
Week 5: Markov chains

Random access in communication networks

Solutions

A Markov chain model. The model described in the homework defines the following proba-
bilities:

P [a terminal receives a packet in time slot n] = λ, for all n

P [a terminal successfully transmits a packet in time slot n] = pq, for all n such that Qjn > 0

The transition probabilities for the number packets in queue are explained below:

P
[
Qj(n+1) = k + 1 | Qjn = k

]
= P [terminal receives a packet in time slot n] = λ,

which holds for all n,

P
[
Qj(n+1) = k − 1 | Qjn = k

]
= P [terminal successfully transmits a packet in time slot n] = pq,

P
[
Qj(n+1) = k | Qjn = k

]
= P [neither receives nor transmits a packet in time slot n]

= 1− P [receiving a packet]− P [successfully transmitting a packet]

= 1− λ− pq,

which holds for k > 0 since if there is no packet in the queue, then no packet can be transmitted;
for k = 0 we have

P
[
Qj(n+1) = 0 | Qjn = 0

]
= P [terminal doesn’t receive a packet in time slot n] = 1− λ.

Notice from Figure 1 that this MC is similar to a bounded random walk on the integer line, which
you have seen can be recurrent or transient depending on the values of the transition probabilities.
We discuss the MC obtained for different values of λ and pq in Table 1.

As far as ergodicity, recall that for a MC to be ergodic it must be irreducible, positive recurrent,
and aperiodic. Thus, this MC is only ergodic when pq > λ > 0.

B Limit distribution. The limit distribution depends on the values of λ and pq. Indeed, recall
that only positive recurrent MCs have well-defined limit distribution. Moreover, only ergodic MCs
have limit distributions that do not depend on the initial state. In our case, if λ > pq the MC
consists of one transient class. In this case, the limit distribution does not exist (or if you want,
it is not a proper probability distribution since πk = 0 for all k). When λ = pq, the MC is null
recurrent and again πk is null for all k.

In contrast, the MC is positive recurrent for λ < pq. Not only that, but it is ergodic! In this
case, we can calculate what the limit distribution is. Actually, we only need to check that it has

1



Table 1: MC type depending on the values of λ and pq
Parameters Type of MC

λ = 0, pq = 0 Every state is a class, every class (state) is (positive) recurrent.

λ = 0, pq > 0 Every state is a class and the only (positive) recurrent class (state) is 0.
Every other class (state) is transient.

λ > 0, pq = 0 Every state is a class and every class (state) is transient.

λ > pq > 0 MC has a SINGLE class and it is transient (there is a positive drift toward
infinity).

pq > λ > 0 MC has a SINGLE class and it is (positive) recurrent (there is a negative
drift toward zero).

pq = λ > 0 MC has a SINGLE class and it is (null) recurrent (there is no drift: the
MC is guaranteed to return to any state, but the expected return time is
infinite).

the form proposed in the exercise. To do so, note that any equilibrium distribution πk must satisfy
two equilibrium equations: one for when the queue is empty and another for when it is not. When
the queue is empty, i.e., when we are at state 0, we have

π0 = P [no new packet is delivered]× π0 + P [a packet is successfully transmitted]× π1
= (1− λ)π0 + pqπ1.

(1)

For an arbitrary state k > 0, we get

πk = P [new packet is delivered]× πk−1
+ P [no new packet is delivered or succesfully transmitted]× πk
+ P [a packet is successfully transmitted]× πk+1

= λπk−1 + (1− λ− pq)πk + (pq)πk+1

(2)

Let’s now postulate that πk = cαk, check whether that is correct, and evaluate the constants.
From (1) we get

cα0 = (1− λ)cα0 + (pq)cα1 ⇔ c = (1− λ)c+ (pq)cα⇔ α =
λ

pq
.

Although we obtained an α that works for k = 0, we must check that it also works for an arbi-
trary k > 0. To do so, we substitute α into (2) to get

c

(
λ

pq

)k
= λc

(
λ

pq

)k−1
+ (1− λ− pq)c

(
λ

pq

)k
+ (pq)c

(
λ

pq

)k+1

,

which simplifies to

λ

pq
= λ+ (1− λ− pq) λ

pq
+ (pq)

(
λ

pq

)2

⇒ λ

pq
=

λ

pq
.

We have therefore established that πk = c(λ/pq)k.
To solve for the constant c, recall that any probability distribution must add up to one. Ex-
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plicitly,
∞∑
k=0

πk =

∞∑
k=0

c

(
λ

pq

)k
= c

∞∑
k=0

(
λ

pq

)k
= c · 1

1− λ
pq

= 1⇔ c = 1− λ

pq

Note that this holds because pq > λ⇒ λ/pq < 1, so that the geometric series is convergent. Thus,
in this case,

πk =

(
1− λ

pq

)(
λ

pq

)k
.

