n. This is consistent with Figures ?? and ??:
although most of the types go extinct, the numbers for those who do not increase exponentially
fast.

Similar to previous part or directly from Wald’s equation, we obtain

E [Xnr] = E

Xnr−1∑
i=1

Dir

 = E [Xnr−1]E [Dir] ,

which gives us
E [Xnr] = νnr EX0r = (1− q)nνn × 1. (2)

G Extinction in probability and almost sure extinction. Similar to (2), we have that
if there are X0r women of type r in the zeroth generation, then the average number of type r
descendants at generation n is

µnr = E [Xnr] = X0rν
n
r .

Hence, if νr < 1 we have that E [Xnr] → 0 regardless of X0r (which is assumed to be finite).
Since Xnr is a non-negative random variable, i.e., Xnr ≥ 0, this implies that limn→∞ P [Xnr = 0] =
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1. Indeed, by definition

lim
n→∞

E [Xnr] = lim
n→∞

∞∑
k=0

k × P [Xnr = k] = 0⇒ P [Xnr = k] = 0, for k 6= 0⇒ P [Xnr = 0] = 1.

Almost sure convergence is a little more complicated. But in the case of this MC, we can use
the fact that the only recurrent state is zero to deduce this part. Indeed, every state except zero
is transient and since the MC converges to zero in expectation, it cannot be transient to infinity.
This implies that it converges almost surely to a recurrent class, which in this case is the state zero.

H Probability of extinction in m generations. As explained in the exercise, Pe1(1) = p0.
To obtain a recursive expression for Pem(1), we condition on the number of daughters in the first
generation, i.e., X1r:

Pem(1) =
∞∑
j=1

P [extinction in m generations | X1r = j]P [X1r = j]

The second probability is simply pj , the probability of the mother having j daughters. The first
probability can be written recursively as the probability that each daughter goes extinct in m− 1
generations. Indeed, this would lead to their mother’s type going extinct in m generations. Since
each daughter is independent of the others, we can write P [extinction in m generations | X1r = j] =[
Pe(m−1)(1)

]j
to obtain

Pem(1) =

∞∑
j=1

[
Pe(m−1)(1)

]j
pj .

For the next part, recall that each of the X0r descendant lines are independent since they go
down different branching trees. Hence, their extinctions are also independent events. Since type r
going extinct in m steps is the intersection of each of the event that X0r lineage goes extinct in m
steps, we can write Pem(x) as a product of the Pem(1), namely Pem(x) = [Pem(1)]x.

I Probability of eventual extinction. Again, we will use the law of total probability to find
a recursion by conditioning on the number of daughters in the first generation. Explicitly,

Pe(1) =

∞∑
j=1

P [extinction | X1r = j]P [X1r = j] .

The thing to notice here is that the probability of the type of each direct descendant ever going
extinct is the same as the probability of their mother’s type ever going extinct, which gives us the
recursion:

Pe(1) =
∞∑
j=1

[Pe(1)]j pj .

Once again, we can use the fact that the extinction of each of the X0r women are independent
event, so that the probability of their intersection is the product of their individual probabilities.
Therefore, it holds that Pe(x) = [Pe(1)]x.
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Figure 1: Number of women per types over 50 generations for X0 = 100 women of different types
and mutation rate q = 10−2 (part D).
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Figure 2: Number of existing types and extinct types over 50 generations for X0 = 100 women of
different types and mutation rate q = 10−2 (part D).
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Figure 3: Final number of women per type after 50 generations for X0 = 100 women of different
types and mutation rate q = 10−2 (part D).
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Figure 4: Number of women per types over 50 generations for X0 = 400 women of different types
and mutation rate q = 0 (part E).
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Figure 5: Number of existing types and extinct types over 50 generations for X0 = 400 women of
different types and mutation rate q = 0 (part E).
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Figure 6: Final number of women per type after 50 generations for X0 = 400 women of different
types and mutation rate q = 0 (part E).
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