C Probability of empty queue and probability of minimal wait. The probability of
the j-th queue being empty for large n is equal to the limit distribution π0. This is true for
the case pq > λ. Otherwise, the limit distribution is improper (although we could say that the
probability of the queue being empty is then zero). Thus, from the previous exercise we obtain

P [Queue becomes empty] = π0 =

(
1− λ

pq

)
, when pq > λ.

For a packet to be transmitted in the first slot after it arrives, the queue had to be empty
when the packet arrived—otherwise, another packet would have precedence. This occurs with
probability π0 for large n. Furthermore, the terminal must “decide” to transmit the packet, which
occurs with probability p. Hence,

T1 = P [queue was empty when packet arrived]P [transmitting packet] = pπ0 = p− λ

q
.

Following the same logic, the probability of the packet being successful transmitted in the first
slot after arrival is

S1 = P [queue was empty when packet arrived]P [transmitting packet]P [successful transmission]

= (pq)π0 = pq − λ.

D Expected queue length. Recall that the expected value is defined as the sum of all possible
queue lengths k times their respective probabilities. Explicitly

Q̄j = lim
n→∞

E[Qjn] = lim
n→∞

( ∞∑
k=0

kP [Qjn = k]

)
=
∞∑
k=0

(
lim
n→∞

kP [Qjn = k]
)

.

Observe that the second equality is not always true, i.e., you are not always allowed to reverse
limits and summations. In fact, you typically cannot do that! In this case, however, both the limit
of the series and the sum of the limits are well-defined, so our manipulation is valid.

Using the fact that πk = limn→∞ P [Qjn = k] (by definition), we get

Q̄j =
∞∑
k=0

kπk =
∞∑
k=0

[
k

(
1− λ

pq

)
λ

pq

k
]

=

(
1− λ

pq

) ∞∑
k=0

k
λ

pq

k

. (3)

To solve the series above, we will use the classical trick of differentiating the power series. Start by
recalling that

∞∑
n=0

xn =
1

1− x
, for x < 1.
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Notice, however, that the series we have in (3) is of the form
∑∞

n=0 nx
n. To get the “n in front”,

we can use the linearity of the differential operator to write

∞∑
n=0

nxn = x

∞∑
n=0

nxn−1 = x
∞∑
n=0

∂xn

∂x
= x · ∂

∂x

( ∞∑
n=0

xn

)
= x · ∂

∂x

(
1

1− x

)
=

x

(1− x)2
, for x < 1.

Using this result back in (3) yields

Q̄j =

(
1− λ

pq

) ∞∑
k=0

k
λ

pq

k

=

(
1− λ

pq

)
λ/pq(

1− λ
pq

)2 =
λ/pq(

1− λ
pq

) =
λ

pq − λ
.

E Probability of successful transmission and optimal transmission probability p?. A
transmission is successful when a single terminal tries to transmit a packet, since in this case there
is “no collision.” Explicitly,

P [successful transmission] = P [exactly one terminal attempts to transmit a packet] = p×(1−p)J−1,
(4)

where we use the hypothesis (B) to ignore the queue length of the terminals and independence of
transmission attempts across terminals. We can now check that p? = 1/J indeed maximizes the
probability of successful transmission by showing that the derivative of (4) vanishes at p?1:

d

dp
P [successful transmission]

∣∣∣∣
p=1/J

= (1− p)J−1 + p(1− J)(1− p)J−2
∣∣
p=1/J

=

(
1− 1

J

)J−1
− J − 1

J

(
1− 1

J

)J−2
= 0.

Observe from Part C that the probability of any queue being empty is an increasing function of the
probability of successful transmission (i.e., pq). Also, note from Part D that the expected queue
length is a decreasing functions of this probability. Hence, maximizing the probability of successful
transmissions is equivalent to maximizing the probability of empty queues and minimizing the
expected queue length.

Recall that a successful transmission occurs when (i) a transmission is attempted (which oc-
curs with probability p) AND (ii) no collision occurs (which occurs with probability q). Hence,
the probability of a transmitted packet reaching the AP is given by q = (1 − p)J−1. Therefore,
the asymptotic probability of being able to successfully transmit a packet assuming packets are
transmitted with probability p? is given by

lim
J→∞

q? = lim
J→∞

(
1− 1

J

)J−1
= e−1 ≈ 0.36.

F Average time occupancies. The main insight in this solution is that the MC is ergodic (as-
suming λ < pq). Therefore, the fraction of time there were k packets in the queue is equal to the

1Technically, this only shows that p? is a stationary point of (4). To show that it is a maximum, we should
evaluate its second derivative to make sure it is negative.
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limit distribution of state k. Formally,

p̄k = lim
n→∞

1

n

n∑
m=1

I (Qjm = k) = πk.

Indeed, for an ergodic MC, the ensemble average (the average across realizations of the MC) and
the ergodic average (the average across a single realization of the MC) converge as n→∞.

We can find an analogous way to express the expected value of queue length for leveraging the
fact that for any ergodic MC {Xn} it holds that

lim
n→∞

1

n

n∑
m=1

f(Xm) =

∞∑
`=1

f(`)π`.

Thus, we can write the ergodic average of the queue length as

lim
n→∞

1

n

n∑
m=1

Qjm =

∞∑
k=0

kπk = Q̄j .

G System simulation. The MATLAB function for simulating the communication system is
given below. It is written in vectorized form to be faster and more concise. If you’re interested in
understanding how it works, ask your TAs.

1 function [ R ] = alohaSim( J, p, lambda, N )
2 %ALOHASIM Simulates the ALOHA protocol for HW 5, Part G
3 % Inputs:
4 % J - Number of terminals
5 % p - Probability of a terminal attempting a transmission
6 % lambda - Rate of packet arrivals
7 % N - Length of simulation
8

9 % Initialize terminal queues to zero
10 R = zeros(J, N);
11

12 % Start simulation
13 for t = 1:N-1
14 % Draw whether each terminal produces a new packet to transmit
15 arrivals = binornd(1, lambda, [J, 1]);
16

17 % Update queue length with new packets
18 R(:,t+1) = R(:,t) + arrivals;
19

20 % Check which terminals have non-empty queues
21 non empty queue = R(:,t) > 0;
22

23 % Draw whether each terminal would choose transmit
24 transmission = binornd(1, p, [J, 1]);
25

26 % For each terminal, evaluate whether or not they transmit a packet by
27 % checking if (i) they have not received a packet AND (ii) their queue
28 % is not empty AND (iii) they have chosen to transmit in this time slot
29 service = (~arrivals) & non empty queue & transmission;
30

31 % Check if transmission is successful, i.e., if a single terminal
32 % has attempted to transmit a packet...
33 if sum(service) == 1
34 % The transmission is successful: remove packet from terminal queue
35 R(:,t+1) = R(:,t) - service;
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36 end
37 end
38

39 end

To obtain the desired plot, we execute the function using the following code, whose result is
depicted in Fig. 1.

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 J = 16; % Number of users
6 p = 1/J; % Optimal transmission probability (pˆ\star)
7 lambda = 0.9 * p*(1-p)ˆ(J-1); % Packet arrival rate
8 N = 10ˆ4; % Length of the simulation
9

10 % Simulation
11 R = alohaSim( J, p, lambda, N );
12

13 % Queue lengths of terminals 1-4
14 figure();
15 stairs(1:N, R(1:4,:)', 'LineWidth', 2);
16 xlabel('Time slot');
17 ylabel('Queue length');
18 legend('Terminal 1','Terminal 2','Terminal 3','Terminal 4', 'Location', 'Best')
19 grid;
20

21 %%% Export figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 set(gcf,'Color','w');
23 export fig -q101 -pdf HW5 G.pdf
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

H Compare numerical and analytical results. Because the MC is ergodic, we can use the
time averages from a single trial to estimate its limit distribution. We do so using the following
MATLAB code:

1 % Delete all variables and close figures
2 clear all
3 close all
4

5 J = 16; % Number of users
6 p = 1/J; % Optimal transmission probability (pˆ\star)
7 lambda = 0.9 * p*(1-p)ˆ(J-1); % Packet arrival rate
8 N = 10ˆ4; % Length of the simulation
9

10 % Simulation
11 R = alohaSim( J, p, lambda, N );
12

13 % We use only terminal 1 from now on
14 R1 = R(1,:);
15 maxR1 = max(R1);
16 prob sim = histcounts(R1, 0:maxR1+1)/N;
17

18 % Analytical distribution
19 rho = lambda/(p*(1-p)ˆ(J-1));
20 prob theo = (1-rho) * rho.ˆ(0:maxR1);
21

22 % Plots
23 figure;
24 stem(0:maxR1, prob sim, 'LineWidth', 2);
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25 hold on
26 stem(0:maxR1, prob theo, 'x', 'LineWidth', 2);
27 xlabel('Queue length');
28 ylabel('Probability');
29 legend('Estimated probability (\xi k)', ...
30 'Analytical probability (\pi k)');
31 grid;
32

33

34 %%% Export figure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 set(gcf,'Color','w');
36 export fig -q101 -pdf HW5 H.pdf
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The result is shown in Fig. 2. Note that the dominant system assumption used to evaluate the πk
considerably underestimates the performance of the RA policy. Indeed, it is both unnecessary and
detrimental to transmit dummy packets when we could be silent and increase the probability of
successful transmissions by avoiding collisions.
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Figure 1: Queue lengths of terminals one through four across N = 104 time slots (part G).
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Figure 2: Comparison between the numerical and analytical limit distributions (part H).
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